Molecular Symphony of Mitophagy: Ubiquitin-Specific Protease-30 as a Maestro for Precision Management of Neurodegenerative Diseases
Language English Country England, Great Britain Media print
Document type Journal Article, Review
Grant support
LX22NPO5107 (MEYS)
European Union: NextGenerationEU
National Institute of Pharmaceutical Education and Research (NIPER) seed fund-Ahmedabad, Department of Pharmaceutics, Ministry of Chemicals and Fertilizers, Government of India
BT/RLF/Re-entry/24/2017
Ramalingaswami fellowship, Department of Biotechnology
PubMed
39840724
PubMed Central
PMC11751875
DOI
10.1111/cns.70192
Knihovny.cz E-resources
- Keywords
- Alzheimer's disease, Parkinson's disease, USP13 inhibitors, USP14 inhibitors, USP30 inhibitors, deubiquitinating enzymes, mitophagy, ubiquitin‐specific protease,
- MeSH
- Precision Medicine methods MeSH
- Humans MeSH
- Mitochondrial Proteins MeSH
- Mitophagy * physiology drug effects MeSH
- Neurodegenerative Diseases * drug therapy metabolism MeSH
- Ubiquitin-Specific Proteases metabolism antagonists & inhibitors MeSH
- Thiolester Hydrolases metabolism MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
- Names of Substances
- Mitochondrial Proteins MeSH
- Ubiquitin-Specific Proteases MeSH
- Thiolester Hydrolases MeSH
- Usp30 protein, human MeSH Browser
INTRODUCTION: Mitochondrial dysfunction stands as a pivotal feature in neurodegenerative disorders, spurring the quest for targeted therapeutic interventions. This review examines Ubiquitin-Specific Protease 30 (USP30) as a master regulator of mitophagy with therapeutic promise in Alzheimer's disease (AD) and Parkinson's disease (PD). USP30's orchestration of mitophagy pathways, encompassing PINK1-dependent and PINK1-independent mechanisms, forms the crux of this exploration. METHOD: A systematic literature search was conducted in PubMed, Scopus, and Web of Science, selecting studies that investigated USP's function, inhibitor design, or therapeutic efficacy in AD and PD. Inclusion criteria encompassed mechanistic and preclinical/clinical data, while irrelevant or duplicate references were excluded. Extracted findings were synthesized narratively. RESULTS: USP30 modulates interactions with translocase of outer mitochondrial membrane (TOM) 20, mitochondrial E3 ubiquitin protein ligase 1 (MUL1), and Parkin, thus harmonizing mitochondrial quality control. Emerging novel USP30 inhibitors, racemic phenylalanine derivatives, N-cyano pyrrolidine, and notably, benzosulphonamide class compounds, restore mitophagy, and reduce neurodegenerative phenotypes across diverse models with minimal off-target effects. Modulation of other USPs also influences neurodegenerative disease pathways, offering additional therapeutic avenues. CONCLUSIONS: In highlighting the nuanced regulation of mitophagy by USP30, this work heralds a shift toward more precise and effective treatments, paving the way for a new era in the clinical management of neurodegenerative disorders.
Department of Physiology Faculty of Medicine Masaryk University Brno Czech Republic
International Clinical Research Center Faculty of Medicine Masaryk University Brno Czech Republic
International Clinical Research Center St Anne's University Hospital Brno Czech Republic
School of Pharmaceutical Sciences Jaipur National University Jaipur Rajasthan India
See more in PubMed
Heuveline P., “Global and National Declines in Life Expectancy: An End‐Of‐2021 Assessment,” Population and Development Review 48, no. 1 (2022): 31–50. PubMed PMC
Kehler D. S. and Theou O., “The Impact of Physical Activity and Sedentary Behaviors on Frailty Levels,” Mechanisms of Ageing and Development 180 (2019): 29–41. PubMed
Melzer D., Pilling L. C., and Ferrucci L., “The Genetics of Human Ageing,” Nature Reviews Genetics 21, no. 2 (2020): 88–101. PubMed PMC
López‐Otín C. and Kroemer G., “Hallmarks of Health,” Cell 184, no. 1 (2021): 33–63. PubMed
Klionsky D. J., Petroni G., Amaravadi R. K., et al., “Autophagy in Major Human Diseases,” EMBO Journal 40, no. 19 (2021): e108863. PubMed PMC
Vogiatzi T., Xilouri M., Vekrellis K., and Stefanis L., “Wild Type α‐Synuclein Is Degraded by Chaperone‐Mediated Autophagy and Macroautophagy in Neuronal Cells,” Journal of Biological Chemistry 283, no. 35 (2008): 23542–23556. PubMed PMC
Webb J. L., Ravikumar B., Atkins J., Skepper J. N., and Rubinsztein D. C., “α‐Synuclein Is Degraded by Both Autophagy and the Proteasome,” Journal of Biological Chemistry 278, no. 27 (2003): 25009–25013. PubMed
Xilouri M., Vogiatzi T., and Stefanis L., “Alpha‐Synuclein Degradation by Autophagic Pathways: A Potential Key to Parkinson's Disease Pathogenesis,” Autophagy 4, no. 7 (2008): 917–919. PubMed
Wang Y., Krüger U., Mandelkow E., and Mandelkow E.‐M., “Generation of Tau Aggregates and Clearance by Autophagy in an Inducible Cell Model of Tauopathy,” Neurodegenerative Diseases 7, no. 1–3 (2010): 103–107. PubMed
Ravikumar B., Duden R., and Rubinsztein D. C., “Aggregate‐Prone Proteins With Polyglutamine and Polyalanine Expansions Are Degraded by Autophagy,” Human Molecular Genetics 11, no. 9 (2002): 1107–1117. PubMed
Sarkar S., Davies J. E., Huang Z., Tunnacliffe A., and Rubinsztein D. C., “Trehalose, a Novel mTOR‐Independent Autophagy Enhancer, Accelerates the Clearance of Mutant Huntingtin and α‐Synuclein,” Journal of Biological Chemistry 282, no. 8 (2007): 5641–5652. PubMed
Shibata M., Lu T., Furuya T., et al., “Regulation of Intracellular Accumulation of Mutant Huntingtin by Beclin 1,” Journal of Biological Chemistry 281, no. 20 (2006): 14474–14485. PubMed
Parekh P., Sharma N., Gadepalli A., Shahane A., Sharma M., and Khairnar A., “A Cleaning Crew: The Pursuit of Autophagy in Parkinson's Disease,” ACS Chemical Neuroscience 10, no. 9 (2019): 3914–3926. PubMed
Menzies F. M., Fleming A., Caricasole A., et al., “Autophagy and Neurodegeneration: Pathogenic Mechanisms and Therapeutic Opportunities,” Neuron 93, no. 5 (2017): 1015–1034. PubMed
Ohsumi Y., “Historical Landmarks of Autophagy Research,” Cell Research 24, no. 1 (2014): 9–23. PubMed PMC
Li W., He P., Huang Y., et al., “Selective Autophagy of Intracellular Organelles: Recent Research Advances,” Theranostics 11, no. 1 (2021): 222–256. PubMed PMC
Chen Y., Zhou Z., and Min W., “Mitochondria, Oxidative Stress and Innate Immunity,” Frontiers in Physiology 9 (2018): 1487. PubMed PMC
Dadsena S., Zollo C., and García‐Sáez A. J., “Mechanisms of Mitochondrial Cell Death,” Biochemical Society Transactions 49, no. 2 (2021): 663–674. PubMed
Lewis M. and Lewis W., “Mitochondria in Tissue Culture,” Science 39, no. 1000 (1914): 330–333. PubMed
Kesharwani R., Sarmah D., Kaur H., et al., “Interplay Between Mitophagy and Inflammasomes in Neurological Disorders,” ACS Chemical Neuroscience 10, no. 5 (2019): 2195–2208. PubMed
Dagda R. K., Cherra S. J., Kulich S. M., Tandon A., Park D., and Chu C. T., “Loss of PINK1 Function Promotes Mitophagy Through Effects on Oxidative Stress and Mitochondrial Fission,” Journal of Biological Chemistry 284, no. 20 (2009): 13843–13855. PubMed PMC
Narendra D., Tanaka A., Suen D.‐F., and Youle R. J., “Parkin Is Recruited Selectively to Impaired Mitochondria and Promotes Their Autophagy,” Journal of Cell Biology 183, no. 5 (2008): 795–803. PubMed PMC
Malpartida A. B., Williamson M., Narendra D. P., Wade‐Martins R., and Ryan B. J., “Mitochondrial Dysfunction and Mitophagy in Parkinson's Disease: From Mechanism to Therapy,” Trends in Biochemical Sciences 46, no. 4 (2021): 329–343. PubMed
Pradeepkiran J. A. and Reddy P. H., “Defective Mitophagy in Alzheimer's Disease,” Ageing Research Reviews 64 (2020): 101191. PubMed PMC
Funayama M., Nishioka K., Li Y., and Hattori N., “Molecular Genetics of Parkinson's Disease: Contributions and Global Trends,” Journal of Human Genetics 68, no. 3 (2023): 125–130. PubMed PMC
Kitada T., Tong Y., Gautier C. A., and Shen J., “Absence of Nigral Degeneration in Aged Parkin/DJ‐1/PINK1 Triple Knockout Mice,” Journal of Neurochemistry 111, no. 3 (2009): 696–702. PubMed PMC
Gonçalves F. B. and Morais V. A., “PINK1: A Bridge Between Mitochondria and Parkinson's Disease,” Life 11, no. 5 (2021): 371. PubMed PMC
Jin S. M. and Youle R. J., “PINK1‐and Parkin‐Mediated Mitophagy at a Glance,” Journal of Cell Science 125, no. 4 (2012): 795–799. PubMed PMC
Jin S. M., Lazarou M., Wang C., Kane L. A., Narendra D. P., and Youle R. J., “Mitochondrial Membrane Potential Regulates PINK1 Import and Proteolytic Destabilization by PARL,” Journal of Cell Biology 191, no. 5 (2010): 933–942. PubMed PMC
Varshavsky A., “N‐Degron and C‐Degron Pathways of Protein Degradation,” Proceedings of the National Academy of Sciences of the United States of America 116, no. 2 (2019): 358–366. PubMed PMC
Youle R. J. and Narendra D. P., “Mechanisms of Mitophagy,” Nature Reviews Molecular Cell Biology 12, no. 1 (2011): 9–14. PubMed PMC
Akabane S., Watanabe K., Kosako H., et al., “TIM23 Facilitates PINK1 Activation by Safeguarding Against OMA1‐Mediated Degradation in Damaged Mitochondria,” Cell Reports 42, no. 5 (2023): 112454. PubMed
Eldeeb M. A., Bayne A. N., Fallahi A., et al., “Tom20 Gates PINK1 Activity and Mediates Its Tethering of the TOM and TIM23 Translocases Upon Mitochondrial Stress,” Proceedings of the National Academy of Sciences of the United States of America 121, no. 10 (2024): e2313540121. PubMed PMC
Sauvé V., Sung G., Soya N., et al., “Mechanism of Parkin Activation by Phosphorylation,” Nature Structural & Molecular Biology 25, no. 7 (2018): 623–630. PubMed
Kazlauskaite A., Martínez‐Torres R. J., Wilkie S., et al., “Binding to Serine 65‐Phosphorylated Ubiquitin Primes Parkin for Optimal PINK 1‐Dependent Phosphorylation and Activation,” EMBO Reports 16, no. 8 (2015): 939–954. PubMed PMC
Kumar A., Aguirre J. D., Condos T. E., et al., “Disruption of the Autoinhibited State Primes the E3 Ligase Parkin for Activation and Catalysis,” EMBO Journal 34, no. 20 (2015): 2506–2521. PubMed PMC
Sauvé V., Lilov A., Seirafi M., et al., “A Ubl/Ubiquitin Switch in the Activation of Parkin,” EMBO Journal 34, no. 20 (2015): 2492–2505. PubMed PMC
Wauer T., Simicek M., Schubert A., and Komander D., “Mechanism of Phospho‐Ubiquitin‐Induced PARKIN Activation,” Nature 524, no. 7565 (2015): 370–374. PubMed PMC
Yamano K., Queliconi B. B., Koyano F., et al., “Site‐Specific Interaction Mapping of Phosphorylated Ubiquitin to Uncover Parkin Activation,” Journal of Biological Chemistry 290, no. 42 (2015): 25199–25211. PubMed PMC
Wauer T., Swatek K. N., Wagstaff J. L., et al., “Ubiquitin Ser65 Phosphorylation Affects Ubiquitin Structure, Chain Assembly and Hydrolysis,” EMBO Journal 34, no. 3 (2015): 307–325. PubMed PMC
Kirkin V., Lamark T., Sou Y.‐S., et al., “A Role for NBR1 in Autophagosomal Degradation of Ubiquitinated Substrates,” Molecular Cell 33, no. 4 (2009): 505–516. PubMed
Lazarou M., Sliter D. A., Kane L. A., et al., “The Ubiquitin Kinase PINK1 Recruits Autophagy Receptors to Induce Mitophagy,” Nature 524, no. 7565 (2015): 309–314. PubMed PMC
Thurston T. L., Ryzhakov G., Bloor S., Von Muhlinen N., and Randow F., “The TBK1 Adaptor and Autophagy Receptor NDP52 Restricts the Proliferation of Ubiquitin‐Coated Bacteria,” Nature Immunology 10, no. 11 (2009): 1215–1221. PubMed
Wong Y. C. and Holzbaur E. L., “Optineurin Is an Autophagy Receptor for Damaged Mitochondria in Parkin‐Mediated Mitophagy That Is Disrupted by an ALS‐Linked Mutation,” Proceedings of the National Academy of Sciences of the United States of America 111, no. 42 (2014): E4439–E4448. PubMed PMC
Geisler S., Holmström K. M., Skujat D., et al., “PINK1/Parkin‐Mediated Mitophagy Is Dependent on VDAC1 and p62/SQSTM1,” Nature Cell Biology 12, no. 2 (2010): 119–131. PubMed
Sarraf S. A., Raman M., Guarani‐Pereira V., et al., “Landscape of the PARKIN‐Dependent Ubiquitylome in Response to Mitochondrial Depolarization,” Nature 496, no. 7445 (2013): 372–376. PubMed PMC
McEwan D. G., Popovic D., Gubas A., et al., “PLEKHM1 Regulates Autophagosome‐Lysosome Fusion Through HOPS Complex and LC3/GABARAP Proteins,” Molecular Cell 57, no. 1 (2015): 39–54. PubMed
Cunningham C. N., Baughman J. M., Phu L., et al., “USP30 and Parkin Homeostatically Regulate Atypical Ubiquitin Chains on Mitochondria,” Nature Cell Biology 17, no. 2 (2015): 160–169. PubMed
Iorio R., Celenza G., and Petricca S., “Mitophagy: Molecular Mechanisms, New Concepts on Parkin Activation and the Emerging Role of AMPK/ULK1 Axis,” Cells 11, no. 1 (2021): 30. PubMed PMC
McWilliams T. G., Prescott A. R., Montava‐Garriga L., et al., “Basal Mitophagy Occurs Independently of PINK1 in Mouse Tissues of High Metabolic Demand,” Cell Metabolism 27, no. 2 (2018): 439–449.e435. PubMed PMC
Lee J. J., Sanchez‐Martinez A., Zarate A. M., et al., “Basal Mitophagy Is Widespread in Drosophila but Minimally Affected by Loss of Pink1 or Parkin,” Journal of Cell Biology 217, no. 5 (2018): 1613–1622. PubMed PMC
Liu J., Liu W., Li R., and Yang H., “Mitophagy in Parkinson's Disease: From Pathogenesis to Treatment,” Cells 8, no. 7 (2019): 712. PubMed PMC
Diwan A., Krenz M., Syed F. M., et al., “Inhibition of Ischemic Cardiomyocyte Apoptosis Through Targeted Ablation of Bnip3 Restrains Postinfarction Remodeling in Mice,” Journal of Clinical Investigation 117, no. 10 (2007): 2825–2833. PubMed PMC
Diwan A., Matkovich S. J., Yuan Q., et al., “Endoplasmic Reticulum–Mitochondria Crosstalk in NIX‐Mediated Murine Cell Death,” Journal of Clinical Investigation 119, no. 1 (2009): 203–212. PubMed PMC
Ohi N., Tokunaga A., Tsunoda H., et al., “A Novel Adenovirus E1B19K‐Binding Protein B5 Inhibits Apoptosis Induced by Nip3 by Forming a Heterodimer Through the C‐Terminal Hydrophobic Region,” Cell Death and Differentiation 6, no. 4 (1999): 314–325. PubMed
Yasuda M., Han J.‐w., Dionne C. A., Boyd J. M., and Chinnadurai G., “BNIP3α: A Human Homolog of Mitochondrial Proapoptotic Protein BNIP3,” Cancer Research 59, no. 3 (1999): 533–537. PubMed
Hanna R. A., Quinsay M. N., Orogo A. M., Giang K., Rikka S., and Gustafsson Å. B., “Microtubule‐Associated Protein 1 Light Chain 3 (LC3) Interacts With Bnip3 Protein to Selectively Remove Endoplasmic Reticulum and Mitochondria via Autophagy,” Journal of Biological Chemistry 287, no. 23 (2012): 19094–19104. PubMed PMC
Mughal W., Nguyen L., Pustylnik S., et al., “A Conserved MADS‐Box Phosphorylation Motif Regulates Differentiation and Mitochondrial Function in Skeletal, Cardiac, and Smooth Muscle Cells,” Cell Death & Disease 6, no. 10 (2015): e1944. PubMed PMC
da Silva Rosa S. C., Martens M. D., Field J. T., et al., “BNIP3L/nix‐Induced Mitochondrial Fission, Mitophagy, and Impaired Myocyte Glucose Uptake Are Abrogated by PRKA/PKA Phosphorylation,” Autophagy 17, no. 9 (2021): 2257–2272. PubMed PMC
Ren Y., Chen J., Wu X., et al., “Role of c‐Abl‐GSK3β Signaling in MPP+‐Induced Autophagy‐Lysosomal Dysfunction,” Toxicological Sciences 165, no. 1 (2018): 232–243. PubMed
Li H., Ham A., Ma T. C., et al., “Mitochondrial Dysfunction and Mitophagy Defect Triggered by Heterozygous GBA Mutations,” Autophagy 15, no. 1 (2019): 113–130. PubMed PMC
Liu L., Feng D., Chen G., et al., “Mitochondrial Outer‐Membrane Protein FUNDC1 Mediates Hypoxia‐Induced Mitophagy in Mammalian Cells,” Nature Cell Biology 14, no. 2 (2012): 177–185. PubMed
Lv M., Wang C., Li F., et al., “Structural Insights Into the Recognition of Phosphorylated FUNDC1 by LC3B in Mitophagy,” Protein & Cell 8, no. 1 (2017): 25–38. PubMed PMC
Wu H., Xue D., Chen G., et al., “The BCL2L1 and PGAM5 Axis Defines Hypoxia‐Induced Receptor‐Mediated Mitophagy,” Autophagy 10, no. 10 (2014): 1712–1725. PubMed PMC
Chen M., Chen Z., Wang Y., et al., “Mitophagy Receptor FUNDC1 Regulates Mitochondrial Dynamics and Mitophagy,” Autophagy 12, no. 4 (2016): 689–702. PubMed PMC
Di Rita A., Peschiaroli A., D′ Acunzo P., et al., “HUWE1 E3 Ligase Promotes PINK1/PARKIN‐Independent Mitophagy by Regulating AMBRA1 Activation via IKKα,” Nature Communications 9, no. 1 (2018): 3755. PubMed PMC
Strappazzon F., Nazio F., Corrado M., et al., “AMBRA1 Is Able to Induce Mitophagy via LC3 Binding, Regardless of PARKIN and p62/SQSTM1,” Cell Death and Differentiation 22, no. 3 (2015): 419–432. PubMed PMC
Fuentes J. M. and Morcillo P., “The Role of Cardiolipin in Mitochondrial Function and Neurodegenerative Diseases,” Cells 13, no. 7 (2024): 609. PubMed PMC
Li X.‐X., Tsoi B., Li Y.‐F., Kurihara H., and He R.‐R., “Cardiolipin and Its Different Properties in Mitophagy and Apoptosis,” Journal of Histochemistry and Cytochemistry 63, no. 5 (2015): 301–311. PubMed PMC
Chu C. T., Ji J., Dagda R. K., et al., “Cardiolipin Externalization to the Outer Mitochondrial Membrane Acts as an Elimination Signal for Mitophagy in Neuronal Cells,” Nature Cell Biology 15, no. 10 (2013): 1197–1205. PubMed PMC
El‐Hafidi M., Correa F., and Zazueta C., “Mitochondrial Dysfunction in Metabolic and Cardiovascular Diseases Associated With Cardiolipin Remodeling,” Biochimica et Biophysica Acta (BBA) ‐ Molecular Basis of Disease 1866, no. 6 (2020): 165744. PubMed
Ryan T., Bamm V. V., Stykel M. G., et al., “Cardiolipin Exposure on the Outer Mitochondrial Membrane Modulates α‐Synuclein,” Nature Communications 9, no. 1 (2018): 817. PubMed PMC
Sun N., Youle R. J., and Finkel T., “The Mitochondrial Basis of Aging,” Molecular Cell 61, no. 5 (2016): 654–666. PubMed PMC
Koffie R. M., Hyman B. T., and Spires‐Jones T. L., “Alzheimer's Disease: Synapses Gone Cold,” Molecular Neurodegeneration 6, no. 1 (2011): 1–9. PubMed PMC
Zvěřová M., “Clinical Aspects of Alzheimer's Disease,” Clinical Biochemistry 72 (2019): 3–6. PubMed
Ana R. M., José B. D., Fernando R., and Renata S., “Alzheimer's Disease: Insights and New Prospects in Disease Pathophysiology, Biomarkers and Disease‐Modifying Drugs,” Biochemical Pharmacology 115522 (2023): 115522. PubMed
Manczak M. and Reddy P. H., “Abnormal Interaction of VDAC1 With Amyloid Beta and Phosphorylated Tau Causes Mitochondrial Dysfunction in Alzheimer's Disease,” Human Molecular Genetics 21, no. 23 (2012): 5131–5146. PubMed PMC
Xie H., Guan J., Borrelli L. A., Xu J., Serrano‐Pozo A., and Bacskai B. J., “Mitochondrial Alterations Near Amyloid Plaques in an Alzheimer's Disease Mouse Model,” Journal of Neuroscience 33, no. 43 (2013): 17042–17051. PubMed PMC
Du H., Guo L., Yan S., Sosunov A. A., McKhann G. M., and ShiDu Yan S., “Early Deficits in Synaptic Mitochondria in an Alzheimer's Disease Mouse Model,” Proceedings of the National Academy of Sciences of the United States of America 107, no. 43 (2010): 18670–18675. PubMed PMC
Bayer‐Carter J. L., Green P. S., Montine T. J., et al., “Diet Intervention and Cerebrospinal Fluid Biomarkers in Amnestic Mild Cognitive Impairment,” Archives of Neurology 68, no. 6 (2011): 743–752. PubMed PMC
Speisman R. B., Kumar A., Rani A., Foster T. C., and Ormerod B. K., “Daily Exercise Improves Memory, Stimulates Hippocampal Neurogenesis and Modulates Immune and Neuroimmune Cytokines in Aging Rats,” Brain, Behavior, and Immunity 28 (2013): 25–43. PubMed PMC
Karuppagounder S. S., Brahmachari S., Lee Y., Dawson V. L., Dawson T. M., and Ko H. S., “The c‐Abl Inhibitor, Nilotinib, Protects Dopaminergic Neurons in a Preclinical Animal Model of Parkinson's Disease,” Scientific Reports 4, no. 1 (2014): 4874. PubMed PMC
Qiu J., Chen Y., Zhuo J., et al., “Urolithin A Promotes Mitophagy and Suppresses NLRP3 Inflammasome Activation in Lipopolysaccharide‐Induced BV2 Microglial Cells and MPTP‐Induced Parkinson's Disease Model,” Neuropharmacology 207 (2022): 108963. PubMed
Fang E. F., Hou Y., Palikaras K., et al., “Mitophagy Inhibits Amyloid‐β and Tau Pathology and Reverses Cognitive Deficits in Models of Alzheimer's Disease,” Nature Neuroscience 22, no. 3 (2019): 401–412. PubMed PMC
Poewe W., Seppi K., Tanner C. M., et al., “Parkinson Disease,” Nature Reviews Disease Primers 3, no. 1 (2017): 1–21. PubMed
Bloem B. R., Okun M. S., and Klein C., “Parkinson's Disease,” Lancet 397, no. 10291 (2021): 2284–2303. PubMed
Choi W.‐S., Palmiter R. D., and Xia Z., “Loss of Mitochondrial Complex I Activity Potentiates Dopamine Neuron Death Induced by Microtubule Dysfunction in a Parkinson's Disease Model,” Journal of Cell Biology 192, no. 5 (2011): 873–882. PubMed PMC
Ramonet D., Perier C., Recasens A., et al., “Optic Atrophy 1 Mediates Mitochondria Remodeling and Dopaminergic Neurodegeneration Linked to Complex I Deficiency,” Cell Death and Differentiation 20, no. 1 (2013): 77–85. PubMed PMC
Wang B., Abraham N., Gao G., and Yang Q., “Dysregulation of Autophagy and Mitochondrial Function in Parkinson's Disease,” Translational Neurodegeneration 5, no. 1 (2016): 1–9. PubMed PMC
Ivatt R. M., Sanchez‐Martinez A., Godena V. K., Brown S., Ziviani E., and Whitworth A. J., “Genome‐Wide RNAi Screen Identifies the Parkinson Disease GWAS Risk Locus SREBF1 as a Regulator of Mitophagy,” Proceedings of the National Academy of Sciences of the United States of America 111, no. 23 (2014): 8494–8499. PubMed PMC
Ivatt R. M. and Whitworth A. J., “SREBF1 Links Lipogenesis to Mitophagy and Sporadic Parkinson Disease,” Autophagy 10, no. 8 (2014): 1476–1477. PubMed PMC
Bonifati V., “Autosomal Recessive Parkinsonism,” Parkinsonism & Related Disorders 18 (2012): S4–S6. PubMed
Thomas K. J., McCoy M. K., Blackinton J., et al., “DJ‐1 Acts in Parallel to the PINK1/Parkin Pathway to Control Mitochondrial Function and Autophagy,” Human Molecular Genetics 20, no. 1 (2011): 40–50. PubMed PMC
Ishikawa S., Taira T., Niki T., et al., “Oxidative Status of DJ‐1‐Dependent Activation of Dopamine Synthesis Through Interaction of Tyrosine Hydroxylase and 4‐Dihydroxy‐L‐Phenylalanine (L‐DOPA) Decarboxylase With DJ‐1,” Journal of Biological Chemistry 284, no. 42 (2009): 28832–28844. PubMed PMC
Ariga H., Takahashi‐Niki K., Kato I., Maita H., Niki T., and Iguchi‐Ariga S. M., “Neuroprotective Function of DJ‐1 in Parkinson's Disease,” Oxidative Medicine and Cellular Longevity 2013 (2013): 683920. PubMed PMC
Takahashi‐Niki K., Niki T., Iguchi‐Ariga S. M., and Ariga H., “Transcriptional Regulation of DJ‐1,” in DJ‐1/PARK7 Protein: Parkinson's Disease, Cancer and Oxidative Stress‐Induced Diseases (Springer Nature, 2017), 89–95.
McCoy M. K. and Cookson M. R., “DJ‐1 Regulation of Mitochondrial Function and Autophagy Through Oxidative Stress,” Autophagy 7, no. 5 (2011): 531–532. PubMed PMC
Marotta N. P., Ara J., Uemura N., et al., “Alpha‐Synuclein From Patient Lewy Bodies Exhibits Distinct Pathological Activity That Can Be Propagated In Vitro,” Acta Neuropathologica Communications 9, no. 1 (2021): 1–18. PubMed PMC
Wang X., Becker K., Levine N., et al., “Pathogenic Alpha‐Synuclein Aggregates Preferentially Bind to Mitochondria and Affect Cellular Respiration,” Acta Neuropathologica Communications 7 (2019): 1–14. PubMed PMC
Ghio S., Camilleri A., Caruana M., et al., “Cardiolipin Promotes Pore‐Forming Activity of Alpha‐Synuclein Oligomers in Mitochondrial Membranes,” ACS Chemical Neuroscience 10, no. 8 (2019): 3815–3829. PubMed
Deng H., Liang H., and Jankovic J., “F‐Box Only Protein 7 Gene in Parkinsonian‐Pyramidal Disease,” JAMA Neurology 70, no. 1 (2013): 20–24. PubMed
Lohmann E., Coquel A. S., Honoré A., et al., “A New F‐Box Protein 7 Gene Mutation Causing Typical Parkinson's Disease,” Movement Disorders 30, no. 8 (2015): 1130–1133. PubMed
Nelson D. E., Randle S. J., and Laman H., “Beyond Ubiquitination: The Atypical Functions of Fbxo7 and Other F‐Box Proteins,” Open Biology 3, no. 10 (2013): 130131. PubMed PMC
Rey F., Ottolenghi S., Zuccotti G. V., Samaja M., and Carelli S., “Mitochondrial Dysfunctions in Neurodegenerative Diseases: Role in Disease Pathogenesis, Strategies for Analysis and Therapeutic Prospects,” Neural Regeneration Research 17, no. 4 (2022): 754–758. PubMed PMC
Kshirsagar S., Sawant N., Morton H., Reddy A. P., and Reddy P. H., “Mitophagy Enhancers Against Phosphorylated Tau‐Induced Mitochondrial and Synaptic Toxicities in Alzheimer Disease,” Pharmacological Research 174 (2021): 105973. PubMed PMC
Varghese N., Werner S., Grimm A., and Eckert A., “Dietary Mitophagy Enhancer: A Strategy for Healthy Brain Aging?,” Antioxidants 9, no. 10 (2020): 932. PubMed PMC
Lonskaya I., Hebron M. L., Desforges N. M., Schachter J. B., and Moussa C. E., “Nilotinib‐Induced Autophagic Changes Increase Endogenous Parkin Level and Ubiquitination, Leading to Amyloid Clearance,” Journal of Molecular Medicine 92 (2014): 373–386. PubMed PMC
Hsieh C.‐H., Li L., Vanhauwaert R., et al., “Miro1 Marks Parkinson's Disease Subset and Miro1 Reducer Rescues Neuron Loss in Parkinson's Models,” Cell Metabolism 30, no. 6 (2019): 1131–1140.e7. PubMed PMC
Wang H., Fu J., Xu X., Yang Z., and Zhang T., “Rapamycin Activates Mitophagy and Alleviates Cognitive and Synaptic Plasticity Deficits in a Mouse Model of Alzheimer's Disease,” Journals of Gerontology: Series A 76, no. 10 (2021): 1707–1713. PubMed
Maestro I., De la Ballina L. R., Simonsen A., Boya P., and Martinez A., “Phenotypic Assay Leads to Discovery of Mitophagy Inducers With Therapeutic Potential for Parkinson's Disease,” ACS Chemical Neuroscience 12, no. 24 (2021): 4512–4523. PubMed
Shiba‐Fukushima K., Inoshita T., Sano O., et al., “A Cell‐Based High‐Throughput Screening Identified Two Compounds That Enhance PINK1‐Parkin Signaling,” Iscience 23 (2020): 23 (5). PubMed PMC
Wang D.‐X., Yang Y., Huang X.‐S., et al., “Pramipexole Attenuates Neuronal Injury in Parkinson's Disease by Targeting miR‐96 to Activate BNIP3‐Mediated Mitophagy,” Neurochemistry International 146 (2021): 104972. PubMed
Moskal N., Riccio V., Bashkurov M., et al., “ROCK Inhibitors Upregulate the Neuroprotective Parkin‐Mediated Mitophagy Pathway,” Nature Communications 11, no. 1 (2020): 88. PubMed PMC
Liu Y., Lear T. B., Verma M., et al., “Chemical Inhibition of FBXO7 Reduces Inflammation and Confers Neuroprotection by Stabilizing the Mitochondrial Kinase PINK1,” JCI Insight 5, no. 11 (2020): e131834. PubMed PMC
Singh F., Prescott A. R., Rosewell P., Ball G., Reith A. D., and Ganley I. G., “Pharmacological Rescue of Impaired Mitophagy in Parkinson's Disease‐Related LRRK2 G2019S Knock‐In Mice,” eLife 10 (2021): e67604. PubMed PMC
Ko H. S., Lee Y., Shin J.‐H., et al., “Phosphorylation by the c‐Abl Protein Tyrosine Kinase Inhibits Parkin's Ubiquitination and Protective Function,” Proceedings of the National Academy of Sciences of the United States of America 107, no. 38 (2010): 16691–16696. PubMed PMC
Hsieh C.‐H., Shaltouki A., Gonzalez A. E., et al., “Functional Impairment in Miro Degradation and Mitophagy Is a Shared Feature in Familial and Sporadic Parkinson's Disease,” Cell Stem Cell 19, no. 6 (2016): 709–724. PubMed PMC
Mannick J. B. and Lamming D. W., “Targeting the Biology of Aging With mTOR Inhibitors,” Nature Aging 3 (2023): 1–19. PubMed PMC
Bingol B. and Sheng M., “Mechanisms of Mitophagy: PINK1, Parkin, USP30 and Beyond,” Free Radical Biology and Medicine 100 (2016): 210–222. PubMed
Bingol B., Tea J. S., Phu L., et al., “The Mitochondrial Deubiquitinase USP30 Opposes Parkin‐Mediated Mitophagy,” Nature 510, no. 7505 (2014): 370–375. PubMed
Cornelissen T., Haddad D., Wauters F., et al., “The Deubiquitinase USP15 Antagonizes Parkin‐Mediated Mitochondrial Ubiquitination and Mitophagy,” Human Molecular Genetics 23, no. 19 (2014): 5227–5242. PubMed PMC
Durcan T. M. and Fon E. A., “The Three ‘P's of Mitophagy: PARKIN, PINK1, and Post‐Translational Modifications,” Genes & Development 29, no. 10 (2015): 989–999. PubMed PMC
Wang Y., Serricchio M., Jauregui M., et al., “Deubiquitinating Enzymes Regulate PARK2‐Mediated Mitophagy,” Autophagy 11, no. 4 (2015): 595–606. PubMed PMC
Peng H., Yang F., Hu Q., et al., “The Ubiquitin‐Specific Protease USP8 Directly Deubiquitinates SQSTM1/p62 to Suppress Its Autophagic Activity,” Autophagy 16, no. 4 (2020): 698–708. PubMed PMC
Santelices J., Ou M., Maegawa G. H., Hercik K., and Edelmann M. J., “USP8 Inhibition Regulates Autophagy Flux and Controls Salmonella Infection,” Frontiers in Cellular and Infection Microbiology 13 (2023): 1070271. PubMed PMC
Mauri S., Bernardo G., Martinez A., et al., “USP8 Down‐Regulation Promotes Parkin‐Independent Mitophagy in the Drosophila Brain and in Human Neurons,” Cells 12, no. 8 (2023): 1143. PubMed PMC
Liu X., Hebron M., Shi W., Lonskaya I., and Moussa C. E., “Ubiquitin Specific Protease‐13 Independently Regulates Parkin Ubiquitination and Alpha‐Synuclein Clearance in Alpha‐Synucleinopathies,” Human Molecular Genetics 28, no. 4 (2019): 548–560. PubMed
Liu X., Balaraman K., Lynch C. C., Hebron M., Wolf C., and Moussa C., “Novel Ubiquitin Specific Protease‐13 Inhibitors Alleviate Neurodegenerative Pathology,” Metabolites 11, no. 9 (2021): 622. PubMed PMC
Phu L., Rose C. M., Tea J. S., et al., “Dynamic Regulation of Mitochondrial Import by the Ubiquitin System,” Molecular Cell 77, no. 5 (2020): 1107–1123. e1110. PubMed
Amerik A. Y. and Hochstrasser M., “Mechanism and Function of Deubiquitinating Enzymes,” Biochimica et Biophysica Acta (BBA)‐Molecular Cell Research 1695, no. 1–3 (2004): 189–207. PubMed
Wang F., Gao Y., Zhou L., et al., “USP30: Structure, Emerging Physiological Role, and Target Inhibition,” Frontiers in Pharmacology 13 (2022): 851654. PubMed PMC
Liu X., Hebron M. L., Mulki S., et al., “Ubiquitin Specific Protease 13 Regulates Tau Accumulation and Clearance in Models of Alzheimer's Disease,” Journal of Alzheimer's Disease 72, no. 2 (2019): 425–441. PubMed
Hyrskyluoto A., Bruelle C., Lundh S. H., et al., “Ubiquitin‐Specific Protease‐14 Reduces Cellular Aggregates and Protects Against Mutant Huntingtin‐Induced Cell Degeneration: Involvement of the Proteasome and ER Stress‐Activated Kinase IRE1α,” Human Molecular Genetics 23, no. 22 (2014): 5928–5939. PubMed
Chakraborty J., von Stockum S., Marchesan E., et al., “USP 14 Inhibition Corrects an In Vivo Model of Impaired Mitophagy,” EMBO Molecular Medicine 10, no. 11 (2018): e9014. PubMed PMC
Alexopoulou Z., Lang J., Perrett R. M., et al., “Deubiquitinase Usp8 Regulates α‐Synuclein Clearance and Modifies Its Toxicity in Lewy Body Disease,” Proceedings of the National Academy of Sciences of the United States of America 113, no. 32 (2016): E4688–E4697. PubMed PMC
von Stockum S., Sanchez‐Martinez A., Corrà S., et al., “Inhibition of the Deubiquitinase USP8 Corrects a Drosophila PINK1 Model of Mitochondria Dysfunction,” Life Science Alliance 2, no. 2 (2019): e201900392. PubMed PMC
Liang J. R., Martinez A., Lane J. D., Mayor U., Clague M. J., and Urbé S., “USP 30 Deubiquitylates Mitochondrial P Arkin Substrates and Restricts Apoptotic Cell Death,” EMBO Reports 16, no. 5 (2015): 618–627. PubMed PMC
Ordureau A., Paulo J. A., Zhang J., et al., “Global Landscape and Dynamics of Parkin and USP30‐Dependent Ubiquitylomes in iNeurons During Mitophagic Signaling,” Molecular Cell 77, no. 5 (2020): 1124–1142. e1110. PubMed PMC
Sato Y., Okatsu K., Saeki Y., et al., “Structural Basis for Specific Cleavage of Lys6‐Linked Polyubiquitin Chains by USP30,” Nature Structural & Molecular Biology 24, no. 11 (2017): 911–919. PubMed
Marcassa E., Kallinos A., Jardine J., et al., “Dual Role of USP 30 in Controlling Basal Pexophagy and Mitophagy,” EMBO Reports 19, no. 7 (2018): e45595. PubMed PMC
Yun J., Puri R., Yang H., et al., “MUL1 Acts in Parallel to the PINK1/Parkin Pathway in Regulating Mitofusin and Compensates for Loss of PINK1/Parkin,” eLife 3 (2014): e01958. PubMed PMC
Pang S. Y.‐Y., Ho P. W.‐L., Liu H.‐F., et al., “The Interplay of Aging, Genetics and Environmental Factors in the Pathogenesis of Parkinson's Disease,” Translational Neurodegeneration 8 (2019): 1–11. PubMed PMC
Jiang Y., Bian W., Chen J., et al., “miRNA‐137‐5p Improves Spatial Memory and Cognition in Alzheimer's Mice by Targeting Ubiquitin‐Specific Peptidase 30,” Animal Models and Experimental Medicine 6, no. 6 (2023): 526–536. PubMed PMC
Escarcega R. D., Murambadoro K., Valencia R., et al., “Sphingosine Kinase 2 Regulates Protein Ubiquitination Networks in Neurons,” Molecular and Cellular Neuroscience 130 (2024): 103948. PubMed
Durcan T. M., Tang M. Y., Pérusse J. R., et al., “USP 8 Regulates Mitophagy by Removing K 6‐Linked Ubiquitin Conjugates From Parkin,” EMBO Journal 33, no. 21 (2014): 2473–2491. PubMed PMC
Yeates E. F. A. and Tesco G., “The Endosome‐Associated Deubiquitinating Enzyme USP8 Regulates BACE1 Enzyme Ubiquitination and Degradation,” Journal of Biological Chemistry 291, no. 30 (2016): 15753–15766. PubMed PMC
Liu X., Balaraman K., Lynch C. C., et al., “Inhibition of Ubiquitin‐Specific Protease‐13 Improves Behavioral Performance in Alpha‐Synuclein Expressing Mice,” International Journal of Molecular Sciences 23, no. 15 (2022): 8131. PubMed PMC
Banerjee C., Roy M., Mondal R., and Chakraborty J., “USP14 as a Therapeutic Target Against Neurodegeneration: A Rat Brain Perspective,” Frontiers in Cell and Developmental Biology 8 (2020): 727. PubMed PMC
Niu K., Fang H., Chen Z., et al., “USP33 Deubiquitinates PRKN/Parkin and Antagonizes Its Role in Mitophagy,” Autophagy 16, no. 4 (2020): 724–734. PubMed PMC
Chen X., Yang Q., Xiao L., Tang D., Dou Q. P., and Liu J., “Metal‐Based Proteasomal Deubiquitinase Inhibitors as Potential Anticancer Agents,” Cancer and Metastasis Reviews 36 (2017): 655–668. PubMed PMC
Yan D., Li X., Yang Q., et al., “Regulation of Bax‐Dependent Apoptosis by Mitochondrial Deubiquitinase USP30,” Cell Death Discovery 7, no. 1 (2021): 211. PubMed PMC
Fang T.‐S. Z., Sun Y., Pearce A. C., et al., “Knockout or Inhibition of USP30 Protects Dopaminergic Neurons in a Parkinson's Disease Mouse Model,” Nature Communications 14, no. 1 (2023): 7295. PubMed PMC
Rusilowicz‐Jones E. V., Jardine J., Kallinos A., et al., “USP30 Sets a Trigger Threshold for PINK1–PARKIN Amplification of Mitochondrial Ubiquitylation,” Life Science Alliance 3, no. 8 (2020): e202000768. PubMed PMC
Okarmus J., Agergaard J. B., Stummann T. C., et al., “USP30 Inhibition Induces Mitophagy and Reduces Oxidative Stress in Parkin‐Deficient Human Neurons,” Cell Death & Disease 15, no. 1 (2024): 52. PubMed PMC
Jones A., Kemp M., Stockley M., Gibson K., and Whitelock G., “1‐Cyano‐Pyrrolidine Compounds as USP30 Inhibitors,” Mission Therapeutics (2016).
Tsefou E., Walker A. S., Clark E. H., et al., “Investigation of USP30 Inhibition to Enhance Parkin‐Mediated Mitophagy: Tools and Approaches,” Biochemical Journal 478, no. 23 (2021): 4099–4118. PubMed PMC
Kemp M., Stockley M., and Madin A., Novel Compounds, Mission Therapeutics (2017).
Yue W., Chen Z., Liu H., et al., “A Small Natural Molecule Promotes Mitochondrial Fusion Through Inhibition of the Deubiquitinase USP30,” Cell Research 24, no. 4 (2014): 482–496. PubMed PMC
Kluge A. F., Lagu B. R., Maiti P., et al., “Novel Highly Selective Inhibitors of Ubiquitin Specific Protease 30 (USP30) Accelerate Mitophagy,” Bioorganic & Medicinal Chemistry Letters 28, no. 15 (2018): 2655–2659. PubMed
Luo H., Krigman J., Zhang R., Yang M., and Sun N., “Pharmacological Inhibition of USP30 Activates Tissue‐Specific Mitophagy,” Acta Physiologica 232, no. 3 (2021): e13666. PubMed PMC
O'Brien D. P., Jones H. B., Guenther F., et al., “Structural Premise of Selective Deubiquitinase USP30 Inhibition by Small‐Molecule Benzosulfonamides,” Molecular & Cellular Proteomics 22, no. 8 (2023): 100609. PubMed PMC
Rusilowicz‐Jones E. V., Barone F. G., Lopes F. M., et al., “Benchmarking a Highly Selective USP30 Inhibitor for Enhancement of Mitophagy and Pexophagy,” Life Science Alliance 5, no. 2 (2022): e202101287. PubMed PMC
Qin X., Wang R., Xu H., et al., “Identification of an Autoinhibitory, Mitophagy‐Inducing Peptide Derived From the Transmembrane Domain of USP30,” Autophagy 18, no. 9 (2022): 2178–2197. PubMed PMC
Lee B.‐H., Lee M. J., Park S., et al., “Enhancement of Proteasome Activity by a Small‐Molecule Inhibitor of USP14,” Nature 467, no. 7312 (2010): 179–184. PubMed PMC
Boselli M., Lee B.‐H., Robert J., et al., “An Inhibitor of the Proteasomal Deubiquitinating Enzyme USP14 Induces Tau Elimination in Cultured Neurons,” Journal of Biological Chemistry 292, no. 47 (2017): 19209–19225. PubMed PMC