USP8 inhibition regulates autophagy flux and controls Salmonella infection

. 2023 ; 13 () : 1070271. [epub] 20230321

Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, Research Support, U.S. Gov't, Non-P.H.S.

Perzistentní odkaz   https://www.medvik.cz/link/pmid37026055

Grantová podpora
R21 NS113649 NINDS NIH HHS - United States
R61 NS118407 NINDS NIH HHS - United States
R21 NS106406 NINDS NIH HHS - United States

INTRODUCTION: Ubiquitination is an important protein modification that regulates various essential cellular processes, including the functions of innate immune cells. Deubiquitinases are enzymes responsible for removing ubiquitin modification from substrates, and the regulation of deubiquitinases in macrophages during infection with Salmonella Typhimurium and Yersinia enterocolitica remains unknown. METHODS: To identify deubiquitinases regulated in human macrophages during bacterial infection, an activity-based proteomics screen was conducted. The effects of pharmacological inhibition of the identified deubiquitinase, USP8, were examined, including its impact on bacterial survival within macrophages and its role in autophagy regulation during Salmonella infection. RESULTS: Several deubiquiitnases were differentially regulated in infected macrophages. One of the deubiquitinases identified was USP8, which was downregulated upon Salmonella infection. Inhibition of USP8 was associated with a decrease in bacterial survival within macrophages, and it was found to play a distinct role in regulating autophagy during Salmonella infection. The inhibition of USP8 led to the downregulation of the p62 autophagy adaptor. DISCUSSION: The findings of this study suggest a novel role of USP8 in regulating autophagy flux, which restricts intracellular bacteria, particularly during Salmonella infection.

Zobrazit více v PubMed

Alugubelly N., Hercik K., Kibler P., Nanduri B., Edelmann M. J. (2016). Analysis of differentially expressed proteins in yersinia enterocolitica-infected HeLa cells. Biochim. Biophys. Acta. 1864.5 (2016), 562–569. doi: 10.1016/j.bbapap.2016.02.004 PubMed DOI PMC

Alwan H. A., van Leeuwen J. E. (2007). UBPY-mediated epidermal growth factor receptor (EGFR) de-ubiquitination promotes EGFR degradation. J. Biol. Chem. 282 (3), 1658–1669. doi: 10.1074/jbc.M604711200 PubMed DOI

Basseres E., Coppotelli G., Pfirrmann T., Andersen J. B., Masucci M., Frisan T. (2010). The ubiquitin c-terminal hydrolase UCH-L1 promotes bacterial invasion by altering the dynamics of the actin cytoskeleton. Cell Microbiol. 12 (11), 1622–1633. doi: 10.1111/j.1462-5822.2010.01495.x PubMed DOI

Berlin I., Higginbotham K. M., Dise R. S., Sierra M. I., Nash P. D. (2010). The deubiquitinating enzyme USP8 promotes trafficking and degradation of the chemokine receptor 4 at the sorting endosome. J. Biol. Chem. 285 (48), 37895–37908. doi: 10.1074/jbc.M110.129411 PubMed DOI PMC

Beuzón C. R., Méresse S., Unsworth K. E., Ruíz-Albert J., Garvis S., Waterman S. R., et al. . (2000). Salmonella maintains the integrity of its intracellular vacuole through the action of SifA. EMBO J. 19 (13), 3235–3249. doi: 10.1093/emboj/19.13.3235 PubMed DOI PMC

Borodovsky A., Kessler B. M., Casagrande R., Overkleeft H. S., Wilkinson K. D., Ploegh H. L. (2001). A novel active site-directed probe specific for deubiquitylating enzymes reveals proteasome association of USP14. EMBO J. 20 (18), 5187–5196. doi: 10.1093/emboj/20.18.5187 PubMed DOI PMC

Borodovsky A., Ovaa H., Kolli N., Gan-Erdene T., Wilkinson K. D., Ploegh H. L., et al. . (2002). Chemistry-based functional proteomics reveals novel members of the deubiquitinating enzyme family. Chem. Biol. 9 (10), 1149–1159. doi: 10.1016/s1074-5521(02)00248-x PubMed DOI

Colombo M., Vallese S., Peretto I., Jacq X., Rain J. C., Colland F., et al. . (2010). Synthesis and biological evaluation of 9-oxo-9H-indeno[1,2-b]pyrazine-2,3-dicarbonitrile analogues as potential inhibitors of deubiquitinating enzymes. ChemMedChem 5 (4), 552–558. doi: 10.1002/cmdc.200900409 PubMed DOI

Coward C., Restif O., Dybowski R., Grant A. J., Maskell D. J., Mastroeni P. (2014). The effects of vaccination and immunity on bacterial infection dynamics in vivo. PloS Pathog. 10 (9), e1004359. doi: 10.1371/journal.ppat.1004359 PubMed DOI PMC

Edelmann M. J., Iphofer A., Akutsu M., Altun M., di Gleria K., Kramer H. B., et al. . (2009). Structural basis and specificity of human otubain 1-mediated deubiquitination. Biochem. J. 418 (2), 379–390. doi: 10.1042/bj20081318 PubMed DOI

Edelmann M. J., Kramer H. B., Altun M., Kessler B. M. (2010). Post-translational modification of the deubiquitinating enzyme otubain 1 modulates active RhoA levels and susceptibility to yersinia invasion. FEBS J. 277 (11), 2515–2530. doi: 10.1111/j.1742-4658.2010.07665.x PubMed DOI

Edelmann M. J., Nicholson B., Kessler B. M. (2011). Pharmacological targets in the ubiquitin system offer new ways of treating cancer, neurodegenerative disorders and infectious diseases. Expert Rev. Mol. Med. 13, e35. doi: 10.1017/s1462399411002031 PubMed DOI PMC

Ekkebus R., van Kasteren S. I., Kulathu Y., Scholten A., Berlin I., Geurink P. P., et al. . (2013). On terminal alkynes that can react with active-site cysteine nucleophiles in proteases. J. Am. Chem. Soc. 135 (8), 2867–2870. doi: 10.1021/ja309802n PubMed DOI PMC

Farshi P., Deshmukh R. R., Nwankwo J. O., Arkwright R. T., Cvek B., Liu J., et al. . (2015). Deubiquitinases (DUBs) and DUB inhibitors: a patent review. Expert Opin. Ther. Pat. 25 (10), 1191–1208. doi: 10.1517/13543776.2015.1056737 PubMed DOI PMC

Gu H., Shi X., Liu C., Wang C., Sui N., Zhao Y., et al. . (2019). USP8 maintains embryonic stem cell stemness via deubiquitination of EPG5. Nat. Commun. 10 (1), 1465. doi: 10.1038/s41467-019-09430-4 PubMed DOI PMC

Heaton S. M., Borg N. A., Dixit V. M. (2016). Ubiquitin in the activation and attenuation of innate antiviral immunity. J. Exp. Med. 213 (1), 1–13. doi: 10.1084/jem.20151531 PubMed DOI PMC

Hernandez L. D., Pypaert M., Flavell R. A., Galán J. E. (2003). A salmonella protein causes macrophage cell death by inducing autophagy. J. Cell Biol. 163 (5), 1123–1131. doi: 10.1083/jcb.200309161 PubMed DOI PMC

Hui W. W., Emerson L. E., Clapp B., Sheppe A. E., Sharma J., Del Castillo J., et al. . (2021). Antigen-encapsulating host extracellular vesicles derived from salmonella-infected cells stimulate pathogen-specific Th1-type responses in vivo. PloS Pathog. 17 (5), e1009465. doi: 10.1371/journal.ppat.1009465 PubMed DOI PMC

Hui W. W., Hercik K., Belsare S., Alugubelly N., Clapp B., Rinaldi C., et al. . (2018). Salmonella enterica serovar typhimurium alters the extracellular proteome of macrophages and leads to the production of proinflammatory exosomes. Infect. Immun. 86 (2), e00386–17 doi: 10.1128/iai.00386-17 PubMed DOI PMC

Ivanov S., Roy C. R. (2009). NDP52: the missing link between ubiquitinated bacteria and autophagy. Nat. Immunol. 10 (11), 1137–1139. doi: 10.1038/ni1109-1137 PubMed DOI PMC

Kessler B. M. (2006). Putting proteomics on target: activity-based profiling of ubiquitin and ubiquitin-like processing enzymes. Expert Rev. Proteomics 3 (2), 213–221. doi: 10.1586/14789450.3.2.213 PubMed DOI

Knodler L. A. (2015). Salmonella enterica: living a double life in epithelial cells. Curr. Opin. Microbiol. 23, 23–31. doi: 10.1016/j.mib.2014.10.010 PubMed DOI

Komander D. (2010). Mechanism, specificity and structure of the deubiquitinases. Subcell. Biochem. 54, 69–87. doi: 10.1007/978-1-4419-6676-6_6 PubMed DOI

Komander D., Clague M. J., Urbé S. (2009). Breaking the chains: structure and function of the deubiquitinases. Nat. Rev. Mol. Cell Biol. 10 (8), 550–563. doi: 10.1038/nrm2731 PubMed DOI

Kummari E., Alugubelly N., Hsu C. Y., Dong B., Nanduri B., Edelmann M. J. (2015). Activity-based proteomic profiling of deubiquitinating enzymes in salmonella-infected macrophages leads to identification of putative function of UCH-L5 in inflammasome regulation. PloS One 10 (8), e0135531. doi: 10.1371/journal.pone.0135531 PubMed DOI PMC

Lamberto I., Liu X., Seo H. S., Schauer N. J., Iacob R. E., Hu W., et al. . (2017). Structure-guided development of a potent and selective non-covalent active-site inhibitor of USP7. Cell Chem. Biol. 24 (12), 1490–1500.e11. doi: 10.1016/j.chembiol.2017.09.003 PubMed DOI PMC

Liss V., Swart A. L., Kehl A., Hermanns N., Zhang Y., Chikkaballi D., et al. . (2017). Salmonella enterica remodels the host cell endosomal system for efficient intravacuolar nutrition. Cell Host Microbe 21 (3), 390–402. doi: 10.1016/j.chom.2017.02.005 PubMed DOI

Lopez-Castejon G., Edelmann M. J. (2016). Deubiquitinases: Novel therapeutic targets in immune surveillance? Mediators Inflammation 2016, 3481371. doi: 10.1155/2016/3481371 PubMed DOI PMC

MacDonald E., Urbé S., Clague M. J. (2014). USP8 controls the trafficking and sorting of lysosomal enzymes. Traffic 15 (8), 879–888. doi: 10.1111/tra.12180 PubMed DOI

Peng H., Yang F., Hu Q., Sun J., Peng C., Zhao Y., et al. . (2019). The ubiquitin-specific protease USP8 directly deubiquitinates SQSTM1/p62 to suppress its autophagic activity. Autophagy, 16 (4), 698–708. doi: 10.1080/15548627.2019.1635381 PubMed DOI PMC

Reyes-Turcu F. E., Ventii K. H., Wilkinson K. D. (2009). Regulation and cellular roles of ubiquitin-specific deubiquitinating enzymes. Annu. Rev. Biochem. 78, 363–397. doi: 10.1146/annurev.biochem.78.082307.091526 PubMed DOI PMC

Rogov V. V., Suzuki H., Fiskin E., Wild P., Kniss A., Rozenknop A., et al. . (2013). Structural basis for phosphorylation-triggered autophagic clearance of salmonella. Biochem. J. 454 (3), 459–466. doi: 10.1042/BJ20121907 PubMed DOI

Sansonetti P. (2001). Phagocytosis of bacterial pathogens: implications in the host response. Semin. Immunol. 13 (6), 381–390. doi: 10.1006/smim.2001.0335 PubMed DOI

Scheidel J., Amstein L., Ackermann J., Dikic I., Koch I. (2016). In silico knockout studies of xenophagic capturing of salmonella. PloS Comput. Biol. 12 (12), e1005200. doi: 10.1371/journal.pcbi.1005200 PubMed DOI PMC

Sheppe A. E. F., Kummari E., Walker A., Richards A., Hui W. W., Lee J. H., et al. . (2018). PGE2 augments inflammasome activation and M1 polarization in macrophages infected with salmonella typhimurium and yersinia enterocolitica. Front. Microbiol. 9. doi: 10.3389/fmicb.2018.02447 PubMed DOI PMC

Sheppe A., Santelices J., Czyz D., Edelmann M. (2021). Yersinia pseudotuberculosis YopJ limits macrophage response by downregulating COX-2- mediated biosynthesis of PGE2 in a MAPK/ERK-dependent manner). Microbiol. Spectr. 9 (1), e00496–21 PubMed PMC

Sommer S., Weikart N. D., Linne U., Mootz H. D. (2013). Covalent inhibition of SUMO and ubiquitin-specific cysteine proteases by an in situ thiol-alkyne addition. Bioorg. Med. Chem. 21 (9), 2511–2517. doi: 10.1016/j.bmc.2013.02.039 PubMed DOI

Swatek K. N., Komander D. (2016). Ubiquitin modifications. Cell Res. 26 (4), 399–422. doi: 10.1038/cr.2016.39 PubMed DOI PMC

Thomas M., Mesquita F. S., Holden D. W. (2012). The DUB-ious lack of ALIS in salmonella infection: a salmonella deubiquitinase regulates the autophagy of protein aggregates. Autophagy 8 (12), 1824–1826. doi: 10.4161/auto.21742 PubMed DOI PMC

Thurston T. L., Wandel M. P., von Muhlinen N., Foeglein A., Randow F. (2012). Galectin 8 targets damaged vesicles for autophagy to defend cells against bacterial invasion. Nature 482 (7385), 414–418. doi: 10.1038/nature10744 PubMed DOI PMC

van Wijk S. J. L., Fricke F., Herhaus L., Gupta J., Hötte K., Pampaloni F., et al. . (2017). Linear ubiquitination of cytosolic salmonella typhimurium activates NF-κB and restricts bacterial proliferation. Nat. Microbiol. 2, 17066. doi: 10.1038/nmicrobiol.2017.66 PubMed DOI

von Stockum S., Sanchez-Martinez A., Corrà S., Chakraborty J., Marchesan E., Locatello L., et al. . (2019). Inhibition of the deubiquitinase USP8 corrects a drosophila PINK1 model of mitochondria dysfunction. Life Sci. Alliance 2 (2). doi: 10.26508/lsa.201900392 PubMed DOI PMC

Wang L., Yan J., Niu H., Huang R., Wu S. (2018). Autophagy and ubiquitination in. Front. Cell Infect. Microbiol. 8. doi: 10.3389/fcimb.2018.00078 PubMed DOI PMC

Weisberg E. L., Schauer N. J., Yang J., Lamberto I., Doherty L., Bhatt S., et al. . (2017). Inhibition of USP10 induces degradation of oncogenic FLT3. Nat. Chem. Biol. 13 (12), 1207–1215. doi: 10.1038/nchembio.2486 PubMed DOI PMC

Xu Y., Zhou P., Cheng S., Lu Q., Nowak K., Hopp A. K., et al. . (2019). A bacterial effector reveals the V-ATPase-ATG16L1 axis that initiates xenophagy. Cell 178 (3), 552–566.e20. doi: 10.1016/j.cell.2019.06.007 PubMed DOI

Zhou R., Tomkovicz V. R., Butler P. L., Ochoa L. A., Peterson Z. J., Snyder P. M. (2013). Ubiquitin-specific peptidase 8 (USP8) regulates endosomal trafficking of the epithelial na+ channel. J. Biol. Chem. 288 (8), 5389–5397. doi: 10.1074/jbc.M112.425272 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...