• Je něco špatně v tomto záznamu ?

Shared input and recurrency in neural networks for metabolically efficient information transmission

T. Barta, L. Kostal

. 2024 ; 20 (2) : e1011896. [pub] 20240223

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc24007067

Shared input to a population of neurons induces noise correlations, which can decrease the information carried by a population activity. Inhibitory feedback in recurrent neural networks can reduce the noise correlations and thus increase the information carried by the population activity. However, the activity of inhibitory neurons is costly. This inhibitory feedback decreases the gain of the population. Thus, depolarization of its neurons requires stronger excitatory synaptic input, which is associated with higher ATP consumption. Given that the goal of neural populations is to transmit as much information as possible at minimal metabolic costs, it is unclear whether the increased information transmission reliability provided by inhibitory feedback compensates for the additional costs. We analyze this problem in a network of leaky integrate-and-fire neurons receiving correlated input. By maximizing mutual information with metabolic cost constraints, we show that there is an optimal strength of recurrent connections in the network, which maximizes the value of mutual information-per-cost. For higher values of input correlation, the mutual information-per-cost is higher for recurrent networks with inhibitory feedback compared to feedforward networks without any inhibitory neurons. Our results, therefore, show that the optimal synaptic strength of a recurrent network can be inferred from metabolically efficient coding arguments and that decorrelation of the input by inhibitory feedback compensates for the associated increased metabolic costs.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc24007067
003      
CZ-PrNML
005      
20240423155716.0
007      
ta
008      
240412s2024 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1371/journal.pcbi.1011896 $2 doi
035    __
$a (PubMed)38394341
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Barta, Tomas $u Laboratory of Computational Neuroscience, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic $u Neural Coding and Brain Computing Unit, Okinawa Institute of Science and Technology, Onna-son, Okinawa, Japan $1 https://orcid.org/0000000204673240
245    10
$a Shared input and recurrency in neural networks for metabolically efficient information transmission / $c T. Barta, L. Kostal
520    9_
$a Shared input to a population of neurons induces noise correlations, which can decrease the information carried by a population activity. Inhibitory feedback in recurrent neural networks can reduce the noise correlations and thus increase the information carried by the population activity. However, the activity of inhibitory neurons is costly. This inhibitory feedback decreases the gain of the population. Thus, depolarization of its neurons requires stronger excitatory synaptic input, which is associated with higher ATP consumption. Given that the goal of neural populations is to transmit as much information as possible at minimal metabolic costs, it is unclear whether the increased information transmission reliability provided by inhibitory feedback compensates for the additional costs. We analyze this problem in a network of leaky integrate-and-fire neurons receiving correlated input. By maximizing mutual information with metabolic cost constraints, we show that there is an optimal strength of recurrent connections in the network, which maximizes the value of mutual information-per-cost. For higher values of input correlation, the mutual information-per-cost is higher for recurrent networks with inhibitory feedback compared to feedforward networks without any inhibitory neurons. Our results, therefore, show that the optimal synaptic strength of a recurrent network can be inferred from metabolically efficient coding arguments and that decorrelation of the input by inhibitory feedback compensates for the associated increased metabolic costs.
650    12
$a nervový přenos $x fyziologie $7 D009435
650    _2
$a akční potenciály $x fyziologie $7 D000200
650    _2
$a reprodukovatelnost výsledků $7 D015203
650    _2
$a počítačová simulace $7 D003198
650    12
$a nervová síť $x fyziologie $7 D009415
650    _2
$a modely neurologické $7 D008959
650    _2
$a neuronové sítě $7 D016571
650    _2
$a nervový útlum $x fyziologie $7 D009433
655    _2
$a časopisecké články $7 D016428
700    1_
$a Kostal, Lubomir $u Laboratory of Computational Neuroscience, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic $1 https://orcid.org/0000000227086268 $7 xx0098338
773    0_
$w MED00008919 $t PLoS computational biology $x 1553-7358 $g Roč. 20, č. 2 (2024), s. e1011896
856    41
$u https://pubmed.ncbi.nlm.nih.gov/38394341 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y - $z 0
990    __
$a 20240412 $b ABA008
991    __
$a 20240423155712 $b ABA008
999    __
$a ok $b bmc $g 2081209 $s 1216834
BAS    __
$a 3
BAS    __
$a PreBMC-MEDLINE
BMC    __
$a 2024 $b 20 $c 2 $d e1011896 $e 20240223 $i 1553-7358 $m PLoS computational biology $n PLoS Comput Biol $x MED00008919
LZP    __
$a Pubmed-20240412

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...