Phased Assembly of Neo-Sex Chromosomes Reveals Extensive Y Degeneration and Rapid Genome Evolution in Rumex hastatulus
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
38606901
PubMed Central
PMC11057207
DOI
10.1093/molbev/msae074
PII: 7644656
Knihovny.cz E-zdroje
- Klíčová slova
- genomics, plants, sex chromosomes, transposable elements,
- MeSH
- chromozomy rostlin * MeSH
- genom rostlinný * MeSH
- hybridizace in situ fluorescenční MeSH
- molekulární evoluce * MeSH
- pohlavní chromozomy genetika MeSH
- rekombinace genetická MeSH
- Rumex * genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Y chromosomes are thought to undergo progressive degeneration due to stepwise loss of recombination and subsequent reduction in selection efficiency. However, the timescales and evolutionary forces driving degeneration remain unclear. To investigate the evolution of sex chromosomes on multiple timescales, we generated a high-quality phased genome assembly of the massive older (<10 MYA) and neo (<200,000 yr) sex chromosomes in the XYY cytotype of the dioecious plant Rumex hastatulus and a hermaphroditic outgroup Rumex salicifolius. Our assemblies, supported by fluorescence in situ hybridization, confirmed that the neo-sex chromosomes were formed by two key events: an X-autosome fusion and a reciprocal translocation between the homologous autosome and the Y chromosome. The enormous sex-linked regions of the X (296 Mb) and two Y chromosomes (503 Mb) both evolved from large repeat-rich genomic regions with low recombination; however, the complete loss of recombination on the Y still led to over 30% gene loss and major rearrangements. In the older sex-linked region, there has been a significant increase in transposable element abundance, even into and near genes. In the neo-sex-linked regions, we observed evidence of extensive rearrangements without gene degeneration and loss. Overall, we inferred significant degeneration during the first 10 million years of Y chromosome evolution but not on very short timescales. Our results indicate that even when sex chromosomes emerge from repetitive regions of already-low recombination, the complete loss of recombination on the Y chromosome still leads to a substantial increase in repetitive element content and gene degeneration.
Centre for Analysis of Genome Evolution and Function University of Toronto Toronto Canada
Department of Biology Queen's University Kingston Canada
Department of Ecology and Evolutionary Biology University of Toronto Toronto Canada
National Centre for Biomolecular Research Faculty of Science Masaryk University Brno Czech Republic
Zobrazit více v PubMed
Abbott JK, Nordén AK, Hansson B. Sex chromosome evolution: historical insights and future perspectives. Proc Roy Soc B. 2017:284(1854):20162806. 10.1098/rspb.2016.2806. PubMed DOI PMC
Open2C, Abdennur N, Fudenberg G, Flyamer IM, Galitsyna AA, Goloborodko A, Imakaev M, Venev SV. Pairtools: from sequencing data to chromosome contacts. biorXiv, 10.1101/2023.02.13.528389., 15 February 2023, preprint: not peer reviewed. PubMed DOI PMC
Akagi T, Fujita N, Masuda K, Shirasawa K, Nagaki K, Horiuchi A, Kuwada E, Kunou R, Nakamura K, Ikeda Y, et al. Rapid and dynamic evolution of a giant Y chromosome in Silene latifolia. biorXiv, 10.1101/2023.09.21.558759, 22 September 2023, preprint: not peer reviewed. DOI
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990:215(3):403–410. 10.1016/S0022-2836(05)80360-2. PubMed DOI
Astashyn A, Tvedte ES, Sweeney D, Sapojnikov V, Bouk N, Joukov V, Mozes E, Strope PK, Sylla PM, Wagner L, et al. Rapid and sensitive detection of genome contamination at scale with FCS-GX. Genome Biol. 2024:25(1):60. 10.1186/s13059-024-03198-7. PubMed DOI PMC
Bachtrog D. Y-chromosome evolution: emerging insights into processes of Y-chromosome degeneration. Nat Rev Genet. 2013:14(2):113–124. 10.1038/nrg3366. PubMed DOI PMC
Bachtrog D. The Y chromosome as a battleground for intragenomic conflict. Trends Genet. 2020:36(7):510–522. 10.1016/j.tig.2020.04.008. PubMed DOI PMC
Bačovský V, Čegan R, Šimoníková D, Hřibová E, Hobza R. The formation of sex chromosomes in Silene latifolia and S. dioica was accompanied by multiple chromosomal rearrangements. Front Plant Sci. 2020:11:205. 10.3389/fpls.2020.00205. PubMed DOI PMC
Beaudry FEG, Barrett SCH, Wright SI. Genomic loss and silencing on the Y chromosomes of Rumex. Genome Biol Evol. 2017:9(12):3345–3355. 10.1093/gbe/evx254. PubMed DOI PMC
Beaudry FEG, Barrett SCH, Wright SI. Ancestral and neo-sex chromosomes contribute to population divergence in a dioecious plant. Evolution. 2020:74(2):256–269. 10.1111/evo.13892. PubMed DOI
Beaudry FEG, Rifkin JL, Peake AL, Kim D, Jarvis-Cross M, Barrett SCH, Wright SI. Effects of the neo-X chromosome on genomic signatures of hybridization in Rumex hastatulus. Mol Ecol. 2022:31(13):3708–3721. 10.1111/mec.16496. PubMed DOI
Bergero R, Qiu S, Charlesworth D. Gene loss from a plant sex chromosome system. Curr Biol. 2015:25(9):1234–1240. 10.1016/j.cub.2015.03.015. PubMed DOI
Bieker VC, Battlay P, Petersen B, Sun X, Wilson J, Brealey JC, Bretagnolle F, Nurkowski K, Lee C, Barreiro FS, et al. Uncovering the genomic basis of an extraordinary plant invasion. Sci Adv. 2022:8(34):eabo5115. 10.1126/sciadv.abo5115. PubMed DOI PMC
Buchfink B, Reuter K, Drost H-G. Sensitive protein alignments at tree-of-life scale using DIAMOND. Nat Methods. 2021:18(4):366–368. 10.1038/s41592-021-01101-x. PubMed DOI PMC
Cantarel BL, Korf I, Robb SMC, Parra G, Ross E, Moore B, Holt C, Sánchez Alvarado A, Yandell M. MAKER: an easy-to-use annotation pipeline designed for emerging model organism genomes. Genome Res. 2008:18(1):188–196. 10.1101/gr.6743907. PubMed DOI PMC
Charlesworth D, Charlesworth B, Marais G. Steps in the evolution of heteromorphic sex chromosomes. Heredity (Edinb). 2005:95(2):118–128. 10.1038/sj.hdy.6800697. PubMed DOI
Cheng H, Concepcion GT, Feng X, Zhang H, Li H. Haplotype-resolved de novo assembly using phased assembly graphs with hifiasm. Nat Methods. 2021:18(2):170–175. 10.1038/s41592-020-01056-5. PubMed DOI PMC
Crowson D, Barrett SCH, Wright SI. Purifying and positive selection influence patterns of gene loss and gene expression in the evolution of a plant sex chromosome system. Mol Biol Evol. 2017:34(5):1140–1154. 10.1093/molbev/msx064. PubMed DOI
Cuñado N, Navajas-Pérez R, de la Herrán R, Ruiz Rejón C, Ruiz Rejón M, Santos JL, Garrido-Ramos MA. The evolution of sex chromosomes in the genus Rumex (Polygonaceae): identification of a new species with heteromorphic sex chromosomes. Chromosome Res. 2007:15(7):825–833. 10.1007/s10577-007-1166-6. PubMed DOI
Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras TR. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013:29(1):15–21. 10.1093/bioinformatics/bts635. PubMed DOI PMC
Durand NC, Robinson JT, Shamim MS, Machol I, Mesirov JP, Lander ES, Aiden EL. Juicebox provides a visualization system for Hi-C contact maps with unlimited zoom. Cell Syst. 2016:3(1):99–101. 10.1016/j.cels.2015.07.012. PubMed DOI PMC
Durand NC, Shamim MS, Machol I, Rao SSP, Huntley MH, Lander ES, Aiden EL. Juicer provides a one-click system for analyzing loop-resolution hi-C experiments. Cell Syst. 2016:3(1):95–98. 10.1016/j.cels.2016.07.002. PubMed DOI PMC
Ellinghaus D, Kurtz S, Willhoeft U. LTRharvest, an efficient and flexible software for de novo detection of LTR retrotransposons. BMC Bioinformatics. 2008:9(1):18. 10.1186/1471-2105-9-18. PubMed DOI PMC
Emms DM, Kelly S. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol. 2019:20(1):238. 10.1186/s13059-019-1832-y. PubMed DOI PMC
Fuller ZL, Koury SA, Phadnis N, Schaeffer SW. How chromosomal rearrangements shape adaptation and speciation: case studies in Drosophila pseudoobscura and its sibling species Drosophila persimilis. Mol Ecol. 2019:28(6):1283–1301. 10.1111/mec.14923. PubMed DOI PMC
Garrison E, Marth G. Haplotype-based variant detection from short-read sequencing. 2012. arXiv:1207.3907, preprint: not peer reviewed.
Grabowska-Joachimiak A, Kula A, Książczyk T, Chojnicka J, Sliwinska E, Joachimiak AJ. Chromosome landmarks and autosome-sex chromosome translocations in Rumex hastatulus, a plant with XX/XY1Y2 sex chromosome system. Chromosome Res. 2015:23(2):187–197. 10.1007/s10577-014-9446-4. PubMed DOI PMC
Guan D, McCarthy SA, Wood J, Howe K, Wang Y, Durbin R. Identifying and removing haplotypic duplication in primary genome assemblies. Bioinformatics. 2020:36(9):2896–2898. 10.1093/bioinformatics/btaa025. PubMed DOI PMC
Haug-Baltzell A, Stephens SA, Davey S, Scheidegger CE, Lyons E. SynMap2 and SynMap3D: web-based whole-genome synteny browsers. Bioinformatics. 2017:33(14):2197–2198. 10.1093/bioinformatics/btx144. PubMed DOI
Hibbins MS, Rifkin JL, Choudhury BI, Voznesenka O, Sacchi B, Yuan M, Gong Y, Barrett SCH, Wright SI. Phylogenomics resolves key relationships in Rumex and uncovers a dynamic history of independently evolving sex chromosomes. biorXiv, 10.1101/2023.12.13.571571, 14 December 2023, preprint: not peer reviewed. DOI
Hoagland DR, Snyder WC. Nutrition of strawberry plant under controlled conditions: (a) Effects of deficiencies of boron and certain other elements, (b) susceptibility to injury from sodium salts. J Am Soc Hortic Sci. 1933:30:288–294.
Hough J, Hollister JD, Wang W, Barrett SCH, Wright SI. Genetic degeneration of old and young Y chromosomes in the flowering plant Rumex hastatulus. Proc Natl Acad Sci U S A. 2014:111(21):7713–7718. 10.1073/pnas.1319227111. PubMed DOI PMC
Jones P, Binns D, Chang H-Y, Fraser M, Li W, McAnulla C, McWilliam H, Maslen J, Mitchell A, Nuka G, et al. InterProScan 5: genome-scale protein function classification. Bioinformatics. 2014:30(9):1236–1240. 10.1093/bioinformatics/btu031. PubMed DOI PMC
Karafiátová M, Bartoš J, Doležel J. Localization of low-copy DNA sequences on mitotic chromosomes by FISH. Methods Mol Biol. 2016:1429:49–64. 10.1007/978-1-4939-3622-9_5. PubMed DOI
Kasjaniuk M, Grabowska-Joachimiak A, Joachimiak AJ. Testing the translocation hypothesis and Haldane's rule in Rumex hastatulus. Protoplasma. 2019:256(1):237–247. 10.1007/s00709-018-1295-0. PubMed DOI PMC
Kent TV, Uzunović J, Wright SI. Coevolution between transposable elements and recombination. Philos Trans R Soc B Biol Sci. 2017:372(1736):20160458. 10.1098/rstb.2016.0458. PubMed DOI PMC
Kirkpatrick M, Barton N. Chromosome inversions, local adaptation and speciation. Genetics. 2006:173(1):419–434. 10.1534/genetics.105.047985. PubMed DOI PMC
Laetsch DR, Blaxter ML. BlobTools: interrogation of genome assemblies. F1000Res. 2017:6:1287. 10.12688/f1000research.12232.1. DOI
Lenormand T, Fyon F, Sun E, Roze D. Sex chromosome degeneration by regulatory evolution. Curr Biol. 2020:30(15):3001–3006.e5. 10.1016/j.cub.2020.05.052. PubMed DOI
Li H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics. 2018:34(18):3094–3100. 10.1093/bioinformatics/bty191. PubMed DOI PMC
Li H, Durbin R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics. 2009:25(14):1754–1760. 10.1093/bioinformatics/btp324. PubMed DOI PMC
Löve Á. Chromosome number reports XCII. Taxon. 1986:35(3):610–613. 10.1002/j.1996-8175.1986.tb00821.x. DOI
Lovell JT, Sreedasyam A, Schranz ME, Wilson M, Carlson JW, Harkess A, Emms D, Goodstein DM, Schmutz J. GENESPACE tracks regions of interest and gene copy number variation across multiple genomes. eLife. 2022:11:e78526. 10.7554/eLife.78526. PubMed DOI PMC
Lowry DB, Willis JH. A widespread chromosomal inversion polymorphism contributes to a major life-history transition, local adaptation, and reproductive isolation. PLoS Biol. 2010:8(9):e1000500. 10.1371/journal.pbio.1000500. PubMed DOI PMC
Mandáková T, Pouch M, Brock JR, Al-Shehbaz IA, Lysak MA. Origin and evolution of diploid and allopolyploid Camelina genomes were accompanied by chromosome shattering. Plant Cell. 2019:31(11):2596–2612. 10.1105/tpc.19.00366. PubMed DOI PMC
Manni M, Berkeley MR, Seppey M, Simão FA, Zdobnov EM. BUSCO update: novel and streamlined workflows along with broader and deeper phylogenetic coverage for scoring of eukaryotic, prokaryotic, and viral genomes. Mol Biol Evol. 2021:38(10):4647–4654. 10.1093/molbev/msab199. PubMed DOI PMC
Moraga C, Branco C, Rougemont Q, Veltsos P, Jedlicka P, Muyle A, Hanique M, Tannier E, Liu X, Mendoza-Galindo E, et al. The Silene latifolia genome and its giant Y chromosome. biorXiv, 10.1101/2023.09.21.558754, 22 September 2023, preprint: not peer reviewed. DOI
Mrnjavac A, Khudiakova KA, Barton NH, Vicoso B. Slower-X: reduced efficiency of selection in the early stages of X chromosome evolution. Evol Lett. 2023:7(1):4–12. 10.1093/evlett/qrac004. PubMed DOI PMC
Muyle AM, Seymour DK, Lv Y, Huettel B, Gaut BS. Gene body methylation in plants: mechanisms, functions, and important implications for understanding evolutionary processes. Genome Biol Evol. 2022:14(4):evac038. 10.1093/gbe/evac038. PubMed DOI PMC
Novák P, Ávila Robledillo L, Koblížková A, Vrbová I, Neumann P, Macas J. TAREAN: a computational tool for identification and characterization of satellite DNA from unassembled short reads. Nucleic Acids Res. 2017:45(12):e111. 10.1093/nar/gkx257. PubMed DOI PMC
Novák P, Neumann P, Macas J. Global analysis of repetitive DNA from unassembled sequence reads using RepeatExplorer2. Nat Protoc. 2020:15(11):3745–3776. 10.1038/s41596-020-0400-y. PubMed DOI
Novák P, Neumann P, Pech J, Steinhaisl J, Macas J. RepeatExplorer: a galaxy-based web server for genome-wide characterization of eukaryotic repetitive elements from next-generation sequence reads. Bioinformatics. 2013:29(6):792–793. 10.1093/bioinformatics/btt054. PubMed DOI
Okonechnikov K, Conesa A, García-Alcalde F. Qualimap 2: advanced multi-sample quality control for high-throughput sequencing data. Bioinformatics. 2016:32(2):292–294. 10.1093/bioinformatics/btv566. PubMed DOI PMC
Orr HA, Kim Y. An adaptive hypothesis for the evolution of the Y chromosome. Genetics. 1998:150(4):1693–1698. 10.1093/genetics/150.4.1693. PubMed DOI PMC
Ou S, Jiang N. LTR_retriever: a highly accurate and sensitive program for identification of long terminal repeat retrotransposons. Plant Physiol. 2018:176(2):1410–1422. 10.1104/pp.17.01310. PubMed DOI PMC
Ou S, Jiang N. LTR_FINDER_parallel: parallelization of LTR_FINDER enabling rapid identification of long terminal repeat retrotransposons. Mob DNA. 2019:10(1):48. 10.1186/s13100-019-0193-0. PubMed DOI PMC
Ou S, Su W, Liao Y, Chougule K, Agda JRA, Hellinga AJ, Lugo CSB, Elliott TA, Ware D, Peterson T, et al. Benchmarking transposable element annotation methods for creation of a streamlined, comprehensive pipeline. Genome Biol. 2019:20(1):275. 10.1186/s13059-019-1905-y. PubMed DOI PMC
Papadopulos AST, Chester M, Ridout K, Filatov DA. Rapid Y degeneration and dosage compensation in plant sex chromosomes. Proc Natl Acad Sci U S A. 2015:112(42):13021–13026. 10.1073/pnas.1508454112. PubMed DOI PMC
Peichel CL, McCann SR, Ross JA, Naftaly AFS, Urton JR, Cech JN, Grimwood J, Schmutz J, Myers RM, Kingsley DM, et al. Assembly of the threespine stickleback Y chromosome reveals convergent signatures of sex chromosome evolution. Genome Biol. 2020:21(1):177. 10.1186/s13059-020-02097-x. PubMed DOI PMC
Pickup M, Barrett SCH. The influence of demography and local mating environment on sex ratios in a wind-pollinated dioecious plant. Ecol Evol. 2013:3(3):629–639. 10.1002/ece3.465. PubMed DOI PMC
Putnam NH, O’Connell BL, Stites JC, Rice BJ, Blanchette M, Calef R, Troll CJ, Fields A, Hartley PD, Sugnet CW, et al. Chromosome-scale shotgun assembly using an in vitro method for long-range linkage. Genome Res. 2016:26(3):342–350. 10.1101/gr.193474.115. PubMed DOI PMC
R Core Team . R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2022.
Rice WR. The accumulation of sexually antagonistic genes as a selective agent promoting the evolution of reduced recombination between primitive sex chromosomes. Evolution. 1987:41(4):911–914. 10.2307/2408899. PubMed DOI
Rifkin JL, Beaudry FEG, Humphries Z, Choudhury BI, Barrett SCH, Wright SI. Widespread recombination suppression facilitates plant sex chromosome evolution. Mol Biol Evol. 2021:38(3):1018–1030. 10.1093/molbev/msaa271. PubMed DOI PMC
Rifkin JL, Hnatovska S, Yuan M, Sacchi BM, Choudhury BI, Gong Y, Rastas P, Barrett SCH, Wright SI. Recombination landscape dimorphism and sex chromosome evolution in the dioecious plant Rumex hastatulus. Philos Trans R Soc B Biol Sci. 2022:377(1850):20210226. 10.1098/rstb.2021.0226. PubMed DOI PMC
Sandler G, Beaudry FEG, Barrett SCH, Wright SI. The effects of haploid selection on Y chromosome evolution in two closely related dioecious plants. Evol Lett. 2018:2(4):368–377. 10.1002/evl3.60. PubMed DOI PMC
Schubert V, Ruban A, Houben A. Chromatin ring formation at plant centromeres. Front Plant Sci. 2016:7:28. 10.3389/fpls.2016.00028. PubMed DOI PMC
Shi J, Liang C. Generic repeat finder: a high-sensitivity tool for genome-wide de novo repeat detection. Plant Physiol. 2019:180(4):1803–1815. 10.1104/pp.19.00386. PubMed DOI PMC
Shumate A, Salzberg SL. Liftoff: accurate mapping of gene annotations. Bioinformatics. 2021:37:1639–1643. 10.1093/bioinformatics/btaa1016. PubMed DOI PMC
Smit, AFA, Hubley, R. 2008. Repeat modeler open-1.0. http://www.repeatmasker.org.
Smith BW. The evolving karyotype of Rumex hastatulus. Evolution. 1964:18(1):93–104. 10.2307/2406423. DOI
Song B, Marco-Sola S, Moreto M, Johnson L, Buckler ES, Stitzer MC. AnchorWave: sensitive alignment of genomes with high sequence diversity, extensive structural polymorphism, and whole-genome duplication. Proc Natl Acad Sci U S A. 2022:119(1):e2113075119. 10.1073/pnas.2113075119. PubMed DOI PMC
Su W, Gu X, Peterson T. TIR-Learner, a new ensemble method for TIR transposable element annotation, provides evidence for abundant new transposable elements in the maize genome. Mol Plant. 2019:12(3):447–460. 10.1016/j.molp.2019.02.008. PubMed DOI
Subrini J, Turner J. Y chromosome functions in mammalian spermatogenesis. eLife. 2021:10:e67345. 10.7554/eLife.67345. PubMed DOI PMC
Todesco M, Owens GL, Bercovich N, Légaré J-S, Soudi S, Burge DO, Huang K, Ostevik KL, Drummond EBM, Imerovski I, et al. Massive haplotypes underlie ecotypic differentiation in sunflowers. Nature. 2020:584(7822):602–607. 10.1038/s41586-020-2467-6. PubMed DOI
Wang Y, Tang H, Debarry JD, Tan X, Li J, Wang X, Lee T-h, Jin H, Marler B, Guo H, et al. MCScanx: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res. 2012:40(7):e49. 10.1093/nar/gkr1293. PubMed DOI PMC
Wei KH-C, Gibilisco L, Bachtrog D. Epigenetic conflict on a degenerating Y chromosome increases mutational burden in Drosophila males. Nat Commun. 2020:11(1):5537. 10.1038/s41467-020-19134-9. PubMed DOI PMC
Wicker T, Sabot F, Hua-Van A, Bennetzen JL, Capy P, Chalhoub B, Flavell A, Leroy P, Morgante M, Panaud O, et al. A unified classification system for eukaryotic transposable elements. Nat Rev Genet. 2007:8(12):973–982. 10.1038/nrg2165. PubMed DOI
Xiong W, He L, Lai J, Dooner HK, Du C. HelitronScanner uncovers a large overlooked cache of Helitron transposons in many plant genomes. Proc Natl Acad Sci U S A. 2014:111(28):10263–10268. 10.1073/pnas.1410068111. PubMed DOI PMC
Zhang L, Li X, Ma B, Gao Q, Du H, Han Y, Li Y, Cao Y, Qi M, Zhu Y, et al. The tartary buckwheat genome provides insights into rutin biosynthesis and abiotic stress tolerance. Mol Plant. 2017:10(9):1224–1237. 10.1016/j.molp.2017.08.013. PubMed DOI
Zhang R-G, Li G-Y, Wang X-L, Dainat J, Wang Z-X, Ou S, Ma Y. TEsorter: an accurate and fast method to classify LTR-retrotransposons in plant genomes. Hortic Res. 2022:9:uhac017. 10.1093/hr/uhac017. PubMed DOI PMC
Zhou C, McCarthy SA, Durbin R. YaHS: yet another Hi-C scaffolding tool. Bioinformatics. 2023:39(1):btac808. 10.1093/bioinformatics/btac808. PubMed DOI PMC
Sexy ways: approaches to studying plant sex chromosomes