The Tree of Sex consortium: a global initiative for studying the evolution of reproduction in eukaryotes
Jazyk angličtina Země Velká Británie, Anglie Médium print
Typ dokumentu časopisecké články
Grantová podpora
R35 GM124827
NIGMS NIH HHS - United States
NIGMS
497674620 / 1
Deutsche Forschungsgemeinschaft
AEI/10.13039/501100011033
Spanish Ministry of Science and Innovation
2021SGR00315
Agència de Gestió d'Ajuts Universitaris i de Recerca, AGAUR
TMAG-3_209309
Swiss National Science Foundation - Switzerland
LT0033/2022-L
Human Frontier Science Program
23-07665S
Czech Science Foundation
IOS 2127995
Agència de Gestió d'Ajuts Universitaris i de Recerca, AGAUR
DBI 2208973
National Science Foundation
R35GM124827
NIH HHS - United States
Catalan Institution for Research and Advanced Studies
492407022
Deutsche Forschungsgemeinschaft
2021SGR00122
Agència de Gestió d'Ajuts Universitaris i de Recerca, AGAUR
Wellcome Trust - United Kingdom
Association for the Study of Animal Behaviour
220540
Wellcome Trust - United Kingdom
PID2020-112557GB-I00
Spanish Ministry of Science and Innovation
PubMed
40336333
PubMed Central
PMC12317844
DOI
10.1093/jeb/voaf053
PII: 8126803
Knihovny.cz E-zdroje
- Klíčová slova
- asexual reproduction, biodiversity, database, ontology, sex chromosomes, sex determination, sexual reproduction,
- MeSH
- biologická evoluce * MeSH
- Eukaryota * fyziologie genetika MeSH
- procesy určující pohlaví MeSH
- rozmnožování * genetika MeSH
- Publikační typ
- časopisecké články MeSH
Reproduction is a fundamental aspect of life that affects all levels of biology, from genomes and development to population dynamics and diversification. The first Tree of Sex database synthesized a vast diversity of reproductive strategies and their intriguing distribution throughout eukaryotes. A decade on, we are reviving this initiative and greatly expanding its scope to provide the most comprehensive integration of knowledge on eukaryotic reproduction to date. In this perspective, we first identify important gaps in our current knowledge of reproductive strategies across eukaryotes. We then highlight a selection of questions that will benefit most from this new Tree of Sex project, including those related to the evolution of sex, modes of sex determination, sex chromosomes, and the consequences of various reproductive strategies. Finally, we outline our vision for the new Tree of Sex database and the consortium that will create it (treeofsex.org). The new database will cover all Eukaryota and include a wide selection of biological traits. It will also incorporate genomic data types that were scarce or non-existent at the time of the first Tree of Sex initiative. The new database will be publicly accessible, stable, and self-sustaining, thus greatly improving the accessibility of reproductive knowledge to researchers across disciplines for years to come. Lastly, the consortium will persist after the database is created to serve as a collaborative framework for research, prioritizing ethical standards in the collection, use, and sharing of reproductive data. The new Tree of Sex consortium is open, and we encourage all who are interested in this topic to join us.
Center for Evolution and Medicine Arizona State University Tempe AZ United States
Center for GeoGenetics University of Copenhagen Copenhagen Denmark
Center for Mechanisms of Evolution Biodesign Institute Tempe AZ United States
CNRS Univ Lille UMR 8198 Evo Eco Paleo Lille France
Department of Ecology Evolution and Organismal Biology Iowa State University Ames IA United States
Department of Ecology Faculty of Science Charles University Prague Czech Republic
Department of Integrative Biology University of Wisconsin Madison Wisconsin United States of America
Institut Botànic de Barcelona IBB Barcelona Spain
School of Life Sciences Arizona State University Tempe AZ United States
Tree of Life Wellcome Sanger Institute Wellcome Genome Campus Cambridge United Kingdom
Zobrazit více v PubMed
Aanen, D., Beekman, M., & Kokko, H. (2016). Weird sex: The underappreciated diversity of sexual reproduction. Philosophical Transactions of the Royal Society of London, Series B: Biological Sciences, 371(1706), 20160262. https://doi.org/ 10.1098/rstb.2016.0262 PubMed DOI PMC
Aghi, K., Anderson, B. M., Castellano, B. M., … Weinberg, Z. Y. (2024). Rigorous science demands support of transgender scientists. Cell, 187(6), 1327–1334. https://doi.org/ 10.1016/j.cell.2024.02.021 PubMed DOI
Ahmed, S., Cock, J. M., Pessia, E., … Coelho, S. M. (2014). A haploid system of sex determination in the brown alga PubMed
Ahnesjö, I., Brealey, J. C., Günter, K. P., & … Vasconcelos, P. (2020). Considering gender-biased assumptions in evolutionary biology. Evolutionary Biology, 47(1), 1–5. https://doi.org/ 10.1007/s11692-020-09492-z DOI
Alonzo, S. H. (2010). Social and coevolutionary feedbacks between mating and parental investment. Trends in Ecology & Evolution, 25(2), 99–108. https://doi.org/ 10.1016/j.tree.2009.07.012 PubMed DOI
Álvarez-González, L., Burden, F., Doddamani, D., … Ruiz-Herrera, A. (2022). 3D chromatin remodelling in the germ line modulates genome evolutionary plasticity. Nature Communications, 13(1), 2608. https://doi.org/ 10.1038/s41467-022-30296-6 PubMed DOI PMC
Álvarez-González, L., & Ruiz-Herrera, A. (2025). Evolution of 3D chromatin folding. Annual Review of Animal Biosciences, 13(1), 49–71. https://doi.org/ 10.1146/annurev-animal-111523-102233 PubMed DOI
Anderson, N. W., Hjelmen, C. E., & Blackmon, H. (2020). The probability of fusions joining sex chromosomes and autosomes. Biology Letters, 16(11), 20200648. https://doi.org/ 10.1098/rsbl.2020.0648 PubMed DOI PMC
Ansai, S., Montenegro, J., Masengi, K. W. A., … Kitano, J. (2022). Diversity of sex chromosomes in Sulawesian medaka fishes. Journal of Evolutionary Biology, 35(12), 1751–1764. https://doi.org/ 10.1111/jeb.14076 PubMed DOI
Araujo, D., Schneider, M. C., Paula-Neto, E., & Cella, D. (2012). Sex chromosomes and meiosis in spiders: A review. In Swan A. (Ed.), Meiosis--Molecular mechanisms and cytogenetic diversity (pp. 87–108). InTechOpen.
Araujo, D., Schneider, M. C., Paula-Neto, E., & Cella, D. M. (2024). The spider cytogenetic database. www.arthropodacytogenetics.bio.br/spiderdatabase
Bachtrog, D., Kirkpatrick, M., Mank, J. E., … Valenzuela, N. (2011). Are all sex chromosomes created equal? Trends in Genetics: TIG, 27(9), 350–357. https://doi.org/ 10.1016/j.tig.2011.05.005 PubMed DOI
Bachtrog, D., Mahajan, S., & Bracewell, R. (2019). Massive gene amplification on a recently formed PubMed DOI PMC
Bachtrog, D., Mank, J. E., Peichel, C. L., … Vamosi, J. C.; Tree of Sex Consortium (2014). Sex determination: Why so many ways of doing it? PLoS Biology, 12(7), e1001899. https://doi.org/ 10.1371/journal.pbio.1001899 PubMed DOI PMC
Baker, H. G. (1955). Self-compatibility and establishment after ‘“long-distance” dispersal. Evolution; International Journal of Organic Evolution, 9(3), 347–349.
Baránková, S., Pascual-Díaz, J. P., Sultana, N., … Garcia, S. (2020). Sex-chrom, a database on plant sex chromosomes. The New Phytologist, 227(6), 1594–1604. https://doi.org/ 10.1111/nph.16635 PubMed DOI
Baroiller, J. F., Chourrout, D., Fostier, A., & Jalabert, B. (1995). Temperature and sex chromosomes govern sex ratios of the mouthbrooding cichlid fish DOI
Barrera-Redondo, J., Lipinska, A. P., Liu, P., … Coelho, S. M. (2024). Origin and evolutionary trajectories of brown algal sex chromosomes. bioRxiv 575685. https://doi.org/ 10.1101/2024.01.15.575685, January 16, 2024, preprint: not peer reviewed. DOI
Barrett, S. C. H. (1998). The evolution of mating strategies in flowering plants. Trends in Plant Science, 3(9), 335–341.
Bell, G. (1981). The masterpiece of nature: Evolution and genetics of sexuality. Kluwer Academic.
Benvenuto, C., & Weeks, S. C. (2020). Hermaphroditism and gonochorism. In Cothran R., & Thiel M. (Eds.), The natural history of the Crustacea, Vol. VI: Reproductive biology (pp. 197–241). Oxford University Press.
Bergero, R., & Charlesworth, D. (2019). Reply to Wright PubMed DOI PMC
Bergero, R., Gardner, J., Bader, B., … Charlesworth, D. (2019). Exaggerated heterochiasmy in a fish with sex-linked male coloration polymorphisms. Proceedings of the National Academy of Sciences of the United States of America, 116(14), 6924–6931. https://doi.org/ 10.1073/pnas.1818486116 PubMed DOI PMC
Bernstein, H., & Bernstein, C. (2010). Evolutionary origin of recombination during meiosis. Bioscience, 60(7), 498–505. https://doi.org/ 10.1525/bio.2010.60.7.5 DOI
Berzins, I. K., Yanong, R. P. E., LaDouceur, E. E. B., & Peters, E. C. (2021). Cnidaria. In LaDouceur, E. E. B. (Ed), Invertebrate histology (pp. 55–86). Wiley. https://doi.org/ 10.1002/9781119507697.ch3 DOI
Beukeboom, L. W., & Perrin, N. (2014). The evolution of sex determination. Oxford University Press.
Beukeboom, L. W., & Vrijenhoek, R. C. (1998). Evolutionary genetics and ecology of sperm‐dependent parthenogenesis. Journal of Evolutionary Biology, 11(6), 755–782. https://doi.org/ 10.1007/s000360050117 DOI
Beye, M., Hasselmann, M., Fondrk, M. K., … Omholt, S. W. (2003). The gene csd is the primary signal for sexual development in the honeybee and encodes an SR-type protein. Cell, 114(4), 419–429. https://doi.org/ 10.1016/s0092-8674(03)00606-8 PubMed DOI
Billiard, S., López-Villavicencio, M., Devier, B., … Giraud, T. (2011). Having sex, yes, but with whom? Inferences from fungi on the evolution of anisogamy and mating types. Biological Reviews of the Cambridge Philosophical Society, 86(2), 421–442. https://doi.org/ 10.1111/j.1469-185X.2010.00153.x PubMed DOI
Birky, C. W.Jr (1996). Heterozygosity, heteromorphy, and phylogenetic trees in asexual eukaryotes. Genetics, 144(1), 427–437. https://doi.org/ 10.1093/genetics/144.1.427 PubMed DOI PMC
Bista, B., González-Rodelas, L., Álvarez-González, L., … Valenzuela, N. (2024). De novo genome assemblies of two cryptodiran turtles with ZZ/ZW and XX/XY sex chromosomes provide insights into patterns of genome reshuffling and uncover novel 3D genome folding in amniotes. Genome Research, 34(10), 1553–1569. https://doi.org/ 10.1101/gr.279443.124 PubMed DOI PMC
Blackmon, H., & Demuth, J. P. (2014). Estimating tempo and mode of Y chromosome turnover: Explaining Y chromosome loss with the fragile Y hypothesis. Genetics, 197(2), 561–572. https://doi.org/ 10.1534/genetics.114.164269 PubMed DOI PMC
Blackmon, H., & Demuth, J. P. (2015a). Coleoptera karyotype database. The Coleopterists Bulletin, 69(1), 174–175. https://doi.org/ 10.1649/0010-065x-69.1.174 DOI
Blackmon, H., & Demuth, J. P. (2015b). The fragile Y hypothesis: Y chromosome aneuploidy as a selective pressure in sex chromosome and meiotic mechanism evolution. BioEssays, 37(9), 942–950. https://doi.org/ 10.1002/bies.201500040 PubMed DOI
Blackmon, H., Hardy, N. B., & Ross, L. (2015). The evolutionary dynamics of haplodiploidy: Genome architecture and haploid viability. Evolution; International Journal of Organic Evolution, 69(11), 2971–2978. https://doi.org/ 10.1111/evo.12792 PubMed DOI PMC
Blackmon, H., Justison, J., Mayrose, I., & Goldberg, E. E. (2019). Meiotic drive shapes rates of karyotype evolution in mammals. Evolution; International Journal of Organic Evolution, 73(3), 511–523. https://doi.org/ 10.1111/evo.13682 PubMed DOI PMC
Blackmon, H., Ross, L., & Bachtrog, D. (2017). Sex determination, sex chromosomes, and karyotype evolution in insects. The Journal of Heredity, 108(1), 78–93. https://doi.org/ 10.1093/jhered/esw047 PubMed DOI PMC
Blaser, O., Neuenschwander, S., & Perrin, N. (2014). Sex-chromosome turnovers: The hot-potato model. The American Naturalist, 183(1), 140–146. https://doi.org/ 10.1086/674026 PubMed DOI
Blaxter, M., Pauperio, J., Schoch, C., & Howe, K. (2024b). Taxonomy Identifiers (TaxId) for Biodiversity Genomics: A guide to getting TaxId for submission of data to public databases. Wellcome Open Research, 9, 591. https://doi.org/ 10.12688/wellcomeopenres.22949.1 PubMed DOI PMC
Blaxter, M. L., Leech, C., & Lunt, D. H. (2024a). PubMed PMC
Bókony, V., Kövér, S., Nemesházi, E., … Székely, T. (2017). Climate-driven shifts in adult sex ratios via sex reversals: The type of sex determination matters. Philosophical Transactions of the Royal Society of London, Series B: Biological Sciences, 372(1729), 20160325. https://doi.org/ 10.1098/rstb.2016.0325 PubMed DOI PMC
Bornmann, L., Haunschild, R., & Mutz, R. (2021). Growth rates of modern science: A latent piecewise growth curve approach to model publication numbers from established and new literature databases. Humanities and Social Sciences Communications, 8(1), 1–15.
Bracewell, R., Tran, A., Chatla, K., & Bachtrog, D. (2024). Sex and neo-sex chromosome evolution in beetles. PLoS Genetics, 20(11), e1011477. https://doi.org/ 10.1371/journal.pgen.1011477 PubMed DOI PMC
Brandt, A., Tran Van, P., Bluhm, C., … Bast, J. (2021). Haplotype divergence supports long-term asexuality in the oribatid mite PubMed DOI PMC
Breton, S., Capt, C., Guerra, D., & Stewart, D. (2018). Sex-determining mechanisms in bivalves. In Leonard, J. (Ed), Transitions between sexual systems (pp. 165–192). Springer International Publishing.
Bridges, C. B. (1916). Non-disjunction as proof of the chromosome theory of heredity. Genetics, 1(1), 1–52. https://doi.org/ 10.1093/genetics/1.1.1 PubMed DOI PMC
Brush, S. G. (1978). Nettie M. Stevens and the discovery of sex determination by chromosomes. Isis; an International Review Devoted to the History of Science and Its Cultural Influences, 69(247), 163–172. https://doi.org/ 10.1086/352001 PubMed DOI
Bull, J. J. (1978). Sex-chromosomes in haploid dioecy; unique contrast to Muller’s theory for diploid dioecy. American Naturalist, 112(983), 245–250. https://doi.org/ 10.1086/283267 DOI
Bull, J. J. (1983). Evolution of sex determining mechanisms. The Benjamin/Cummings Publishing Company, Inc.
Carey, S. B., Jenkins, J., Lovell, J. T., … McDaniel, S. F. (2021). Gene-rich UV sex chromosomes harbor conserved regulators of sexual development. Science Advances, 7(27), eabh2488. https://doi.org/ 10.1126/sciadv.abh2488 PubMed DOI PMC
Carvalho, A. B., Dobo, B. A., Vibranovski, M. D., & Clark, A. G. (2001). Identification of five new genes on the Y chromosome of PubMed DOI PMC
Cerepaka, C., & Schlupp, I. (2023). Sperm specificity and potential paternal effects in gynogenesis in the Amazon Molly ( PubMed DOI PMC
Challis, R., Kumar, S., Sotero-Caio, C., … Blaxter, M. (2023). Genomes on a Tree (GoaT): A versatile, scalable search engine for genomic and sequencing project metadata across the eukaryotic tree of life. Wellcome Open Research, 8, 24. https://doi.org/ 10.12688/wellcomeopenres.18658.1 PubMed DOI PMC
Chalopin, D., Volff, J. -N., Galiana, D., … Schartl, M. (2015). Transposable elements and early evolution of sex chromosomes in fish. Chromosome Research, 23(3), 545–560. https://doi.org/ 10.1007/s10577-015-9490-8 PubMed DOI
Charlesworth, B. (1978). The population genetics of anisogamy. Journal of Theoretical Biology, 73(2), 347–357. https://doi.org/ 10.1016/0022-5193(78)90195-9 PubMed DOI
Charlesworth, B., Coyne, J. A., & Barton, N. H. (1987). The relative rates of evolution of sex chromosomes and autosomes. The American Naturalist, 130(1), 113–146. https://doi.org/ 10.1086/284701 DOI
Charlesworth, B., & Olito, C. (2024). Making sense of recent models of the “sheltering” hypothesis for recombination arrest between sex chromosomes. Evolution; International Journal of Organic Evolution, 78(12), 1891–1899. https://doi.org/ 10.1093/evolut/qpae119 PubMed DOI
Charlesworth, B., Sniegowski, P., & Stephan, W. (1994). The evolutionary dynamics of repetitive DNA in eukaryotes. Nature, 371(6494), 215–220. https://doi.org/ 10.1038/371215a0 PubMed DOI
Charlesworth, D. (2022). The mysterious sex chromosomes of haploid plants. Heredity, 129(1), 17–21. https://doi.org/ 10.1038/s41437-022-00524-2 PubMed DOI PMC
Charlesworth, D. (2023). Why and how do Y chromosome stop recombining? Journal of Evolutionary Biology, 36(3), 632–636. https://doi.org/ 10.1111/jeb.14137 PubMed DOI
Charlesworth, D., Bergero, R., Graham, C., … Yong, L. (2020). Locating the sex determining region of linkage group 12 of guppy ( PubMed DOI PMC
Charlesworth, D., & Charlesworth, B. (1980). Sex differences in fitness and selection for centric fusions between sex-chromosomes and autosomes. Genetical Research, 35(2), 205–214. https://doi.org/ 10.1017/s0016672300014051 PubMed DOI
Charlesworth, D., Charlesworth, B., & Marais, G. (2005). Steps in the evolution of heteromorphic sex chromosomes. Heredity, 95(2), 118–128. https://doi.org/ 10.1038/sj.hdy.6800697 PubMed DOI
Chen, M. -S., Niu, L., Zhao, M. -L., … Xu, Z. -F. (2020). De novo genome assembly and Hi-C analysis reveal an association between chromatin architecture alterations and sex differentiation in the woody plant PubMed DOI PMC
Chen, X. I., Mei, Y., Chen, M., … Li, F. (2021). InSexBase: An annotated genomic resource of sex chromosomes and sex-biased genes in insects. Database: The Journal of Biological Databases and Curation, 2021, baab001. https://doi.org/ 10.1093/database/baab001 PubMed DOI PMC
Cheptou, P. -O. (2018). Does the evolution of self-fertilization rescue populations or increase the risk of extinction? Annals of Botany, 123(2), 337–345. https://doi.org/ 10.1093/aob/mcy144 PubMed DOI PMC
Chepurnov, V. A., Mann, D. G., Sabbe, K., & Vyverman, W. (2004). Experimental studies on sexual reproduction in diatoms. International Review of Cytology, 237, 91–154. https://doi.org/ 10.1016/S0074-7696(04)37003-8 PubMed DOI
Choleva, L., Apostolou, A., Rab, P., & Janko, K. (2008). Making it on their own: Sperm-dependent hybrid fishes ( PubMed DOI PMC
Choleva, L., & Janko, K. (2013). Rise and persistence of animal polyploidy: Evolutionary constraints and potential. Cytogenetic and Genome Research, 140(2-4), 151–170. https://doi.org/ 10.1159/000353464 PubMed DOI
Church, S. H., Donoughe, S., de Medeiros, B. A. S., & Extavour, C. G. (2019). A dataset of egg size and shape from more than 6,700 insect species. Scientific Data, 6(1), 104. https://doi.org/ 10.1038/s41597-019-0049-y PubMed DOI PMC
Coelho, S. M., Gueno, J., Lipinska, A. P., … Umen, J. G. (2018). UV chromosomes and haploid sexual systems. Trends in Plant Science, 23(9), 794–807. https://doi.org/ 10.1016/j.tplants.2018.06.005 PubMed DOI PMC
Coffing, G. C., Tittes, S., Small, S. T., … Kern, A. D. (2024). Cephalopod sex determination and its ancient evolutionary origin revealed by chromosome-level assembly of the California two-spot octopus. bioRxiv 581452, https://doi.org/ 10.1101/2024.02.21.581452, February 21, 2024, preprint: not peer reviewed. DOI
Colaco, S., & Modi, D. (2018). Genetics of the human Y chromosome and its association with male infertility. Reproductive Biology and Endocrinology: RB&E, 16(1), 14. https://doi.org/ 10.1186/s12958-018-0330-5 PubMed DOI PMC
Collin, R. (2006). Sex ratio, life-history invariants, and patterns of sex change in a family of protandrous gastropods. Evolution; International Journal of Organic Evolution, 60(4), 735–745. PubMed
Constable, G. W. A., & Kokko, H. (2021). Parthenogenesis and the evolution of anisogamy. Cells, 10(9), 2467. https://doi.org/ 10.3390/cells10092467 PubMed DOI PMC
Cordellier, M., Schneider, J. M., Uhl, G., & Posnien, N. (2020). Sex differences in spiders: from phenotype to genomics. Development Genes and Evolution, 230(2), 155–172. https://doi.org/ 10.1007/s00427-020-00657-6 PubMed DOI PMC
Cossard, G. G., & Pannell, J. R. (2019). A functional decomposition of sex inconstancy in the dioecious, colonizing plant PubMed DOI
Costa, W. J. E. M., Lima, S. M. Q., & Bartolette, R. (2010). Androdioecy in DOI
Coyne, J. A. (1985). The genetic basis of Haldane’s rule. Nature, 314(6013), 736–738. https://doi.org/ 10.1038/314736a0 PubMed DOI
Coyne, J. A. (2018). “two rules of speciation” revisited. Molecular Ecology, 27(19), 3749–3752. https://doi.org/ 10.1111/mec.14790 PubMed DOI
Crossman, A., & Charlesworth, D. (2014). Breakdown of dioecy: Models where males acquire cosexual functions. Evolution; International Journal of Organic Evolution, 68(2), 426–440. https://doi.org/ 10.1111/evo.12283 PubMed DOI
D’Ambrosio, U., Alonso-Lifante, M., Barros, K., … Garcia, S. (2017). B-chrom: A database on B-chromosomes of plants, animals and fungi. The New Phytologist, 216(3), 635–642. PubMed
da Silva, J. (2022). Gene dynamics of haplodiploidy favor eusociality in the Hymenoptera. Evolution; International Journal of Organic Evolution, 76(7), 1546–1555. https://doi.org/ 10.1111/evo.14518 PubMed DOI PMC
Dapper, A. L., & Payseur, B. A. (2017). Connecting theory and data to understand recombination rate evolution. Philosophical Transactions of the Royal Society of London, Series B: Biological Sciences, 372(1736), 20160469. https://doi.org/ 10.1098/rstb.2016.0469 PubMed DOI PMC
de la Filia, A. G., Bain, S. A., & Ross, L. (2015). Haplodiploidy and the reproductive ecology of Arthropods. Current Opinion in Insect Science, 9, 36–43. https://doi.org/ 10.1016/j.cois.2015.04.018 PubMed DOI
de Vries, C., & Lehtonen, J. (2023). Sex-specific assumptions and their importance in models of sexual selection. Trends in Ecology & Evolution, 38(10), 927–935. https://doi.org/ 10.1016/j.tree.2023.04.013 PubMed DOI
Deakin, J. E., Potter, S., O’Neill, R., Kratochvíl, L., … Ezaz, T. (2019). Chromosomics: Bridging the gap between genomes and chromosomes. Genes, 10(8), 627. https://doi.org/ 10.3390/genes10080627 PubMed DOI PMC
Debus, B. (1978). “Nodules” in the achiasmatic meiosis of PubMed DOI
Dedukh, D., Altmanová, M., Petrosyan, R., … Kratochvíl, L. (2024). Premeiotic endoreplication is the mechanism of obligate parthenogenesis in rock lizards of the genus PubMed DOI PMC
Dedukh, D., da Cruz, I., Kneitz, S., … Schartl, M. (2022). Achiasmatic meiosis in the unisexual Amazon molly, PubMed DOI PMC
Deveson, I. W., Holleley, C. E., Blackburn, J., … Georges, A. (2017). Differential intron retention in Jumonji chromatin modifier genes is implicated in reptile temperature-dependent sex determination. Science Advances, 3(6), e1700731. https://doi.org/ 10.1126/sciadv.1700731 PubMed DOI PMC
Dolmatov, I. Y., Afanasyev, S. V., & Boyko, A. V. (2018). Molecular mechanisms of fission in echinoderms: Transcriptome analysis. PLoS One, 13(4), e0195836. https://doi.org/ 10.1371/journal.pone.0195836 PubMed DOI PMC
Duffy, T. A., Hice, L. A., & Conover, D. O. (2015). Pattern and scale of geographic variation in environmental sex determination in the Atlantic silverside, PubMed DOI
Dyer, A. F. (1979). The experimental biology of ferns. Transactions of the Botanical Society of Edinburgh, 43(2), 75–90. https://doi.org/ 10.1080/03746607908685341 DOI
Ehlers, B. K., & Bataillon, T. (2007). “Inconstant males” and the maintenance of labile sex expression in subdioecious plants. The New Phytologist, 174(1), 194–211. https://doi.org/ 10.1111/j.1469-8137.2007.01975.x PubMed DOI
El Taher, A., Ronco, F., Matschiner, M., … Böhne, A. (2021). Dynamics of sex chromosome evolution in a rapid radiation of cichlid fishes. Science Advances, 7(36), eabe8215. https://doi.org/ 10.1126/sciadv.abe8215 PubMed DOI PMC
Engelstädter, J. (2017). Asexual but not clonal: Evolutionary processes in automictic populations. Genetics, 206(2), 993–1009. https://doi.org/ 10.1534/genetics.116.196873 PubMed DOI PMC
Ewers-Saucedo, C., Hope, N. B., & Wares, J. P. (2016). The unexpected mating system of the androdioecious barnacle Chelonibia testudinaria (Linnaeus 1758). Molecular Ecology, 25(9), 2081–2092. https://doi.org/ 10.1111/mec.13593 PubMed DOI
Fausto-Sterling, A. (2008). Sexing the body: Gender politics and the construction of sexuality. Basic Books.
Feldmeyer, B., Kozielska, M., Kuijper, B., … Pen, I. (2008). Climatic variation and the geographical distribution of sex-determining mechanisms in the housefly. Evolutionary Ecology Research, 10(6), 797–809.
Feller, A. F., Ogi, V., Seehausen, O., & Meier, J. I. (2021). Identification of a novel sex determining chromosome in cichlid fishes that acts as XY or ZW in different lineages. Hydrobiologia, 848(16), 3727–3745. https://doi.org/ 10.1007/s10750-021-04560-7 PubMed DOI PMC
Felsenstein, J. (1974). The evolutionary advantage of recombination. Genetics, 78(2), 737–756. https://doi.org/ 10.1093/genetics/78.2.737 PubMed DOI PMC
Fitzpatrick, J. L., Kahrl, A. F., & Snook, R. R. (2022). SpermTree, a species-level database of sperm morphology spanning the animal tree of life. Scientific Data, 9(1), 30. https://doi.org/ 10.1038/s41597-022-01131-w PubMed DOI PMC
Foy, P. D., Loetzerich, S. R., Boxler, D., … Meisel, R. P. (2024). Frequencies of house fly proto-Y chromosomes across populations are predicted by temperature heterogeneity within populations. The Journal of Heredity, esae056. https://doi.org/ 10.1093/jhered/esae056 PubMed DOI
Fraïsse, C., Picard, M. A. L., & Vicoso, B. (2017). The deep conservation of the Lepidoptera Z chromosome suggests a non-canonical origin of the W. Nature Communications, 8(1), 1486. https://doi.org/ 10.1038/s41467-017-01663-5 PubMed DOI PMC
Fraïsse, C., & Sachdeva, H. (2021). The rates of introgression and barriers to genetic exchange between hybridizing species: Sex chromosomes vs autosomes. Genetics, 217(2), iyaa025. https://doi.org/ 10.1093/genetics/iyaa025 PubMed DOI PMC
Fredga, K. (1988). Aberrant chromosomal sex-determining mechanisms in mammals, with special reference to species with XY females. Philosophical Transactions of the Royal Society of London, Series B: Biological Sciences, 322(1208), 83–95. https://doi.org/ 10.1098/rstb.1988.0116 PubMed DOI
Freitas, S., Parker, D. J., Labédan, M., … Schwander, T. (2023). Evidence for cryptic sex in parthenogenetic stick insects of the genus PubMed DOI PMC
Fridolfsson, A. K., Cheng, H., Copeland, N. G., … Ellegren, H. (1998). Evolution of the avian sex chromosomes from an ancestral pair of autosomes. Proceedings of the National Academy of Sciences of the United States of America, 95(14), 8147–8152. https://doi.org/ 10.1073/pnas.95.14.8147 PubMed DOI PMC
Froese, R., & Pauly, D. (2024). FishBase. www.fishbase.org
Fuad, M. M. H., Vetešník, L., & Šimková, A. (2021). Is gynogenetic reproduction in gibel carp (
Gamble, T., Coryell, J., Ezaz, T., … Zarkower, D. (2015). Restriction DNA Sequencing (RAD-seq) reveals an extraordinary number of transitions among gecko sex-determining systems. Molecular Biology and Evolution, 32(5), 1296–1309. https://doi.org/ 10.1093/molbev/msv023 PubMed DOI
Garcia, S., Garnatje, T., & Kovařík, A. (2012). Plant rDNA database: Ribosomal DNA loci information goes online. Chromosoma, 121(4), 389–394. https://doi.org/ 10.1007/s00412-012-0368-7 PubMed DOI
Garcia, S., Janousek, B., Pascual-Díaz, J. P., & Renner, S. S. (2023). Sex-chrom v. 2.0: A database of green plant species with sex chromosomes. Chromosoma, 132(1), 55–58. https://doi.org/ 10.1007/s00412-023-00786-7 PubMed DOI
Ge, C., Ye, J., Weber, C., … Capel, B. (2018). The histone demethylase KDM6B regulates temperature-dependent sex determination in a turtle species. Science, 360(6389), 645–648. https://doi.org/ 10.1126/science.aap8328 PubMed DOI
Ghiselin, M. (1969). The evolution of hermaphroditism among animals. The Quarterly Review of Biology, 44(2), 189–208. PubMed
Gil-Fernández, A., Saunders, P. A., Martín-Ruiz, M., … Page, J. (2020). Meiosis reveals the early steps in the evolution of a neo-XY sex chromosome pair in the African pygmy mouse PubMed DOI PMC
Godin, V. N. (2022). Trioecy in flowering plants. Doklady Biological Sciences, 507(1), 301–311. https://doi.org/ 10.1134/S0012496622060023 PubMed DOI
Goldberg, E. E., Kohn, J. R., Lande, R., … Igić, B. (2010). Species selection maintains self-incompatibility. Science (New York, N.Y.), 330(6003), 493–495. https://doi.org/ 10.1126/science.1194513 PubMed DOI
Goldberg, E. E., Otto, S. P., Vamosi, J. C., … Ashman, T. -L. (2017). Macroevolutionary synthesis of flowering plant sexual systems. Evolution; International Journal of Organic Evolution, 71(4), 898–912. https://doi.org/ 10.1111/evo.13181 PubMed DOI
Gómez, J. M., Gónzalez-Megías, A., & Verdú, M. (2023). The evolution of same-sex sexual behaviour in mammals. Nature Communications, 14(1), 5719. https://doi.org/ 10.1038/s41467-023-41290-x PubMed DOI PMC
Goodwillie, C., Kalisz, S., & Eckert, C. (2005a). The evolutionary enigma of mixed mating systems in plants: Occurrence, theoretical explanations, and empirical evidence. Annual Review of Ecology, Evolution, and Systematics, 36, 47–79.
Goodwillie, C., Kalisz, S., & Eckert, C. G. (2005b). The evolutionary enigma of mixed mating systems in plants: Occurrence, theoretical explanations, and empirical evidence. Annual Review of Ecology, Evolution, and Systematics, 36(1), 47–79. https://doi.org/ 10.1146/annurev.ecolsys.36.091704.175539 DOI
Goodwillie, C., Sargent, R. D., Eckert, C. G., … Winn, A. A. (2010). Correlated evolution of mating system and floral display traits in flowering plants and its implications for the distribution of mating system variation. The New Phytologist, 185(1), 311–321. https://doi.org/ 10.1111/j.1469-8137.2009.03043.x PubMed DOI
Graves, J. A. (1995). The origin and function of the mammalian Y chromosome and Y-borne genes – An evolving understanding. BioEssays, 17(4), 311–320. https://doi.org/ 10.1002/bies.950170407 PubMed DOI
Green, R. F., & Noakes, D. L. G. (1995). Is a little bit of sex as good as a lot? Journal of Theoretical Biology, 174(1), 87–96.
Gregory, T. R. (2024).
Grigoriev, I. V., Hayes, R. D., Calhoun, S., … Kuo, A. (2021). PhycoCosm, a comparative algal genomics resource. Nucleic Acids Research, 49(D1), D1004–D1011. https://doi.org/ 10.1093/nar/gkaa898 PubMed DOI PMC
Grossenbacher, D., Briscoe Runquist, R., Goldberg, E. E., & Brandvain, Y. (2015). Geographic range size is predicted by plant mating system. Ecology Letters, 18(7), 706–713. https://doi.org/ 10.1111/ele.12449 PubMed DOI
Gutiérrez, M. L., Rodríguez-González, R., Fuentes, I., … Garcia, S. (2023). First update to B-chrom: A database on B-chromosomes. Methods in Molecular Biology (Clifton, N.J.), 2703, 227–236. PubMed
Haldane, J. B. S. (1922). Sex ratio and unisexual sterility in hybrid animals. Journal of Genetics, 12(2), 101–109. https://doi.org/ 10.1007/bf02983075 DOI
Hamilton, W. D. (1967). Extraordinary sex ratios. A sex-ratio theory for sex linkage and inbreeding has new implications in cytogenetics and entomology. Science (New York, N.Y.), 156(3774), 477–488. https://doi.org/ 10.1126/science.156.3774.477 PubMed DOI
Hargreaves, A. L., & Eckert, C. G. (2014). Evolution of dispersal and mating systems along geographic gradients: Implications for shifting ranges. Functional Ecology, 28(1), 5–21. https://doi.org/ 10.1111/1365-2435.12170 DOI
Hartfield, M. (2016). Evolutionary genetic consequences of facultative sex and outcrossing. Journal of Evolutionary Biology, 29(1), 5–22. https://doi.org/ 10.1111/jeb.12770 PubMed DOI
Hartfield, M., Bataillon, T., & Glémin, S. (2017). The evolutionary interplay between adaptation and self-fertilization. Trends in Genetics: TIG, 33(6), 420–431. https://doi.org/ 10.1016/j.tig.2017.04.002 PubMed DOI PMC
Hartfield, M., & Keightley, P. D. (2012). Current hypotheses for the evolution of sex and recombination. Integrative Zoology, 7(2), 192–209. https://doi.org/ 10.1111/j.1749-4877.2012.00284.x PubMed DOI
Hedrick, P. W. (1987). Population genetics of intragametophytic selfing. Evolution; International Journal of Organic Evolution, 41(1), 137–144. https://doi.org/ 10.1111/j.1558-5646.1987.tb05776.x PubMed DOI
Heesch, S., Serrano-Serrano, M., Barrera-Redondo, J., … Coelho, S. M. (2021). Evolution of life cycles and reproductive traits: Insights from the brown algae. Journal of Evolutionary Biology, 34(7), 992–1009. https://doi.org/ 10.1111/jeb.13880 PubMed DOI
Hill, W. G., & Robertson, A. (1966). The effect of linkage on limits to artificial selection. Genetical Research, 8(3), 269–294. PubMed
Hodson, C. N., & Ross, L. (2021). Evolutionary perspectives on germline-restricted chromosomes in flies (Diptera). Genome Biology and Evolution, 13(6), evab072. https://doi.org/ 10.1093/gbe/evab072 PubMed DOI PMC
Hoencamp, C., Dudchenko, O., Elbatsh, A. M. O., … Rowland, B. D. (2021). 3D genomics across the tree of life reveals condensin II as a determinant of architecture type. Science, 372(6545), 984–989. https://doi.org/ 10.1126/science.abe2218 PubMed DOI PMC
Hofstatter, P. G., & Lahr, D. J. G. (2019). All eukaryotes are sexual, unless proven otherwise: Many so-called asexuals present meiotic machinery and might be able to have sex. BioEssays, 41(6), e1800246. https://doi.org/ 10.1002/bies.201800246 PubMed DOI
Holleley, C. E., O’Meally, D., Sarre, S. D., … Georges, A. (2015). Sex reversal triggers the rapid transition from genetic to temperature-dependent sex. Nature, 523(7558), 79–82. https://doi.org/ 10.1038/nature14574 PubMed DOI
Holleley, C. E., Sarre, S. D., O’Meally, D., & Georges, A. (2016). Sex reversal in reptiles: Reproductive oddity or powerful driver of evolutionary change? Sexual Development: Genetics, Molecular Biology, Evolution, Endocrinology, Embryology, and Pathology of Sex Determination and Differentiation, 10(5-6), 279–287. https://doi.org/ 10.1159/000450972 PubMed DOI
Honeycutt, J., Deck, C., Miller, S. C., & Godwin, J. (2019). Warmer waters masculinize wild populations of a fish with temperature-dependent sex determination. Scientific Reports, 9, 6527. https://doi.org/ 10.1038/s41598-019-42944-x PubMed DOI PMC
Hood, M. E., & Antonovics, J. (2004). Mating within the meiotic tetrad and the maintenance of genomic heterozygosity. Genetics, 166(4), 1751–1759. https://doi.org/ 10.1534/genetics.166.4.1751 PubMed DOI PMC
Hughes, J. F., & Page, D. C. (2015). The biology and evolution of mammalian Y chromosomes. Annual Review of Genetics, 49(1), 507–527. https://doi.org/ 10.1146/annurev-genet-112414-055311 PubMed DOI
Hughes, J. J., Lagunas-Robles, G., Campbell, P., & Fishman, L. (2024). The role of conflict in the formation and maintenance of variant sex chromosome systems in mammals. Journal of Heredity, 115(6), 601–624. https://doi.org/ 10.1093/jhered/esae031 PubMed DOI
Imarazene, B., Du, K., Beille, S., … Guiguen, Y. (2021). A supernumerary “B-sex” chromosome drives male sex determination in the Pachón cavefish, Astyanax mexicanus. Current Biology, 31(21), 4800–4809.e9. https://doi.org/ 10.1016/j.cub.2021.08.030 PubMed DOI PMC
Immler, S., & Otto, S. P. (2015). The evolution of sex chromosomes in organisms with separate haploid sexes. Evolution; International Journal of Organic Evolution, 69(3), 694–708. https://doi.org/ 10.1111/evo.12602 PubMed DOI
Ioannidis, J., Taylor, G., Zhao, D., … Clinton, M. (2021). Primary sex determination in birds depends on DMRT1 dosage, but gonadal sex does not determine adult secondary sex characteristics. Proceedings of the National Academy of Sciences of the United States of America, 118(10), e2020909118. https://doi.org/ 10.1073/pnas.2020909118 PubMed DOI PMC
Iwasaki, M., Kajiwara, T., Yasui, Y., … Kohchi, T. (2021). Identification of the sex-determining factor in the liverwort PubMed DOI PMC
Janicke, T., Häderer, I. K., Lajeunesse, M. J., & Anthes, N. (2016). Darwinian sex roles confirmed across the animal kingdom. Science Advances, 2(2), e1500983. https://doi.org/ 10.1126/sciadv.1500983 PubMed DOI PMC
Jankásek, M., Kotyková Varadínová, Z., & Šťáhlavský, F. (2021). Blattodea karyotype database. European Journal of Entomology, 118, 192–199. https://doi.org/ 10.14411/eje.2021.020 DOI
Janko, K., Bartoš, O., Kočí, J., … Štefková-Kašparová, E. (2021). Genome fractionation and loss of heterozygosity in hybrids and polyploids: Mechanisms, consequences for selection, and link to gene function. Molecular Biology and Evolution, 38(12), 5255–5274. https://doi.org/ 10.1093/molbev/msab249 PubMed DOI PMC
Jarne, P., & Auld, J. R. (2006). Animals mix it up too: The distribution of self-fertilization among hermaphroditic animals. Evolution; International Journal of Organic Evolution, 60(9), 1816–1824. https://doi.org/ 10.1554/06-246.1 PubMed DOI
Jarne, P., & Charlesworth, D. (1993). The evolution of the selfing rate in functionally hermaphrodite plants and animals. Annual Review of Ecology, Evolution, and Systematics, 24, 441–466.
Jaron, K. S., Bast, J., Nowell, R. W., … Schwander, T. (2021). Genomic features of parthenogenetic animals. The Journal of Heredity, 112(1), 19–33. https://doi.org/ 10.1093/jhered/esaa031 PubMed DOI PMC
Jaron, K. S., Parker, D. J., Anselmetti, Y., … Schwander, T. (2022). Convergent consequences of parthenogenesis on stick insect genomes. Science Advances, 8(8), eabg3842. https://doi.org/ 10.1126/sciadv.abg3842 PubMed DOI PMC
Jay, P., Jeffries, D., Hartmann, F. E., … Giraud, T. (2024). Why do sex chromosomes progressively lose recombination? Trends in Genetics: TIG, 40(7), 564–579. https://doi.org/ 10.1016/j.tig.2024.03.005 PubMed DOI
Jeffries, D. L., Gerchen, J. F., Scharmann, M., & Pannell, J. R. (2021). A neutral model for the loss of recombination on sex chromosomes. Philosophical Transactions of the Royal Society of London, Series B: Biological Sciences, 376(1832), 20200096. https://doi.org/ 10.1098/rstb.2020.0096 PubMed DOI PMC
Jeffries, D. L., Lavanchy, G., Sermier, R., … Perrin, N. (2018). A rapid rate of sex-chromosome turnover and non-random transitions in true frogs. Nature Communications, 9(1), 4088. https://doi.org/ 10.1038/s41467-018-06517-2 PubMed DOI PMC
Jensen, M. P., Allen, C. D., Eguchi, T., … Dutton, P. H. (2018). Environmental warming and feminization of one of the largest sea turtle populations in the world. Current Biology: CB, 28(1), 154–159.e4. https://doi.org/ 10.1016/j.cub.2017.11.057 PubMed DOI
Jerkovic, I., & Cavalli, G. (2021). Understanding 3D genome organization by multidisciplinary methods. Nature Reviews. Molecular cell biology, 22(8), 511–528. https://doi.org/ 10.1038/s41580-021-00362-w PubMed DOI
Jesson, L. K., & Garnock-Jones, P. J. (2011). Can classifications of functional gender be extended to all land plants? Perspectives in Plant Ecology, Evolution and Systematics, 14(2), 153–160. https://doi.org/ 10.1016/j.ppees.2011.10.003 DOI
Johnson Pokorná, M., & Kratochvíl, L. (2016). What was the ancestral sex-determining mechanism in amniote vertebrates? Biological Reviews of the Cambridge Philosophical Society, 91(1), 1–12. https://doi.org/ 10.1111/brv.12156 PubMed DOI
Jonika, M. M., Alfieri, J. M., Sylvester, T., … Blackmon, H. (2022). Why not Y naught. Heredity, 129(2), 75–78. https://doi.org/ 10.1038/s41437-022-00543-z PubMed DOI PMC
Joshi, C. H., & Wiens, J. J. (2023). Does haplodiploidy help drive the evolution of insect eusociality? Frontiers in Ecology and Evolution, 11, 11. https://doi.org/ 10.3389/fevo.2023.1118748 DOI
Käfer, J. (2022). How sex chromosomes get trapped into nonrecombination. PLoS Biology, 20(7), e3001718. https://doi.org/ 10.1371/journal.pbio.3001718 PubMed DOI PMC
Käfer, J., Marais, G. A. B., & Pannell, J. R. (2017). On the rarity of dioecy in flowering plants. Molecular Ecology, 26(5), 1225–1241. https://doi.org/ 10.1111/mec.14020 PubMed DOI
Kato, Y., Nitta, J. H., Perez, C. A. G., … Watanabe, H. (2024). Identification of gene isoforms and their switching events between male and female embryos of the parthenogenetic crustacean PubMed DOI PMC
Kent, T. V., Uzunović, J., & Wright, S. I. (2017). Coevolution between transposable elements and recombination. Philosophical Transactions of the Royal Society of London, Series B: Biological Sciences, 372(1736), 20160458. https://doi.org/ 10.1098/rstb.2016.0458 PubMed DOI PMC
Khalaf, A., Francis, O., & Blaxter, M. L. (2024). Genome evolution in intracellular parasites: Microsporidia and Apicomplexa. The Journal of Eukaryotic Microbiology, 71(5), e13033. https://doi.org/ 10.1111/jeu.13033 PubMed DOI
Kitano, J., Ansai, S., Takehana, Y., & Yamamoto, Y. (2024). Diversity and convergence of sex-determination mechanisms in teleost fish. Annual Review of Animal Biosciences, 12, 233–259. https://doi.org/ 10.1146/annurev-animal-021122-113935 PubMed DOI
Kocher, T. D., Meisel, R. P., Gamble, T., … Gammerdinger, W. J. (2024). Yes, polygenic sex determination is a thing! Trends in Genetics: TIG, 40(12), 1001–1017. https://doi.org/ 10.1016/j.tig.2024.10.003 PubMed DOI
Kočí, J., Röslein, J., Pačes, J., … Janko, K. (2020). No evidence for accumulation of deleterious mutations and fitness degradation in clonal fish hybrids: Abandoning sex without regrets. Molecular Ecology, 29(16), 3038–3055. https://doi.org/ 10.1111/mec.15539 PubMed DOI PMC
Komen, H., & Thorgaard, G. H. (2007). Androgenesis, gynogenesis and the production of clones in fishes: A review. Aquaculture, 269(1-4), 150–173. https://doi.org/ 10.1016/j.aquaculture.2007.05.009 DOI
Kořínková, T., & Král, J. (2013). Karyotypes, sex chromosomes, and meiotic division in spiders. In Nentwig, W. (Ed.), Spider ecophysiology (pp. 159–171). Springer Berlin Heidelberg.
Kratochvíl, L., Gamble, T., & Rovatsos, M. (2021a). Sex chromosome evolution among amniotes: Is the origin of sex chromosomes non-random? Philosophical Transactions of the Royal Society of London, Series B: Biological Sciences, 376(1833), 20200108. https://doi.org/ 10.1098/rstb.2020.0108 PubMed DOI PMC
Kratochvíl, L., Stöck, M., Rovatsos, M., … Pokorná, M. J. (2021b). Expanding the classical paradigm: What we have learnt from vertebrates about sex chromosome evolution. Philosophical Transactions of the Royal Society of London, Series B: Biological Sciences, 376(1833), 20200097. https://doi.org/ 10.1098/rstb.2020.0097 PubMed DOI PMC
Krueger, C. J., & Janzen, F. J. (2022). ROSIE, a database of reptilian offspring sex ratios and sex-determining mechanisms, beginning with Testudines. Scientific Data, 9(1), 22. https://doi.org/ 10.1038/s41597-021-01108-1 PubMed DOI PMC
Krueger-Hadfield, S. A. (2024). Let’s talk about sex: Why reproductive systems matter for understanding algae. Journal of Phycology, 60(3), 581–597. https://doi.org/ 10.1111/jpy.13462 PubMed DOI
Krueger-Hadfield, S. A., Shainker-Connelly, S. J., Crowell, R. M., & Vis, M. L. (2024). The eco-evolutionary importance of reproductive system variation in the macroalgae: Freshwater reds as a case study. Journal of Phycology, 60(1), 15–25. https://doi.org/ 10.1111/jpy.13407 PubMed DOI
Kuhl, H., Guiguen, Y., Höhne, C., … Stöck, M. (2021). A 180 Myr-old female-specific genome region in sturgeon reveals the oldest known vertebrate sex determining system with undifferentiated sex chromosomes. Philosophical Transactions of the Royal Society of London, Series B: Biological Sciences, 376(1832), 20200089. https://doi.org/ 10.1098/rstb.2020.0089 PubMed DOI PMC
Lampert, K. P., & Schartl, M. (2008). The origin and evolution of a unisexual hybrid: PubMed DOI PMC
Lee, S. C., Corradi, N., Byrnes, E. J.3rd, … Heitman, J. (2008). Microsporidia evolved from ancestral sexual fungi. Current Biology: CB, 18(21), 1675–1679. https://doi.org/ 10.1016/j.cub.2008.09.030 PubMed DOI PMC
Lehtonen, J., Horinouchi, Y., Togashi, T., & Parker, G. A. (2021). Evolution of anisogamy in organisms with parthenogenetic gametes. The American Naturalist, 198(3), 360–378. https://doi.org/ 10.1086/715185 PubMed DOI
Lehtonen, J., & Kokko, H. (2011). Two roads to two sexes: Unifying gamete competition and gamete limitation in a single model of anisogamy evolution. Behavioral Ecology and Sociobiology, 65(3), 445–459. https://doi.org/ 10.1007/s00265-010-1116-8 DOI
Lehtonen, J., Kokko, H., & Parker, G. A. (2016). What do isogamous organisms teach us about sex and the two sexes? Philosophical Transactions of the Royal Society of London, Series B: Biological Sciences, 371(1706), 20150532. https://doi.org/ 10.1098/rstb.2015.0532 PubMed DOI PMC
Lehtonen, J., & Parker, G. A. (2014). Gamete competition, gamete limitation, and the evolution of the two sexes. Molecular Human Reproduction, 20(12), 1161–1168. https://doi.org/ 10.1093/molehr/gau068 PubMed DOI
Leitch, I. J., Johnston, E., Pellicer, J., Hidalgo, O., & Bennett. (2019). PubMed
Lenormand, T., & Roze, D. (2024). A single theory for the evolution of sex chromosomes and the two rules of speciation. bioRxiv 585601, https://doi.org/ 10.1101/2024.03.18.585601, March 20, 2024, preprint: not peer reviewed. PubMed DOI
Leonard, J. L. (Ed.). (2019). Transitions between sexual systems: Understanding the mechanisms of, and pathways between, dioecy, hermaphroditism and other sexual systems (1st ed.). Springer International Publishing.
Leung, K., & van der Meulen, H. (2022). Revisiting the hymenopteran diploid male vortex: A review of avoidance mechanisms and incidence. Entomologia Experimentalis et Applicata, 170(12), 1010–1031. https://doi.org/ 10.1111/eea.13234 DOI
Li, J. (2022). A review of sexual determination and differentiation in crustacean. Journal of Biosciences and Medicines, 10(07), 19–37. https://doi.org/ 10.4236/jbm.2022.107002 DOI
Li, X. -Y., Liu, X. -L., Zhu, Y. -J., … Gui, J. -F. (2018). Origin and transition of sex determination mechanisms in a gynogenetic hexaploid fish. Heredity, 121(1), 64–74. https://doi.org/ 10.1038/s41437-017-0049-7 PubMed DOI PMC
Li, Y., Chen, Z., Liu, H., … Luo, D. (2021). ASER: Animal sex reversal database. Genomics, Proteomics & Bioinformatics, 19(6), 873–881. https://doi.org/ 10.1016/j.gpb.2021.10.001 PubMed DOI PMC
Liehr, T. (2021). Molecular cytogenetics in the era of chromosomics and cytogenomic approaches. Frontiers in Genetics, 12, 720507. https://doi.org/ 10.3389/fgene.2021.720507 PubMed DOI PMC
Lima, T. G. (2014). Higher levels of sex chromosome heteromorphism are associated with markedly stronger reproductive isolation. Nature Communications, 5(1), 1–8. PubMed
Linck, E. B., & Cadena, C. D. (2024). A latitudinal gradient of reference genomes. bioRxiv 602657. https://doi.org/ 10.1101/2024.07.09.602657, July 13, 2024, preprint: not peer reviewed. PubMed DOI
Lipinska, A. P., Cossard, G., Epperlein, P., … Coelho, S. M. (2024). Structural and evolutionary features of red algal UV sex chromosomes. bioRxiv 626989. https://doi.org/ 10.1101/2024.12.05.626989, December 09, 2024, preprint: not peer reviewed. DOI
Lisachov, A. P., Tishakova, K. V., Romanenko, S. A., … Trifonov, V. A. (2021). Whole-chromosome fusions in the karyotype evolution of PubMed DOI PMC
Liu, P., Vigneau, J., Craig, R. J., … Coelho, S. M. (2024). 3D chromatin maps of a brown alga reveal U/V sex chromosome spatial organization. Nature Communications, 15(1), 9590. https://doi.org/ 10.1038/s41467-024-53453-5 PubMed DOI PMC
Lockley, E. C., & Eizaguirre, C. (2021). Effects of global warming on species with temperature-dependent sex determination: Bridging the gap between empirical research and management. Evolutionary Applications, 14(10), 2361–2377. https://doi.org/ 10.1111/eva.13226 PubMed DOI PMC
Ma, W. -J., & Veltsos, P. (2021). The diversity and evolution of sex chromosomes in frogs. Genes, 12(4), 483. https://doi.org/ 10.3390/genes12040483 PubMed DOI PMC
Marie-Orleach, L., Brochmann, C., & Glémin, S. (2022). Mating system and speciation I: Accumulation of genetic incompatibilities in allopatry. PLoS Genetics, 18(12), e1010353. https://doi.org/ 10.1371/journal.pgen.1010353 PubMed DOI PMC
Mark Welch, D. B., Mark Welch, J. L., & Meselson, M. (2008). Evidence for degenerate tetraploidy in bdelloid rotifers. Proceedings of the National Academy of Sciences of the United States of America, 105(13), 5145–5149. https://doi.org/ 10.1073/pnas.0800972105 PubMed DOI PMC
Masly, J. P., & Presgraves, D. C. (2007). High-resolution genome-wide dissection of the two rules of speciation in PubMed DOI PMC
Matsumoto, T., & Kitano, J. (2016). The intricate relationship between sexually antagonistic selection and the evolution of sex chromosome fusions. Journal of Theoretical Biology, 404, 97–108. https://doi.org/ 10.1016/j.jtbi.2016.05.036 PubMed DOI
McCauley, D. E., & Bailey, M. F. (2009). Recent advances in the study of gynodioecy: The interface of theory and empiricism. Annals of Botany, 104(4), 611–620. https://doi.org/ 10.1093/aob/mcp141 PubMed DOI PMC
Meyer, B. J. (2022). Mechanisms of sex determination and X-chromosome dosage compensation. Genetics, 220(2), iyab197. https://doi.org/ 10.1093/genetics/iyab197 PubMed DOI PMC
Ming, R., Bendahmane, A., & Renner, S. S. (2011). Sex chromosomes in land plants. Annual Review of Plant Biology, 62, 485–514. https://doi.org/ 10.1146/annurev-arplant-042110-103914 PubMed DOI
Mirzaghaderi, G., & Hörandl, E. (2016). The evolution of meiotic sex and its alternatives. Proceedings. Biological sciences/The Royal Society, 283(1838), 20161221. ). https://doi.org/ 10.1098/rspb.2016.1221 PubMed DOI PMC
Mizoguchi, B. A., & Valenzuela, N. (2016). Ecotoxicological perspectives of sex determination. Sexual Development, 10(1), 45–57. https://doi.org/ 10.1159/000444770 PubMed DOI
Mogensen, G. S. (1985). Illustrated moss flora of Arctic North America and Greenland (Vol. 17). Museum Tusculanum Press.
Morelli, M. W., Blackmon, H., & Hjelmen, C. E. (2022). Diptera and PubMed DOI PMC
Morgan, T. H. (1914). No crossing over in the male of DOI
Morgan-Richards, M., Trewick, S. A., & Stringer, I. A. N. (2010). Geographic parthenogenesis and the common tea-tree stick insect of New Zealand. Molecular Ecology, 19(6), 1227–1238. https://doi.org/ 10.1111/j.1365-294x.2010.04542.x PubMed DOI
Mork, L., Czerwinski, M., & Capel, B. (2014). Predetermination of sexual fate in a turtle with temperature-dependent sex determination. Developmental Biology, 386(1), 264–271. https://doi.org/ 10.1016/j.ydbio.2013.11.026 PubMed DOI
Muller, H. J. (1964). The relation of recombination to mutational advance. Mutation Research, 106, 2–9. https://doi.org/ 10.1016/0027-5107(64)90047-8 PubMed DOI
Mulugeta, E., Wassenaar, E., Sleddens-Linkels, E., … Baarends, W. M. (2016). Genomes of Ellobius species provide insight into the evolutionary dynamics of mammalian sex chromosomes. Genome Research, 26(9), 1202–1210. PubMed PMC
Myosho, T., Takehana, Y., Hamaguchi, S., & Sakaizumi, M. (2015). Turnover of sex chromosomes in celebensis group medaka fishes. G3 (Bethesda, Md.), 5(12), 2685–2691. https://doi.org/ 10.1534/g3.115.021543 PubMed DOI PMC
Nagpure, N. S., Pathak, A. K., Pati, R., … Murali, S. (2016). Fish Karyome version 2.1: A chromosome database of fishes and other aquatic organisms. Database, 2016, baw012. https://doi.org/ 10.1093/database/baw012 PubMed DOI PMC
Neaves, W. B., & Baumann, P. (2011). Unisexual reproduction among vertebrates. Trends in Genetics: TIG, 27(3), 81–88. https://doi.org/ 10.1016/j.tig.2010.12.002 PubMed DOI
Neiman, M., Meirmans, P. G., Schwander, T., & Meirmans, S. (2018). Sex in the wild: How and why field-based studies contribute to solving the problem of sex. Evolution; International Journal of Organic Evolution, 72(6), 1194–1203. https://doi.org/ 10.1111/evo.13485 PubMed DOI
Neiman, M., Sharbel, T. F., & Schwander, T. (2014). Genetic causes of transitions from sexual reproduction to asexuality in plants and animals. Journal of Evolutionary Biology, 27(7), 1346–1359. https://doi.org/ 10.1111/jeb.12357 PubMed DOI
Nemesházi, E., & Bókony, V. (2022). Asymmetrical sex reversal: Does the type of heterogamety predict propensity for sex reversal? BioEssays, 44(7), e2200039. https://doi.org/ 10.1002/bies.202200039 PubMed DOI
Nemesházi, E., & Bókony, V. (2023). HerpSexDet: The herpetological database of sex determination and sex reversal. Scientific Data, 10(1), 377. https://doi.org/ 10.1038/s41597-023-02268-y PubMed DOI PMC
Nemesházi, E., Gál, Z., Ujhegyi, N., ...Bókony, V. (2020). Novel genetic sex markers reveal high frequency of sex reversal in wild populations of the agile frog ( PubMed DOI
Nemesházi, E., Kövér, S., & Bókony, V. (2021). Evolutionary and demographic consequences of temperature-induced masculinization under climate warming: the effects of mate choice. BMC Ecology and Evolution, 21(1), 16. https://doi.org/ 10.1186/s12862-021-01747-3 PubMed DOI PMC
Nguyen, A. H., & Bachtrog, D. (2021). Toxic Y chromosome: Increased repeat expression and age-associated heterochromatin loss in male PubMed DOI PMC
Nieuwenhuis, B. P. S., & James, T. Y. (2016). The frequency of sex in fungi. Philosophical Transactions of the Royal Society of London, Series B: Biological Sciences, 371(1706), 20150540. https://doi.org/ 10.1098/rstb.2015.0540. PubMed DOI PMC
Nigon, V. (1949). Les modalités de la reproduction et le déterminisme du sexe chez quelques nématodes libres. Annales des Sciences Naturelles - Zoologie et Biologie Animale, 2, 1–132.
Normark, B. B. (2003). The evolution of alternative genetic systems in insects. Annual Review of Entomology, 48(1), 397–423. https://doi.org/ 10.1146/annurev.ento.48.091801.112703 PubMed DOI
Normark, B. B. (2004). Haplodiploidy as an outcome of coevolution between male-killing cytoplasmic elements and their hosts. Evolution; International Journal of Organic Evolution, 58(4), 790–798. https://doi.org/ 10.1111/j.0014-3820.2004.tb00412.x PubMed DOI
Núñez, O. (1962). Cytology of collembola. Nature, 194(4832), 946–947. https://doi.org/ 10.1038/194946a0 DOI
Okada, S., Sone, T., Fujisawa, M., … Ohyama, K. (2001). The Y chromosome in the liverwort PubMed DOI PMC
Otto, S. P. (2009). The evolutionary enigma of sex. The American Naturalist, 174(Suppl 1), S1–S14. https://doi.org/ 10.1086/599084 PubMed DOI
Otto, S. P. (2021). Selective interference and the evolution of sex. The Journal of Heredity, 112(1), 9–18. https://doi.org/ 10.1093/jhered/esaa026 PubMed DOI
Oyarzún, P. A., Nuñez, J. J., Toro, J. E., & Gardner, J. P. A. (2020). Trioecy in the marine mussel DOI
Öztoprak, H., Gao, S., Guiglielmoni, N., … Bast, J. (2023). Haplotype independence contributes to evolvability in the long-term absence of sex in a mite. bioRxiv 556471. https://doi.org/ 10.1101/2023.09.07.556471, October 20, 2023, preprint: not peer reviewed. DOI
Pan, Q., Feron, R., Yano, A., … Guiguen, Y. (2019). Identification of the master sex determining gene in Northern pike ( PubMed DOI PMC
Pannell, J. R. (2015). Evolution of the mating system in colonizing plants. Molecular Ecology, 24(9), 2018–2037. https://doi.org/ 10.1111/mec.13087 PubMed DOI
Pannell, J. R., Auld, J. R., Brandvain, Y., … Winn, A. A. (2015). The scope of Baker’s law. The New Phytologist, 208(3), 656–667. https://doi.org/ 10.1111/nph.13539 PubMed DOI
Pannell, J. R., & Jordan, C. Y. (2022). Evolutionary transitions between hermaphroditism and dioecy in animals and plants. Annual Review of Ecology, Evolution, and Systematics, 53(1), 183–201. https://doi.org/ 10.1146/annurev-ecolsys-102320-085812 DOI
Parker, G. A. (1978). Selection on non-random fusion of gametes during the evolution of anisogamy. Journal of Theoretical Biology, 73(1), 1–28. https://doi.org/ 10.1016/0022-5193(78)90177-7 PubMed DOI
Pellicer, J., & Leitch, I. J. (2020). The plant DNA C-values database (release 7.1): An updated online repository of plant genome size data for comparative studies. The New Phytologist, 226(2), 301–305. https://doi.org/ 10.1111/nph.16261 PubMed DOI
Pennell, M. W., Kirkpatrick, M., Otto, S. P., … Kitano, J. (2015). Y fuse? Sex chromosome fusions in fishes and reptiles. PLoS Genetics, 11(5), e1005237. https://doi.org/ 10.1371/journal.pgen.1005237 PubMed DOI PMC
Pennell, M. W., Mank, J. E., & Peichel, C. L. (2018). Transitions in sex determination and sex chromosomes across vertebrate species. Molecular Ecology, 27(19), 3950–3963. https://doi.org/ 10.1111/mec.14540 PubMed DOI PMC
Peona, V., Palacios-Gimenez, O. M., Blommaert, J., … Suh, A. (2021). The avian W chromosome is a refugium for endogenous retroviruses with likely effects on female-biased mutational load and genetic incompatibilities. Philosophical Transactions of the Royal Society of London, Series B: Biological Sciences, 376(1833), 20200186. https://doi.org/ 10.1098/rstb.2020.0186 PubMed DOI PMC
Perkins, R. D., Gamboa, J. R., Jonika, M. M., … Blackmon, H. (2019). A database of amphibian karyotypes. Chromosome Research, 27(4), 313–319. https://doi.org/ 10.1007/s10577-019-09613-1 PubMed DOI
Perrin, N. (2016). Random sex determination: When developmental noise tips the sex balance. BioEssays, 38(12), 1218–1226. https://doi.org/ 10.1002/bies.201600093 PubMed DOI
The Phaeoexplorer project. (2024).
Phillips, B. C., Rodrigues, N., Jansen van Rensburg, A., & Perrin, N. (2020). Phylogeography, more than elevation, accounts for sex chromosome differentiation in Swiss populations of the common frog ( PubMed DOI
Pickup, M., Brandvain, Y., Fraïsse, C., … Field, D. L. (2019). Mating system variation in hybrid zones: Facilitation, barriers and asymmetries to gene flow. The New Phytologist, 224(3), 1035–1047. https://doi.org/ 10.1111/nph.16180 PubMed DOI PMC
Pickup, M., Brandvain, Y., Fraisse, C., ... Field, D. L. (2020). PubMed DOI PMC
Piferrer, F., Blázquez, M., Navarro, L., & González, A. (2005). Genetic, endocrine, and environmental components of sex determination and differentiation in the European sea bass ( PubMed DOI
Pinto, B. J., Gamble, T., Smith, C. H., & Wilson, M. A. (2023). A lizard is never late: Squamate genomics as a recent catalyst for understanding sex chromosome and microchromosome evolution. The Journal of Heredity, 114(5), 445–458. https://doi.org/ 10.1093/jhered/esad023 PubMed DOI PMC
Pinto, B. J., Keating, S. E., Nielsen, S. V., … Gamble, T. (2022). Chromosome-level genome assembly reveals dynamic sex chromosomes in neotropical leaf-litter geckos (Sphaerodactylidae: PubMed DOI PMC
Pla, S., Benvenuto, C., Capellini, I., & Piferrer, F. (2022). Switches, stability and reversals in the evolutionary history of sexual systems in fish. Nature Communications, 13(1), 3029. https://doi.org/ 10.1038/s41467-022-30419-z PubMed DOI PMC
Pokorná, M., Altmanová, M., & Kratochvíl, L. (2014). Multiple sex chromosomes in the light of female meiotic drive in amniote vertebrates. Chromosome Research, 22(1), 35–44. https://doi.org/ 10.1007/s10577-014-9403-2 PubMed DOI
Ponnikas, S., Sigeman, H., Abbott, J. K., & Hansson, B. (2018). Why do sex chromosomes stop recombining? Trends in Genetics: TIG, 34(7), 492–503. https://doi.org/ 10.1016/j.tig.2018.04.001 PubMed DOI
Ramesh, M. A., Malik, S. -B., & Logsdon, J. M.Jr (2005). A phylogenomic inventory of meiotic genes; evidence for sex in PubMed DOI
Rao, S. S. P., Huntley, M. H., Durand, N. C., … Aiden, E. L. (2014). A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell, 159(7), 1665–1680. PubMed PMC
Razanajatovo, M., Maurel, N., Dawson, W., … van Kleunen, M. (2016). Plants capable of selfing are more likely to become naturalized. Nature Communications, 7, 13313. https://doi.org/ 10.1038/ncomms13313 PubMed DOI PMC
Renner, S. S. (2014). The relative and absolute frequencies of angiosperm sexual systems: Dioecy, monoecy, gynodioecy, and an updated online database. American Journal of Botany, 101(10), 1588–1596. https://doi.org/ 10.3732/ajb.1400196 PubMed DOI
Renner, S. S., & Müller, N. A. (2021). Plant sex chromosomes defy evolutionary models of expanding recombination suppression and genetic degeneration. Nature Plants, 7(4), 392–402. https://doi.org/ 10.1038/s41477-021-00884-3 PubMed DOI
Rens, W., O’Brien, P. C. M., Grützner, F., … Ferguson-Smith, M. A. (2007). The multiple sex chromosomes of platypus and echidna are not completely identical and several share homology with the avian Z. Genome Biology, 8(11), R243. PubMed PMC
Rice, A., Glick, L., Abadi, S., … Mayrose, I. (2015). The Chromosome Counts Database (CCDB) – A community resource of plant chromosome numbers. The New Phytologist, 206(1), 19–26. https://doi.org/ 10.1111/nph.13191 PubMed DOI
Richardson, S. S. (2013). Sex itself: The search for male & female in the human genome. University of Chicago Press.
Rifkin, J. L., Beaudry, F. E. G., Humphries, Z., … Wright, S. I. (2020). Widespread recombination suppression facilitates plant sex chromosome evolution. Molecular Biology and Evolution, 38(3), 1018–1030. https://doi.org/ 10.1093/molbev/msaa271 PubMed DOI PMC
Rifkin, J. L., Hnatovska, S., Yuan, M., … Wright, S. I. (2022). Recombination landscape dimorphism and sex chromosome evolution in the dioecious plant PubMed DOI PMC
Rodrigues, N., Studer, T., Dufresnes, C., & Perrin, N. (2018). Sex-chromosome recombination in common frogs brings water to the fountain-of-youth. Molecular Biology and Evolution, 35(4), 942–948. https://doi.org/ 10.1093/molbev/msy008 PubMed DOI
Rodríguez-González, R., Gutiérrez, M. L., Fuentes, I., … Garcia, S. (2023). Release 4.0 of the Plant rDNA database: A database on plant ribosomal DNA loci number, their position, and organization: An information source for comparative cytogenetics. Methods in Molecular Biology (Clifton, N.J.), 2703, 237–245. https://doi.org/ 10.1007/978-1-0716-3389-2_18 PubMed DOI
Román-Palacios, C., Medina, C. A., Zhan, S. H., & Barker, M. S. (2021). Animal chromosome counts reveal a similar range of chromosome numbers but with less polyploidy in animals compared to flowering plants. Journal of Evolutionary Biology, 34(8), 1333–1339. https://doi.org/ 10.1111/jeb.13884 PubMed DOI
Ross, L., Blackmon, H., Lorite, P., … Hardy, N. B. (2015). Recombination, chromosome number and eusociality in the Hymenoptera. Journal of Evolutionary Biology, 28(1), 105–116. https://doi.org/ 10.1111/jeb.12543 PubMed DOI PMC
Ruiz-Herrera, A., & Waters, P. D. (2022). Fragile, unfaithful and persistent Ys—On how meiosis can shape sex chromosome evolution. Heredity, 129(1), 22–30. https://doi.org/ 10.1038/s41437-022-00532-2 PubMed DOI PMC
Sabath, N., Itescu, Y., Feldman, A., … Valenzuela, N. (2016). Sex determination, longevity, and the birth and death of reptilian species. Ecology and Evolution, 6(15), 5207–5220. https://doi.org/ 10.1002/ece3.2277 PubMed DOI PMC
Sacchi, B., Humphries, Z., Kruzlicová, J., … Wright, S. I. (2024). Phased assembly of Neo-sex chromosomes reveals extensive Y degeneration and rapid genome evolution in PubMed DOI PMC
Sahara, K., Yoshido, A., & Traut, W. (2012). Sex chromosome evolution in moths and butterflies. Chromosome Research, 20(1), 83–94. https://doi.org/ 10.1007/s10577-011-9262-z PubMed DOI
Sardell, J. M., & Kirkpatrick, M. (2020). Sex differences in the recombination landscape. The American Naturalist, 195(2), 361–379. https://doi.org/ 10.1086/704943 PubMed DOI PMC
Sarre, S. D., Georges, A., & Quinn, A. (2004). The ends of a continuum: Genetic and temperature-dependent sex determination in reptiles. BioEssays, 26(6), 639–645. https://doi.org/ 10.1002/bies.20050 PubMed DOI
Sasson, D. A., & Ryan, J. F. (2017). A reconstruction of sexual modes throughout animal evolution. BMC Evolutionary Biology, 17(1), 242. https://doi.org/ 10.1186/s12862-017-1071-3 PubMed DOI PMC
Satomura, K., Osada, N., & Endo, T. (2019). Achiasmy and sex chromosome evolution. Ecological Genetics and Genomics, 13, 100046. https://doi.org/ 10.1016/j.egg.2019.100046 DOI
Saunders, P. A., & Veyrunes, F. (2021). Unusual mammalian sex determination systems: a cabinet of curiosities. Genes, 12(11), 1770. https://doi.org/ 10.3390/genes12111770 PubMed DOI PMC
Schärer, L., Rowe, L., & Arnqvist, G. (2012). Anisogamy, chance and the evolution of sex roles. Trends in Ecology & Evolution, 27(5), 260–264. https://doi.org/ 10.1016/j.tree.2011.12.006 PubMed DOI
Schartl, M., Georges, A., & Marshall Graves, J. A. (2023). Polygenic sex determination in vertebrates – Is there any such thing? Trends in Genetics: TIG, 39(4), 242–250. https://doi.org/ 10.1016/j.tig.2022.12.002 PubMed DOI PMC
Schlupp, I. (2005). The evolutionary ecology of gynogenesis. Annual Review of Ecology, Evolution, and Systematics, 36(1), 399–417. https://doi.org/ 10.1146/annurev.ecolsys.36.102003.152629 DOI
Schmid, M., Nanda, I., Steinlein, C., ... Haaf, T. (1991). Sex-determining mechanisms and sex chromosomes in amphibia. In Green D. M., & Sessions S. K. (Eds,), Amphibian cytogenetics and evolution (pp. 393–430). Academic Press Inc.
Schneider, M. C., Mattos, V. F., & Cella, D. M. (2024). The scorpion cytogenetic database. www.arthropodacytogenetics.bio.br/scorpiondatabase
Schroeder, A. L., Metzger, K. J., Miller, A., & Rhen, T. (2016). A novel candidate gene for temperature-dependent sex determination in the common snapping turtle. Genetics, 203(1), 557–571. https://doi.org/ 10.1534/genetics.115.182840 PubMed DOI PMC
Schultz, R. J. (1969). Hybridization, unisexuality, and polyploidy in the teleost DOI
Schwaegerle, K. E. (2005). Quantitative genetic analysis of plant growth: Biases arising from vegetative propagation. Evolution; International Journal of Organic Evolution, 59(6), 1259–1267. PubMed
Schwander, T., Henry, L., & Crespi, B. J. (2011). Molecular evidence for ancient asexuality in timema stick insects. Current Biology: CB, 21(13), 1129–1134. https://doi.org/ 10.1016/j.cub.2011.05.026 PubMed DOI
Schwander, T., & Oldroyd, B. P. (2016). Androgenesis: Where males hijack eggs to clone themselves. Philosophical Transactions of the Royal Society of London, Series B: Biological Sciences, 371(1706), 20150534. https://doi.org/ 10.1098/rstb.2015.0534 PubMed DOI PMC
Schwanz, L. E., Georges, A., Holleley, C. E., & Sarre, S. D. (2020). Climate change, sex reversal and lability of sex-determining systems. Journal of Evolutionary Biology, 33(3), 270–281. https://doi.org/ 10.1111/jeb.13587 PubMed DOI
Sember, A., Nguyen, P., Perez, M. F., … Cioffi, M. de B (2021). Multiple sex chromosomes in teleost fishes from a cytogenetic perspective: state of the art and future challenges. Philosophical Transactions of the Royal Society B: Biological Sciences, 376(1833), 20200098. https://doi.org/ 10.1098/rstb.2020.0098 PubMed DOI PMC
Shanahan, C. M., & Hayman, D. L. (1990). Synaptonemal complex formation in male scorpions exhibiting achiasmate meiosis and structural heterozygosity. Genome, 33(6), 914–926. https://doi.org/ 10.1139/g90-138 DOI
Shi, M. -W., Zhang, N. -A., Shi, C. -P., … Chen, Z. -X. (2019). SAGD: A comprehensive sex-associated gene database from transcriptomes. Nucleic Acids Research, 47(D1), D835–D840. https://doi.org/ 10.1093/nar/gky1040 PubMed DOI PMC
Smith, J. J., Timoshevskiy, V. A., & Saraceno, C. (2021). Programmed DNA elimination in vertebrates. Annual Review of Animal Biosciences, 9(1), 173–201. https://doi.org/ 10.1146/annurev-animal-061220-023220 PubMed DOI PMC
Sochorová, J., Garcia, S., Gálvez, F., … Kovařík, A. (2018). Evolutionary trends in animal ribosomal DNA loci: Introduction to a new online database. Chromosoma, 127(1), 141–150. https://doi.org/ 10.1007/s00412-017-0651-8 PubMed DOI PMC
Speijer, D., Lukeš, J., & Eliáš, M. (2015). Sex is a ubiquitous, ancient, and inherent attribute of eukaryotic life. Proceedings of the National Academy of Sciences of the United States of America, 112(29), 8827–8834. https://doi.org/ 10.1073/pnas.1501725112 PubMed DOI PMC
Šťáhlavský, F. (2022).
Stevens, N. M. (1905). Studies in spermatogenesis (Vol. 1). Carnegie Institution of Washington.
Stevens, N. M. (1906). Studies in spermatogenesis (Part 2) (Vol. 2). Carnegie Institution of Washington.
Stöck, M., Dedukh, D., Reifová, R., … Janko, K. (2021a). Sex chromosomes in meiotic, hemiclonal, clonal and polyploid hybrid vertebrates: Along the “extended speciation continuum.”. Philosophical Transactions of the Royal Society of London, Series B: Biological Sciences, 376(1833), 20200103. https://doi.org/ 10.1098/rstb.2020.0103 PubMed DOI PMC
Stöck, M., Kratochvíl, L., Kuhl, H., … Guiguen, Y. (2021b). A brief review of vertebrate sex evolution with a pledge for integrative research: Towards “sexomics. Philosophical Transactions of the Royal Society of London, Series B: Biological Sciences, 376(1832), 20200426. https://doi.org/ 10.1098/rstb.2020.0426 PubMed DOI PMC
Sylvester, T., Hjelmen, C. E., Hanrahan, S. J., … Blackmon, H. (2020). Lineage-specific patterns of chromosome evolution are the rule not the exception in Polyneoptera insects. Proceedings Biological Sciences, 287(1935), 20201388. https://doi.org/ 10.1098/rspb.2020.1388 PubMed DOI PMC
Thomas, C. G., Woodruff, G. C., & Haag, E. S. (2012). Causes and consequences of the evolution of reproductive mode in PubMed DOI PMC
Thuy, B., Numberger-Thuy, L. D., Härer, J., … Schweigert, G. (2024). Fossil evidence for the ancient link between clonal fragmentation, six-fold symmetry and an epizoic lifestyle in asterozoan echinoderms. Proceedings Biological Sciences, 291(2023), 20232832. https://doi.org/ 10.1098/rspb.2023.2832 PubMed DOI PMC
Tilquin, A., & Kokko, H. (2016). What does the geography of parthenogenesis teach us about sex? Philosophical Transactions of the Royal Society of London, Series B: Biological Sciences, 371(1706), 20150538. ). https://doi.org/ 10.1098/rstb.2015.0538 PubMed DOI PMC
Titley, M. A., Snaddon, J. L., & Turner, E. C. (2017). Scientific research on animal biodiversity is systematically biased towards vertebrates and temperate regions. PLoS One, 12(12), e0189577. https://doi.org/ 10.1371/journal.pone.0189577 PubMed DOI PMC
Toups, M. A., & Vicoso, B. (2023). The X chromosome of insects likely predates the origin of class Insecta. Evolution; International Journal of Organic Evolution, 77(11), 2504–2511. https://doi.org/ 10.1093/evolut/qpad169 PubMed DOI
Tree of Sex Consortium (2014). Tree of Sex: A database of sexual systems. Scientific Data, 1, 140015. PubMed PMC
Tsurusaki, N., Svojanovská, H., Schöenhofer, A., & Šťáhlavský, F. (2022).
Turelli, M., & Orr, H. A. (1995). The dominance theory of Haldane’s rule. Genetics, 140(1), 389–402. https://doi.org/ 10.1093/genetics/140.1.389 PubMed DOI PMC
Turner, L. M., & Harr, B. (2014). Genome-wide mapping in a house mouse hybrid zone reveals hybrid sterility loci and Dobzhansky-Muller interactions. eLife, 3, 3. https://doi.org/ 10.7554/eLife.02504 PubMed DOI PMC
Valenzuela, N., & Lance, V. (2004). Temperature dependent sex determination in vertebrates. Smithsonian Books.
Valenzuela, N., Literman, R., Neuwald, J. L., … Litzgus, J. D. (2019). Extreme thermal fluctuations from climate change unexpectedly accelerate demographic collapse of vertebrates with temperature-dependent sex determination. Scientific Reports, 9(1), 1–11. PubMed PMC
Van Dijk, P. (2009). Apomixis: Basics for non -botanists. In Schön, D. I, Martens, K. (Eds.), Lost sex (pp. 47–62). Springer Netherlands.
Vara, C., Paytuví-Gallart, A., Cuartero, Y., … Ruiz-Herrera, A. (2019). Three-dimensional genomic structure and cohesin occupancy correlate with transcriptional activity during spermatogenesis. Cell Reports, 28(2), 352–367.e9. https://doi.org/ 10.1016/j.celrep.2019.06.037 PubMed DOI PMC
Vara, C., Paytuví-Gallart, A., Cuartero, Y., … Ruiz-Herrera, A. (2021). The impact of chromosomal fusions on 3D genome folding and recombination in the germ line. Nature Communications, 12(1), 2981. https://doi.org/ 10.1038/s41467-021-23270-1 PubMed DOI PMC
Veltsos, P., Shinde, S., & Ma, W. -J. (2024). Sex chromosome evolution: The classical paradigm and so much beyond. arXiv, http://arxiv.org/abs/2408.12034, August 2024, preprint: not peer reviewed.
Vicoso, B. (2019). Molecular and evolutionary dynamics of animal sex-chromosome turnover. Nature Ecology & Evolution, 3(12), 1632–1641. https://doi.org/ 10.1038/s41559-019-1050-8 PubMed DOI
Vicoso, B., & Bachtrog, D. (2015). Numerous transitions of sex chromosomes in Diptera. PLoS Biology, 13(4), e1002078. https://doi.org/ 10.1371/journal.pbio.1002078 PubMed DOI PMC
Villarreal, J. C., & Renner, S. S. (2013). Correlates of monoicy and dioicy in hornworts, the apparent sister group to vascular plants. BMC Evolutionary Biology, 13(1), 239. https://doi.org/ 10.1186/1471-2148-13-239 PubMed DOI PMC
Wang, J., & Davis, R. E. (2014). Programmed DNA elimination in multicellular organisms. Current Opinion in Genetics & Development, 27, 26–34. https://doi.org/ 10.1016/j.gde.2014.03.012 PubMed DOI PMC
Wang, J., Tao, W., Kocher, T. D., & Wang, D. (2024). Sex chromosome turnover and biodiversity in fishes. Journal of genetics and genomics = Yi chuan xue bao, 51(12), 1351–1360. https://doi.org/ 10.1016/j.jgg.2024.08.008 PubMed DOI
Weber, C., Zhou, Y., Lee, J. G., … Capel, B. (2020). Temperature-dependent sex determination is mediated by pSTAT3 repression of Kdm6b. Science, 368(6488), 303–306. https://doi.org/ 10.1126/science.aaz4165 PubMed DOI
Weeks, S. C. (2012). The role of androdioecy and gynodioecy in mediating evolutionary transitions between dioecy and hermaphroditism in the animalia: Reproductive transitions in the animalia. Evolution; International Journal of Organic Evolution, 66(12), 3670–3686. https://doi.org/ 10.1111/j.1558-5646.2012.01714.x PubMed DOI
Weeks, S. C., Benvenuto, C., & Reed, S. K. (2006). When males and hermaphrodites coexist: A review of androdioecy in animals. Integrative and Comparative Biology, 46(4), 449–464. https://doi.org/ 10.1093/icb/icj048 PubMed DOI
Weir, W., Capewell, P., Foth, B., … MacLeod, A. (2016). Population genomics reveals the origin and asexual evolution of human infective trypanosomes. eLife, 5, e11473. https://doi.org/ 10.7554/eLife.11473 PubMed DOI PMC
Werren, J. H., Baldo, L., & Clark, M. E. (2008). PubMed DOI
Westneat, D. F., & Craig Sargent, R. (1996). Sex and parenting: The effects of sexual conflict and parentage on parental strategies. Trends in Ecology & Evolution, 11(2), 87–91. https://doi.org/ 10.1016/0169-5347(96)81049-4 PubMed DOI
White, M. J. D. (1945). Animal cytology and evolution (3rd ed.). Cambridge University Press.
Whiteley, S. L., Georges, A., Weisbecker, V., … Holleley, C. E. (2021). Ovotestes suggest cryptic genetic influence in a reptile model for temperature-dependent sex determination. Proceedings Biological Sciences, 288(1943), 20202819. https://doi.org/ 10.1098/rspb.2020.2819 PubMed DOI PMC
Whiteley, S. L., Wagner, S., Holleley, C. E., … Georges, A. (2022). Truncated jarid2 and kdm6b transcripts are associated with temperature-induced sex reversal during development in a dragon lizard. Science Advances, 8(16), eabk0275. https://doi.org/ 10.1126/sciadv.abk0275 PubMed DOI PMC
Whiteley, S. L., Weisbecker, V., Georges, A., … Holleley, C. E. (2018). Developmental asynchrony and antagonism of sex determination pathways in a lizard with temperature-induced sex reversal. Scientific Reports, 8(1), 14892. https://doi.org/ 10.1038/s41598-018-33170-y PubMed DOI PMC
Wiggins, J. M., Santoyo-Brito, E., Scales, J. B., & Fox, S. F. (2020). Gene dose indicates presence of sex chromosomes in collared lizards ( DOI
Wright, C. J., Stevens, L., Mackintosh, A., … Blaxter, M. (2024). Comparative genomics reveals the dynamics of chromosome evolution in Lepidoptera. Nature Ecology & Evolution, 8(4), 777–790. https://doi.org/ 10.1038/s41559-024-02329-4 PubMed DOI PMC
Wright, S. I., Kalisz, S., & Slotte, T. (2013). Evolutionary consequences of self-fertilization in plants. Proceedings Biological Sciences, 280(1760), 20130133. https://doi.org/ 10.1098/rspb.2013.0133 PubMed DOI PMC
Ye, Z., Bishop, T., Wang, Y., … Lynch, M. (2023). Evolution of sex determination in crustaceans. Marine Life Science & Technology, 5(1), 1–11. https://doi.org/ 10.1007/s42995-023-00163-4 PubMed DOI PMC
Yusa, Y. (2007). Causes of variation in sex ratio and modes of sex determination in the Mollusca—An overview. American Malacological Bulletin, 23(1), 89–98. https://doi.org/ 10.4003/0740-2783-23.1.89 DOI
Zaccanti, F., & Farne’, P. (1986). Observations on fissiparity and spontaneous regeneration in two strains of agamic planarians ( DOI
Zaidem, M. L., Groen, S. C., & Purugganan, M. D. (2019). Evolutionary and ecological functional genomics, from lab to the wild. The Plant Journal: for Cell and Molecular Biology, 97(1), 40–55. https://doi.org/ 10.1111/tpj.14167 PubMed DOI
Zayed, A., & Packer, L. (2005). Complementary sex determination substantially increases extinction proneness of haplodiploid populations. Proceedings of the National Academy of Sciences of the United States of America, 102(30), 10742–10746. https://doi.org/ 10.1073/pnas.0502271102 PubMed DOI PMC