Making it on their own: sperm-dependent hybrid fishes (Cobitis) switch the sexual hosts and expand beyond the ranges of their original sperm donors
Jazyk angličtina Země Velká Británie, Anglie Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
18508748
PubMed Central
PMC2606746
DOI
10.1098/rstb.2008.0059
PII: UN6Q26852476Q204
Knihovny.cz E-zdroje
- MeSH
- fylogeneze MeSH
- genotyp MeSH
- hybridizace genetická * MeSH
- máloostní genetika MeSH
- mitochondriální DNA genetika MeSH
- rozmnožování genetika fyziologie MeSH
- spermie fyziologie MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- mitochondriální DNA MeSH
Interspecific hybridization may result in asexual hybrid lineages that reproduce via parthenogenesis. Contrary to true parthenogens, sperm-dependent asexuals (gynogens and hybridogens) are restricted to the range of bisexual species, generally the parental taxa, by their need for a sperm donor. It has been documented that asexual lineages may rarely use sperm from a non-parental species or even switch a host. The available literature reports do not allow distinguishing, between whether such host switches arise by the expansion of asexuals out of their parental's range (and into that of another's) or by the local extinction of a parental population followed by a host switch. The present study combines new and previously collected data on the distribution and history of gynogenetic spined loaches (Cobitis) of hybrid origin. We identified at least three clonal lineages that have independently switched their sperm dependency to different non-parental Cobitis species, and in cases incorporated their genomes. Our current knowledge of European Cobitis species and their hybrids suggests that this pattern most probably results from the expansion of gynogenetic lineages into new areas. Such expansion was independent of the original parental species. This suggests that sperm dependence is not as restrictive to geographical expansion when compared with true parthenogenesis as previously thought.
Zobrazit více v PubMed
Alves M.J, Coelho M.M, Collares-Pereira M.J, Dowling T.E. Maternal ancestry of the Rutilus alburnoides complex (Teleostei, Cyprinidae) as determined by analysis of cytochrome b sequences. Evolution. 1997;51:1584–1592. doi:10.2307/2411210 PubMed DOI
Alves M.J, Coelho M.M, Collares-Pereira M.J. Evolution on action through hybridization and polyploidy in an Iberian freshwater fish: a genetic review. Genetica. 2001;111:375–385. doi:10.1023/A:1013783029921 PubMed DOI
Arano B, Llorente G.A, Herrero P, Sanchiz B. Current studies on Iberian water frogs. Zool. Pol. 1995;39:365–375.
Arnold M.L. Oxford University Press; Oxford, UK: 1997. Natural hybridization and evolution.
Baker H.G. Self-compatibility and establishment after ‘long-distance’ dispersal. Evolution. 1955;9:347–348. doi:10.2307/2405656 DOI
Baker H.G. Characteristics and modes of origin of weeds. In: Baker H.G, Stebbins G.L, editors. The genetics of colonizing species. Academic Press; New York, NY: 1965. pp. 147–168.
Beukeboom L.W, Vrijenhoek R.C. Evolutionary genetics of sperm-dependent parthenogenesis. J. Evol. Biol. 1998;11:755–782. doi:10.1007/s000360050117 DOI
Bohlen J, Ráb P. Species and hybrid richness in spined loaches of the genus Cobitis (Teleostei: Cobitidae), with a checklist of European forms and suggestions for conservation. J. Fish Biol. 2001;59:75–89. doi:10.1006/jfbi.2001.1751 DOI
Bohlen J, Perdices A, Doadrio I, Economidis P.S. Vicariance, colonisation, and fast local speciation in Asia Minor and the Balkans as revealed from the phylogeny of spined loaches (Osteichthyes; Cobitidae) Mol. Phylogenet. Evol. 2006;39:552–561. doi:10.1016/j.ympev.2005.12.007 PubMed DOI
Chow S, Hazama K. Universal PCR primers for S7 ribosomal protein gene introns in fish. Mol. Ecol. 1998;7:1247–1263. doi:10.1046/j.1365-294x.1998.00406.x PubMed DOI
Clement M, Posada D, Crandall K.A. TCS: a computer program to estimate gene genealogies. Mol. Ecol. 2000;9:1657–1659. doi:10.1046/j.1365-294x.2000.01020.x PubMed DOI
Culling M.A, Janko K, Boron A, Vasil'ev V.P, Cote I.M, Hewitt G.M. European colonization by the spined loach (Cobitis taenia) from Ponto-Caspian refugia based on mitochondrial DNA variation. Mol. Ecol. 2006;15:173–190. doi:10.1111/j.1365-294X.2005.02790.x PubMed DOI
Cunha C, Coelho M.M, Carmona J.A, Doadrio I. Phylogeographical insights into the origins of the Squalius alburnoides complex via multiple hybridization events. Mol. Ecol. 2004;13:2807–2817. doi:10.1111/j.1365-294X.2004.02283.x PubMed DOI
Dawley R.M. An introduction to unisexual vertebrates. In: Dawley R.M, Bogart J.P, editors. Evolution and ecology of unisexual vertebrates. New York State Museum; Albany, NY: 1989. pp. 1–18.
Doncaster C.P, Pound G.E, Cox S.J. The ecological cost of sex. Nature. 2000;404:281–285. doi:10.1038/35005078 PubMed DOI
Engeler B, Reyer H.-U. Choosy females and indiscriminate males: mate choice in mixed populations of the water frogs Rana lessonae and Rana esculenta. Behav. Ecol. 2001;12:600–606. doi:10.1093/beheco/12.5.600 DOI
Gordo I, Navarro A, Charlesworth B. Muller's ratchet and the pattern of variation at a neutral locus. Genetics. 2002;161:835–848. PubMed PMC
Graf J.D, Karch F, Moreillon M.C. Biochemical variation in the Rana esculenta complex: a new hybrid form related to Rana perezi and Rana ridibunda. Experientia. 1977;33:1582–1584. doi:10.1007/BF01934010 PubMed DOI
Günther R. General remarks on the evolutionary genetics of the European water frog complex. Mitt. Zool. Mus. Berlin. 1979;55:7–11.
Hedges S.B, Bogart J.P, Maxon L.R. Ancestry of unisexual salamanders. Nature. 1992;356:708–710. doi:10.1038/356708a0 PubMed DOI
Hey J, Nielsen R. Multilocus methods for estimating population sizes, migration rates and divergence time, with applications to the divergence of Drosophila pseudoobscura and D. persimilis. Genetics. 2004;167:747–760. doi:10.1534/genetics.103.024182 PubMed DOI PMC
Holčík J, Žitňan R. On the expansion and origin of Carassius auratus in Czechoslovakia. Folia Zool. 1978;27:279–288.
Hotz H, Mancino G, Bucci-Innocenti S, Ragghianti M, Berger L, Uzzell T. Rana ridibunda varies geographically in inducing clonal gametogenesis in interspecific hybrids. J. Exp. Zool. 1985;236:199–210. doi:10.1002/jez.1402360210 DOI
Janko K, Kotlík P, Ráb P. Evolutionary history of asexual hybrid loaches (Cobitis: Teleostei) inferred from phylogenetic analysis of mitochondrial DNA variation. J. Evol. Biol. 2003;16:1280–1287. doi:10.1046/j.1420-9101.2003.00627.x PubMed DOI
Janko K, Kotlík P, Culling M.A, Ráb P. Ice age cloning—comparison of Quaternary evolutionary histories of sexual and clonal forms of European loaches (Cobitis; Teleostei) using the analysis of mitochondrial DNA variation. Mol. Ecol. 2005a;14:2991–3004. doi:10.1111/j.1365-294X.2005.02583.x PubMed DOI
Janko K, Vasil'ev V.P, Ráb P, Rábová M, Šlechtová V, Vasil'eva E.D. Genetic and morphological analyses of 50-chromosome spined loaches (Cobitis, Cobitidae, Pisces) from the Black Sea basin that are morphologically similar to C. taenia, with the description of a new species. Folia Zool. 2005b;54:405–420.
Janko K, Bohlen J, Lamatsch D, Flajšhans M, Kotlík P, Ráb P, Šlechtová V. Evidence for gynogenesis as the reproductive mode of hybrid loaches (Cobitis: Teleostei): on the evolution of polyploidy in asexual vertebrates. Genetica. 2007a;131:185–194. doi:10.1007/s10709-006-9130-5 PubMed DOI
Janko K, et al. Diversity of European spined loaches (genus Cobitis L.): an update of the geographic distribution of the Cobitis taenia hybrid complex with a description of new molecular tools for species determination. J. Fish. Biol. 2007b;71(Suppl.):387–408. doi:10.1111/j.1095-8649.2007.01663.x DOI
Kalous L, Šlechtová V, Jr, Bohlen J, Petrtýl M, Švátora M. First European record of Carassius langsdorfii from the Elbe basin. J. Fish Biol. 2007;70:132–138. doi:10.1111/j.1095-8649.2006.01290.x DOI
Kirkendall L.R. Sperm is a limiting resource in the pseudogamous bark beetle Ips acumiatus (Scolytidae) Oikos. 1990;57:80–87. doi:10.2307/3565740 DOI
Kuhner M.K. LAMARC: estimating population genetic parameters from molecular data. In: Salemi M, Vandamme A, editors. The phylogenetic handbook: a practical approach to DNA and protein phylogeny. Cambridge University Press; Cambridge, UK: 2003. pp. 379–399. ( doi:10.2277/052180390X) DOI
Kuhner M.K, Yamato J, Felsenstein J. Maximum likelihood estimation of population growth rates based on the coalescent. Genetics. 1998;149:429–434. PubMed PMC
Lamatsch D.K, Steinlein C, Schmid M, Schartl M. Noninvasive determination of genome size and ploidy level in fishes by flow cytometry: detection of triploid Poecilia formosa. Cytometry. 2000;39:91–95. doi:10.1002/(SICI)1097-0320(20000201)39:2<91::AID-CYTO1>3.0.CO;2-4 PubMed DOI
Lowcock L.A. Biogeography of hybrid complexes of Ambystoma: interpreting unisexual–bisexual genetic data in space and time. In: Dawley R.M, Bogart J.P, editors. Evolution and ecology of unisexual vertebrates. New York State Museum; Albany, NY: 1989. pp. 180–208.
Lusková V, Halačka K, Vetešník L, Lusk S. Changes of ploidy and sexuality status of ‘Carassius auratus’ population in the drainage area of the River Dyje (Czech Republic) Ecohydrol. Hydrobiol. 2004;4:165–171.
Mateos M, Vrijenhoek R.C. Ancient versus reticulate origin of a hemiclonal lineage. Evolution. 2002;56:985–992. doi:10.1554/0014-3820(2002)056[0985:AVROOA]2.0.CO;2 PubMed DOI
Mateos M, Vrijenhoek R.C. Independent origins of allotriploidy in the fish genus Poeciliopsis. J. Hered. 2005;96:1–8. doi:10.1093/jhered/esi010 PubMed DOI
Maynard Smith J. Cambridge University Press; Cambridge, UK: 1978. The evolution of sex.
Moritz C, Brown W.M, Densmore L.D, Wright J.W, Vyas D, Donnellan S, Adams M, Baverstock P. Genetic diversity and the dynamics of hybrid parthenogenesis in Cnemidophorus (Teiidae) and Heteronotia (Gekkonidae) In: Dawley R.M, Bogart J.P, editors. Evolution and ecology of unisexual vertebrates. New York State Museum; Albany, NY: 1989. pp. 268–280.
Niemeitz A, Kreutzfeldt R, Schartl M, Parzefall J, Schlupp I. Male mating behaviour of a molly, Poecilia latipunctata: a third host for the sperm-dependent Amazon molly, Poecilia formosa. Acta Ethol. 2002;5:45–49. doi:10.1007/s10211-002-0065-2 DOI
Peňáz M, Ráb P, Prokeš M. Cytological analysis, gynogenesis and early development of Carassius auratus gibelio. Acta Sci. Nat. Brno. 1979;13:1–33.
Pongratz N, Storhas M, Carranza S, Michiels N.K. Phylogeography of competing sexual and parthenogenetic forms of a freshwater flatworm: patterns and explanations. BMC Evol. Biol. 2003;3:1–15. doi:10.1186/1471-2148-3-23 PubMed DOI PMC
Pound G.E, Doncaster C.P, Cox S.J. A Lotka–Volterra model of coexistence between a sexual population and multiple asexual clones. J. Theor. Biol. 2002;217:535–545. doi:10.1006/jtbi.2002.3040 PubMed DOI
Ramos-Onsins S.E, Rozas J. Statistical properties of new neutrality tests against population growth. Mol. Biol. Evol. 2002;19:2092–2100. PubMed
Rogers A.R, Harpending H. Population-growth makes waves in the distribution of pairwise genetic-differences. Mol. Biol. Evol. 1992;9:552–569. PubMed
Rozas J, Rozas R. DnaSP version 3: an integrated program for molecular population genetics and molecular evolution analysis. Bioinformatics. 1999;15:174–175. doi:10.1093/bioinformatics/15.2.174 PubMed DOI
Saat T.V. Reproduction of the diploid and polyploid spinous loach (Cobitis, Teleostei). Oocyte maturation and fertilization in the triploid form. Sov. J. Dev. Biol. 1991;22:332–338.
Savidan Y. Apomixis: genetics and breeding. Plant Breed. Rev. 2000;18:13–86.
Schley D, Doncaster C.P, Sluckin T. Population models of sperm-dependent parthenogenesis. J. Theor. Biol. 2004;229:559–572. doi:10.1016/j.jtbi.2004.04.031 PubMed DOI
Schlupp I. The evolutionary ecology of gynogenesis. Annu. Rev. Ecol. Evol. Syst. 2005;36:399–417. doi:10.1146/annurev.ecolsys.36.102003.152629 DOI
Schlupp I, Parzefall J, Schartl M. Biogeography of the Amazon molly, Poecilia formosa. J. Biogeogr. 2002;29:1–6. doi:10.1046/j.1365-2699.2002.00651.x DOI
Schultz R.J. Gynogenesis and triploidy in the viviparous fish Poeciliopsis. Science. 1967;157:1564–1567. doi:10.1126/science.157.3796.1564 PubMed DOI
Seehausen O. Hybridization and adaptive radiation. Trends Ecol. Evol. 2004;19:198–207. doi:10.1016/j.tree.2004.01.003 PubMed DOI
Semlitsch R.D, Hotz H, Guex G.-D. Competition among tadpoles of coexisting hemiclones of hybridogenetic Rana esculenta: support for the frozen niche variation model. Evolution. 1997;51:1249–1261. doi:10.2307/2411054 PubMed DOI
Simon J.C, Delmotte F, Rispe C, Crease T. Phylogenetic relationships between parthenogens and their sexual relatives: the possible routes to parthenogenesis in animals. Biol. J. Linn. Soc. 2003;79:151–163. doi:10.1046/j.1095-8312.2003.00175.x DOI
Šlechtová V, Lusková V, Šlechta V, Lusk S, Halačka K, Bohlen J. Genetic differentiation of two diploid–polyploid complexes of spined loach, genus Cobitis (Cobitidae), in the Czech Republic, involving C. taenia, C. elongatoides and C. spp.: allozyme interpopulation and interspecific differences. Folia Zool. 2000;49(Suppl.):67–78.
Sousa-Santos C, Collares-Pereira M.J, Almada V.C. Evidence of extensive mitochondrial introgression with nearly complete substitution of the typical Squalius pyrenaicus-like mtDNA of the Squalius alburnoides complex (Cyprinidae) in an independent Iberian drainage. J. Fish Biol. 2006;68(Suppl. B):292–301. doi:10.1111/j.1095-8649.2006.01081.x DOI
Sousa-Santos C, Collares-Pereira M.J, Almada V. Reading the history of a hybrid fish complex from its molecular record. Mol. Phylogenet. Evol. 2007;45:981–996. doi:10.1016/j.ympev.2007.05.011. PubMed DOI
Spolsky C, Phillips C.A, Uzzell T. Gynogenetic reproduction in hybrid mole salamanders (genus Ambystoma) Evolution. 1992;46:1935–1944. doi:10.2307/2410041 PubMed DOI
Vandel A. La parthénogénèse geographique. Contribution à l'étude biologique et cytologique de la parthénogénèse naturelle. Bull. Biol. Fr. Belg. 1928;62:164–281.
Vasil'ev V.P, Vasil'eva K.D, Osinov A.G. Evolution of a diploid–triploid–tetraploid complex in fishes of the genus Cobitis (Pisces, Cobitidae) In: Dawley R.M, Bogart J.P, editors. Evolution and ecology of unisexual vertebrates. New York State Museum; Albany, NY: 1989. pp. 153–169.
Vasil'ev V.P, Akimova N.V, Emel'yanova N.G, Pavlov D.A, Vasil'eva E.D. Reproductive capacities in the polyploid males of spined loaches from the unisexual–bisexual complex, occurred in the Moscov River. Folia Biol. (Krakow) 2003;51:67–73. PubMed
Vasil'eva E.D, Vasil'ev V.P. Cobitis pontica sp. nova—a new spined loach species (Cobitidae) from the Bulgarian waters. J. Ichthyol. 2006;46:15–20. doi:10.1134/S003294520610002X DOI
Vrijenhoek R.C. Gene dosage in diploid and triploid unisexual fishes (Poeciliopsis, Poeciliidae) In: Markert C.L, editor. Isozymes IV genetics and evolution. Academic Press; New York, NY: 1975. pp. 463–476.
Vrijenhoek R.C. Factors affecting clonal diversity and coexistence. Am. Zool. 1979;19:787–797.
Vrijenhoek R.C. Genetic and evolutionary constraints on the origin and establishement of unisexual vertebrates. In: Dawley R.M, Bogart J.P, editors. Evolution and ecology of unisexual vertebrates. New York State Museum; Albany, NY: 1989. pp. 24–31.
Vrijenhoek R.C. Clonal organisms and the benefits of sex. In: Carvalho G.R, editor. Advances in molecular ecology. IOS Press; Amsterdam, The Netherlands: 1998. pp. 151–172.
Watterson G.A. On the number of segregating sites in genetical models without recombination. Theor. Popul. Biol. 1975;7:256–276. doi:10.1016/0040-5809(75)90020-9 PubMed DOI
Yang L, Shu-Ting Y, Xue-Hong W, Gui J.F. Genetic diversity among different clones of the gynogenetic silver crucian carp Carassius auratus gibelio, revealed by transferrin and isozyme markers. Biochem. Genet. 2001;39:213–225. doi:10.1023/A:1010297426390 PubMed DOI
Zhou L, Wang Y, Gui J.F. Genetic evidence for gonochoristic reproduction in gynogenetic silver crucian carp (Carassius auratus gibelio Bloch) as revealed by RAPD assays. J. Mol. Evol. 2000;51:498–506. doi:10.1007/s002390010113 PubMed DOI
Sperm-dependent asexual species and their role in ecology and evolution
Sperm-dependent asexual hybrids determine competition among sexual species