Making it on their own: sperm-dependent hybrid fishes (Cobitis) switch the sexual hosts and expand beyond the ranges of their original sperm donors

. 2008 Sep 12 ; 363 (1505) : 2911-9.

Jazyk angličtina Země Velká Británie, Anglie Médium print

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid18508748
Odkazy

PubMed 18508748
PubMed Central PMC2606746
DOI 10.1098/rstb.2008.0059
PII: UN6Q26852476Q204
Knihovny.cz E-zdroje

Interspecific hybridization may result in asexual hybrid lineages that reproduce via parthenogenesis. Contrary to true parthenogens, sperm-dependent asexuals (gynogens and hybridogens) are restricted to the range of bisexual species, generally the parental taxa, by their need for a sperm donor. It has been documented that asexual lineages may rarely use sperm from a non-parental species or even switch a host. The available literature reports do not allow distinguishing, between whether such host switches arise by the expansion of asexuals out of their parental's range (and into that of another's) or by the local extinction of a parental population followed by a host switch. The present study combines new and previously collected data on the distribution and history of gynogenetic spined loaches (Cobitis) of hybrid origin. We identified at least three clonal lineages that have independently switched their sperm dependency to different non-parental Cobitis species, and in cases incorporated their genomes. Our current knowledge of European Cobitis species and their hybrids suggests that this pattern most probably results from the expansion of gynogenetic lineages into new areas. Such expansion was independent of the original parental species. This suggests that sperm dependence is not as restrictive to geographical expansion when compared with true parthenogenesis as previously thought.

Zobrazit více v PubMed

Alves M.J, Coelho M.M, Collares-Pereira M.J, Dowling T.E. Maternal ancestry of the Rutilus alburnoides complex (Teleostei, Cyprinidae) as determined by analysis of cytochrome b sequences. Evolution. 1997;51:1584–1592. doi:10.2307/2411210 PubMed DOI

Alves M.J, Coelho M.M, Collares-Pereira M.J. Evolution on action through hybridization and polyploidy in an Iberian freshwater fish: a genetic review. Genetica. 2001;111:375–385. doi:10.1023/A:1013783029921 PubMed DOI

Arano B, Llorente G.A, Herrero P, Sanchiz B. Current studies on Iberian water frogs. Zool. Pol. 1995;39:365–375.

Arnold M.L. Oxford University Press; Oxford, UK: 1997. Natural hybridization and evolution.

Baker H.G. Self-compatibility and establishment after ‘long-distance’ dispersal. Evolution. 1955;9:347–348. doi:10.2307/2405656 DOI

Baker H.G. Characteristics and modes of origin of weeds. In: Baker H.G, Stebbins G.L, editors. The genetics of colonizing species. Academic Press; New York, NY: 1965. pp. 147–168.

Beukeboom L.W, Vrijenhoek R.C. Evolutionary genetics of sperm-dependent parthenogenesis. J. Evol. Biol. 1998;11:755–782. doi:10.1007/s000360050117 DOI

Bohlen J, Ráb P. Species and hybrid richness in spined loaches of the genus Cobitis (Teleostei: Cobitidae), with a checklist of European forms and suggestions for conservation. J. Fish Biol. 2001;59:75–89. doi:10.1006/jfbi.2001.1751 DOI

Bohlen J, Perdices A, Doadrio I, Economidis P.S. Vicariance, colonisation, and fast local speciation in Asia Minor and the Balkans as revealed from the phylogeny of spined loaches (Osteichthyes; Cobitidae) Mol. Phylogenet. Evol. 2006;39:552–561. doi:10.1016/j.ympev.2005.12.007 PubMed DOI

Chow S, Hazama K. Universal PCR primers for S7 ribosomal protein gene introns in fish. Mol. Ecol. 1998;7:1247–1263. doi:10.1046/j.1365-294x.1998.00406.x PubMed DOI

Clement M, Posada D, Crandall K.A. TCS: a computer program to estimate gene genealogies. Mol. Ecol. 2000;9:1657–1659. doi:10.1046/j.1365-294x.2000.01020.x PubMed DOI

Culling M.A, Janko K, Boron A, Vasil'ev V.P, Cote I.M, Hewitt G.M. European colonization by the spined loach (Cobitis taenia) from Ponto-Caspian refugia based on mitochondrial DNA variation. Mol. Ecol. 2006;15:173–190. doi:10.1111/j.1365-294X.2005.02790.x PubMed DOI

Cunha C, Coelho M.M, Carmona J.A, Doadrio I. Phylogeographical insights into the origins of the Squalius alburnoides complex via multiple hybridization events. Mol. Ecol. 2004;13:2807–2817. doi:10.1111/j.1365-294X.2004.02283.x PubMed DOI

Dawley R.M. An introduction to unisexual vertebrates. In: Dawley R.M, Bogart J.P, editors. Evolution and ecology of unisexual vertebrates. New York State Museum; Albany, NY: 1989. pp. 1–18.

Doncaster C.P, Pound G.E, Cox S.J. The ecological cost of sex. Nature. 2000;404:281–285. doi:10.1038/35005078 PubMed DOI

Engeler B, Reyer H.-U. Choosy females and indiscriminate males: mate choice in mixed populations of the water frogs Rana lessonae and Rana esculenta. Behav. Ecol. 2001;12:600–606. doi:10.1093/beheco/12.5.600 DOI

Gordo I, Navarro A, Charlesworth B. Muller's ratchet and the pattern of variation at a neutral locus. Genetics. 2002;161:835–848. PubMed PMC

Graf J.D, Karch F, Moreillon M.C. Biochemical variation in the Rana esculenta complex: a new hybrid form related to Rana perezi and Rana ridibunda. Experientia. 1977;33:1582–1584. doi:10.1007/BF01934010 PubMed DOI

Günther R. General remarks on the evolutionary genetics of the European water frog complex. Mitt. Zool. Mus. Berlin. 1979;55:7–11.

Hedges S.B, Bogart J.P, Maxon L.R. Ancestry of unisexual salamanders. Nature. 1992;356:708–710. doi:10.1038/356708a0 PubMed DOI

Hey J, Nielsen R. Multilocus methods for estimating population sizes, migration rates and divergence time, with applications to the divergence of Drosophila pseudoobscura and D. persimilis. Genetics. 2004;167:747–760. doi:10.1534/genetics.103.024182 PubMed DOI PMC

Holčík J, Žitňan R. On the expansion and origin of Carassius auratus in Czechoslovakia. Folia Zool. 1978;27:279–288.

Hotz H, Mancino G, Bucci-Innocenti S, Ragghianti M, Berger L, Uzzell T. Rana ridibunda varies geographically in inducing clonal gametogenesis in interspecific hybrids. J. Exp. Zool. 1985;236:199–210. doi:10.1002/jez.1402360210 DOI

Janko K, Kotlík P, Ráb P. Evolutionary history of asexual hybrid loaches (Cobitis: Teleostei) inferred from phylogenetic analysis of mitochondrial DNA variation. J. Evol. Biol. 2003;16:1280–1287. doi:10.1046/j.1420-9101.2003.00627.x PubMed DOI

Janko K, Kotlík P, Culling M.A, Ráb P. Ice age cloning—comparison of Quaternary evolutionary histories of sexual and clonal forms of European loaches (Cobitis; Teleostei) using the analysis of mitochondrial DNA variation. Mol. Ecol. 2005a;14:2991–3004. doi:10.1111/j.1365-294X.2005.02583.x PubMed DOI

Janko K, Vasil'ev V.P, Ráb P, Rábová M, Šlechtová V, Vasil'eva E.D. Genetic and morphological analyses of 50-chromosome spined loaches (Cobitis, Cobitidae, Pisces) from the Black Sea basin that are morphologically similar to C. taenia, with the description of a new species. Folia Zool. 2005b;54:405–420.

Janko K, Bohlen J, Lamatsch D, Flajšhans M, Kotlík P, Ráb P, Šlechtová V. Evidence for gynogenesis as the reproductive mode of hybrid loaches (Cobitis: Teleostei): on the evolution of polyploidy in asexual vertebrates. Genetica. 2007a;131:185–194. doi:10.1007/s10709-006-9130-5 PubMed DOI

Janko K, et al. Diversity of European spined loaches (genus Cobitis L.): an update of the geographic distribution of the Cobitis taenia hybrid complex with a description of new molecular tools for species determination. J. Fish. Biol. 2007b;71(Suppl.):387–408. doi:10.1111/j.1095-8649.2007.01663.x DOI

Kalous L, Šlechtová V, Jr, Bohlen J, Petrtýl M, Švátora M. First European record of Carassius langsdorfii from the Elbe basin. J. Fish Biol. 2007;70:132–138. doi:10.1111/j.1095-8649.2006.01290.x DOI

Kirkendall L.R. Sperm is a limiting resource in the pseudogamous bark beetle Ips acumiatus (Scolytidae) Oikos. 1990;57:80–87. doi:10.2307/3565740 DOI

Kuhner M.K. LAMARC: estimating population genetic parameters from molecular data. In: Salemi M, Vandamme A, editors. The phylogenetic handbook: a practical approach to DNA and protein phylogeny. Cambridge University Press; Cambridge, UK: 2003. pp. 379–399. ( doi:10.2277/052180390X) DOI

Kuhner M.K, Yamato J, Felsenstein J. Maximum likelihood estimation of population growth rates based on the coalescent. Genetics. 1998;149:429–434. PubMed PMC

Lamatsch D.K, Steinlein C, Schmid M, Schartl M. Noninvasive determination of genome size and ploidy level in fishes by flow cytometry: detection of triploid Poecilia formosa. Cytometry. 2000;39:91–95. doi:10.1002/(SICI)1097-0320(20000201)39:2<91::AID-CYTO1>3.0.CO;2-4 PubMed DOI

Lowcock L.A. Biogeography of hybrid complexes of Ambystoma: interpreting unisexual–bisexual genetic data in space and time. In: Dawley R.M, Bogart J.P, editors. Evolution and ecology of unisexual vertebrates. New York State Museum; Albany, NY: 1989. pp. 180–208.

Lusková V, Halačka K, Vetešník L, Lusk S. Changes of ploidy and sexuality status of ‘Carassius auratus’ population in the drainage area of the River Dyje (Czech Republic) Ecohydrol. Hydrobiol. 2004;4:165–171.

Mateos M, Vrijenhoek R.C. Ancient versus reticulate origin of a hemiclonal lineage. Evolution. 2002;56:985–992. doi:10.1554/0014-3820(2002)056[0985:AVROOA]2.0.CO;2 PubMed DOI

Mateos M, Vrijenhoek R.C. Independent origins of allotriploidy in the fish genus Poeciliopsis. J. Hered. 2005;96:1–8. doi:10.1093/jhered/esi010 PubMed DOI

Maynard Smith J. Cambridge University Press; Cambridge, UK: 1978. The evolution of sex.

Moritz C, Brown W.M, Densmore L.D, Wright J.W, Vyas D, Donnellan S, Adams M, Baverstock P. Genetic diversity and the dynamics of hybrid parthenogenesis in Cnemidophorus (Teiidae) and Heteronotia (Gekkonidae) In: Dawley R.M, Bogart J.P, editors. Evolution and ecology of unisexual vertebrates. New York State Museum; Albany, NY: 1989. pp. 268–280.

Niemeitz A, Kreutzfeldt R, Schartl M, Parzefall J, Schlupp I. Male mating behaviour of a molly, Poecilia latipunctata: a third host for the sperm-dependent Amazon molly, Poecilia formosa. Acta Ethol. 2002;5:45–49. doi:10.1007/s10211-002-0065-2 DOI

Peňáz M, Ráb P, Prokeš M. Cytological analysis, gynogenesis and early development of Carassius auratus gibelio. Acta Sci. Nat. Brno. 1979;13:1–33.

Pongratz N, Storhas M, Carranza S, Michiels N.K. Phylogeography of competing sexual and parthenogenetic forms of a freshwater flatworm: patterns and explanations. BMC Evol. Biol. 2003;3:1–15. doi:10.1186/1471-2148-3-23 PubMed DOI PMC

Pound G.E, Doncaster C.P, Cox S.J. A Lotka–Volterra model of coexistence between a sexual population and multiple asexual clones. J. Theor. Biol. 2002;217:535–545. doi:10.1006/jtbi.2002.3040 PubMed DOI

Ramos-Onsins S.E, Rozas J. Statistical properties of new neutrality tests against population growth. Mol. Biol. Evol. 2002;19:2092–2100. PubMed

Rogers A.R, Harpending H. Population-growth makes waves in the distribution of pairwise genetic-differences. Mol. Biol. Evol. 1992;9:552–569. PubMed

Rozas J, Rozas R. DnaSP version 3: an integrated program for molecular population genetics and molecular evolution analysis. Bioinformatics. 1999;15:174–175. doi:10.1093/bioinformatics/15.2.174 PubMed DOI

Saat T.V. Reproduction of the diploid and polyploid spinous loach (Cobitis, Teleostei). Oocyte maturation and fertilization in the triploid form. Sov. J. Dev. Biol. 1991;22:332–338.

Savidan Y. Apomixis: genetics and breeding. Plant Breed. Rev. 2000;18:13–86.

Schley D, Doncaster C.P, Sluckin T. Population models of sperm-dependent parthenogenesis. J. Theor. Biol. 2004;229:559–572. doi:10.1016/j.jtbi.2004.04.031 PubMed DOI

Schlupp I. The evolutionary ecology of gynogenesis. Annu. Rev. Ecol. Evol. Syst. 2005;36:399–417. doi:10.1146/annurev.ecolsys.36.102003.152629 DOI

Schlupp I, Parzefall J, Schartl M. Biogeography of the Amazon molly, Poecilia formosa. J. Biogeogr. 2002;29:1–6. doi:10.1046/j.1365-2699.2002.00651.x DOI

Schultz R.J. Gynogenesis and triploidy in the viviparous fish Poeciliopsis. Science. 1967;157:1564–1567. doi:10.1126/science.157.3796.1564 PubMed DOI

Seehausen O. Hybridization and adaptive radiation. Trends Ecol. Evol. 2004;19:198–207. doi:10.1016/j.tree.2004.01.003 PubMed DOI

Semlitsch R.D, Hotz H, Guex G.-D. Competition among tadpoles of coexisting hemiclones of hybridogenetic Rana esculenta: support for the frozen niche variation model. Evolution. 1997;51:1249–1261. doi:10.2307/2411054 PubMed DOI

Simon J.C, Delmotte F, Rispe C, Crease T. Phylogenetic relationships between parthenogens and their sexual relatives: the possible routes to parthenogenesis in animals. Biol. J. Linn. Soc. 2003;79:151–163. doi:10.1046/j.1095-8312.2003.00175.x DOI

Šlechtová V, Lusková V, Šlechta V, Lusk S, Halačka K, Bohlen J. Genetic differentiation of two diploid–polyploid complexes of spined loach, genus Cobitis (Cobitidae), in the Czech Republic, involving C. taenia, C. elongatoides and C. spp.: allozyme interpopulation and interspecific differences. Folia Zool. 2000;49(Suppl.):67–78.

Sousa-Santos C, Collares-Pereira M.J, Almada V.C. Evidence of extensive mitochondrial introgression with nearly complete substitution of the typical Squalius pyrenaicus-like mtDNA of the Squalius alburnoides complex (Cyprinidae) in an independent Iberian drainage. J. Fish Biol. 2006;68(Suppl. B):292–301. doi:10.1111/j.1095-8649.2006.01081.x DOI

Sousa-Santos C, Collares-Pereira M.J, Almada V. Reading the history of a hybrid fish complex from its molecular record. Mol. Phylogenet. Evol. 2007;45:981–996. doi:10.1016/j.ympev.2007.05.011. PubMed DOI

Spolsky C, Phillips C.A, Uzzell T. Gynogenetic reproduction in hybrid mole salamanders (genus Ambystoma) Evolution. 1992;46:1935–1944. doi:10.2307/2410041 PubMed DOI

Vandel A. La parthénogénèse geographique. Contribution à l'étude biologique et cytologique de la parthénogénèse naturelle. Bull. Biol. Fr. Belg. 1928;62:164–281.

Vasil'ev V.P, Vasil'eva K.D, Osinov A.G. Evolution of a diploid–triploid–tetraploid complex in fishes of the genus Cobitis (Pisces, Cobitidae) In: Dawley R.M, Bogart J.P, editors. Evolution and ecology of unisexual vertebrates. New York State Museum; Albany, NY: 1989. pp. 153–169.

Vasil'ev V.P, Akimova N.V, Emel'yanova N.G, Pavlov D.A, Vasil'eva E.D. Reproductive capacities in the polyploid males of spined loaches from the unisexual–bisexual complex, occurred in the Moscov River. Folia Biol. (Krakow) 2003;51:67–73. PubMed

Vasil'eva E.D, Vasil'ev V.P. Cobitis pontica sp. nova—a new spined loach species (Cobitidae) from the Bulgarian waters. J. Ichthyol. 2006;46:15–20. doi:10.1134/S003294520610002X DOI

Vrijenhoek R.C. Gene dosage in diploid and triploid unisexual fishes (Poeciliopsis, Poeciliidae) In: Markert C.L, editor. Isozymes IV genetics and evolution. Academic Press; New York, NY: 1975. pp. 463–476.

Vrijenhoek R.C. Factors affecting clonal diversity and coexistence. Am. Zool. 1979;19:787–797.

Vrijenhoek R.C. Genetic and evolutionary constraints on the origin and establishement of unisexual vertebrates. In: Dawley R.M, Bogart J.P, editors. Evolution and ecology of unisexual vertebrates. New York State Museum; Albany, NY: 1989. pp. 24–31.

Vrijenhoek R.C. Clonal organisms and the benefits of sex. In: Carvalho G.R, editor. Advances in molecular ecology. IOS Press; Amsterdam, The Netherlands: 1998. pp. 151–172.

Watterson G.A. On the number of segregating sites in genetical models without recombination. Theor. Popul. Biol. 1975;7:256–276. doi:10.1016/0040-5809(75)90020-9 PubMed DOI

Yang L, Shu-Ting Y, Xue-Hong W, Gui J.F. Genetic diversity among different clones of the gynogenetic silver crucian carp Carassius auratus gibelio, revealed by transferrin and isozyme markers. Biochem. Genet. 2001;39:213–225. doi:10.1023/A:1010297426390 PubMed DOI

Zhou L, Wang Y, Gui J.F. Genetic evidence for gonochoristic reproduction in gynogenetic silver crucian carp (Carassius auratus gibelio Bloch) as revealed by RAPD assays. J. Mol. Evol. 2000;51:498–506. doi:10.1007/s002390010113 PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Trematode Diplostomum pseudospathaceum inducing differential immune gene expression in sexual and gynogenetic gibel carp (Carassius gibelio): parasites facilitating the coexistence of two reproductive forms of the invasive species

. 2024 ; 15 () : 1392569. [epub] 20240625

Sperm-dependent asexual species and their role in ecology and evolution

. 2023 Oct ; 13 (10) : e10522. [epub] 20230928

Sperm-dependent asexual hybrids determine competition among sexual species

. 2019 Jan 24 ; 9 (1) : 722. [epub] 20190124

Karyotype and chromosomal characteristics of rDNA of Cobitisstrumicae Karaman, 1955 (Teleostei, Cobitidae) from Lake Volvi, Greece

. 2018 ; 12 (4) : 483-491. [epub] 20181116

Hybrid asexuality as a primary postzygotic barrier between nascent species: On the interconnection between asexuality, hybridization and speciation

. 2018 Jan ; 27 (1) : 248-263. [epub] 20171129

Asexual Reproduction Does Not Apparently Increase the Rate of Chromosomal Evolution: Karyotype Stability in Diploid and Triploid Clonal Hybrid Fish (Cobitis, Cypriniformes, Teleostei)

. 2016 ; 11 (1) : e0146872. [epub] 20160125

Distinguishing between incomplete lineage sorting and genomic introgressions: complete fixation of allospecific mitochondrial DNA in a sexually reproducing fish (Cobitis; Teleostei), despite clonal reproduction of hybrids

. 2014 ; 9 (6) : e80641. [epub] 20140627

Dynamic formation of asexual diploid and polyploid lineages: multilocus analysis of Cobitis reveals the mechanisms maintaining the diversity of clones

. 2012 ; 7 (9) : e45384. [epub] 20120920

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...