Trematode Diplostomum pseudospathaceum inducing differential immune gene expression in sexual and gynogenetic gibel carp (Carassius gibelio): parasites facilitating the coexistence of two reproductive forms of the invasive species

. 2024 ; 15 () : 1392569. [epub] 20240625

Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38983863

INTRODUCTION: Parasite-mediated selection is considered one of the potential mechanisms contributing to the coexistence of asexual-sexual complexes. Gibel carp (Carassius gibelio), an invasive fish species in Europe, often forms populations composed of gynogenetic and sexual specimens. METHODS: The experimental infection was induced in gynogenetic and sexual gibel carp using eye-fluke Diplostomum pseudospathaceum (Trematoda), and the transcriptome profile of the spleen as a major immune organ in fish was analyzed to reveal the differentially expressed immunity-associated genes related to D. pseudospathaceum infection differing between gynogenetic and sexual gibel carp. RESULTS: High parasite infection was found in gynogenetic fish when compared to genetically diverse sexuals. Although metacercariae of D. pseudospathaceum are situated in an immune-privileged organ, our results show that eye trematodes may induce a host immune response. We found differential gene expression induced by eye-fluke infection, with various impacts on gynogenetic and sexual hosts, documenting for the majority of DEGs upregulation in sexuals, and downregulation in asexuals. Differences in gene regulation between gynogenetic and sexual gibel carp were evidenced in many immunity-associated genes. GO analyses revealed the importance of genes assigned to the GO terms: immune function, the Notch signaling pathway, MAP kinase tyrosine/threonine/phosphatase activity, and chemokine receptor activity. KEGG analyses revealed the importance of the genes involved in 12 immunity-associated pathways - specifically, FoxO signaling, adipocytokine signaling, TGF-beta signaling, apoptosis, Notch signaling, C-type lectin receptor signaling, efferocytosis, intestinal immune network for IgA production, insulin signaling, virion - human immunodeficiency virus, Toll-like receptor signaling, and phosphatidylinositol signaling system. DISCUSSION: Our study indicates the limited potential of asexual fish to cope with higher parasite infection (likely a loss of capacity to induce an effective immune response) and highlights the important role of molecular mechanisms associated with immunity for the coexistence of gynogenetic and sexual gibel carp, potentially contributing to its invasiveness.

Zobrazit více v PubMed

Lusková V, Lusk S, Halačka K, Vetešník L. Carassius auratus gibelio – the most successful invasive fish in waters of the Czech Republic. Russ J Biol Invasions. (2010) 1:176–80. doi: 10.1134/S2075111710030069 DOI

Fuad MMH, Vetešník L, Šimková A. Is gynogenetic reproduction in gibel carp (Carassius gibelio) a major trait responsible for invasiveness? J Vertebr Biol. (2021) 70:21049. doi: 10.25225/jvb.21049 DOI

Tobler M, Schlupp I. Parasites in sexual and asexual mollies (Poecilia, Poeciliidae, Teleostei): a case for the Red Queen? Biol Lett. (2005) 1:166–68. doi: 10.1098/rsbl.2005.0305 PubMed DOI PMC

Neaves WB, Baumann P. Unisexual reproduction among vertebrates. Trends Genet. (2011) 27:81–8. doi: 10.1016/j.tig.2010.12.002 PubMed DOI

Lusková V, Halačka K, Vetešník L, Lusk S. Changes of ploidy and sexuality status of “Carassius auratus” populations in the drainage area of the River Dyje (Czech Republic). Ecohydrol Hydrobiol. (2004) 4:165–71.

Przybył A, Przybylski M, Spóz A, Juchno D, Szabelska A, Kowalewska K, et al. . Sex, size and ploidy ratios of Carassius gibelio from Poland. Aquat Invasions. (2020) 15:335–54. doi: 10.3391/ai.2020.15.2.08 DOI

Paschos I, Nathanailides C, Tsoumani M, Perdikaris C, Gouva E, Leonardos I. Intra and inter-specific mating options for gynogenetic reproduction of Carassius gibelio (Bloch, 1783) in Lake Pamvotis (NW Greece). Belg J Zool. (2004) 134:55–60.

Barbuti R, Mautner S, Carnevale G, Milazzo P, Rama A, Sturmbauer C. Population dynamics with a mixed type of sexual and asexual reproduction in a fluctuating environment. BMC Evol Biol. (2012) 12:49. doi: 10.1186/1471-2148-12-49 PubMed DOI PMC

Mee JA, Rowe L. A comparison of parasite loads on asexual and sexual Phoxinus (Pisces: Cyprinidae). Can J Zool. (2006) 84:808–16. doi: 10.1139/z06-064 DOI

Mee JA, Taylor EB. The cybrid invasion: widespread postglacial dispersal by Phoxinus (Pisces: Cyprinidae) cytoplasmic hybrids. Can J Zool. (2012) 90:577–84. doi: 10.1139/z2012-023 DOI

Lamatsch DK, Schmid M, Schartl M. A somatic mosaic of the gynogenetic Amazon molly. J Fish Biol. (2002) 60:1417–22. doi: 10.1111/j.1095-8649.2002.tb02436.x DOI

Lamatsch DK, Lampert KP, Fischer P, Geiger M, Schlupp I, Schartl M. Diploid Amazon mollies (Poecilia formosa) show a higher fitness than triploids in clonal competition experiments. Evol Ecol. (2009) 23:687–97. doi: 10.1007/s10682-008-9264-2 DOI

Tobler M, Schlupp I. Differential susceptibility to food stress in neonates of sexual and asexual mollies (Poecilia, Poeciliidae). Evol Ecol. (2010) 24:39–47. doi: 10.1007/s10682-008-9288-7 DOI

Schlupp I. Mate choice and the amazon molly: how sexuality and unisexuality can coexist. J Hered. (2010) 101:S55–61. doi: 10.1093/jhered/esq015 PubMed DOI

Janko K, Eisner J. Sperm-dependent parthenogens delay the spatial expansion of their sexual hosts. J Theor Biol. (2009) 261:431–40. doi: 10.1016/j.jtbi.2009.08.012 PubMed DOI

Choleva L, Apostolou A, Ráb P, Janko K. Making it on their own: sperm-dependent hybrid fishes (Cobitis) switch the sexual hosts and expand beyond the ranges of their original sperm donors. Philos Trans R Soc B Biol Sci. (2008) 363:2911–19. doi: 10.1098/rstb.2008.0059 PubMed DOI PMC

Hakoyama H, Nishimura T, Matsubara N, Iguchi K. Difference in parasite load and nonspecific immune reaction between sexual and gynogenetic forms of Carassius auratus . Biol J Linn Soc. (2001) 72:401–7. doi: 10.1111/j.1095-8312.2001.tb01326.x DOI

Hakoyama H, Iwasa Y. Coexistence of a sexual and an unisexual form stabilized by parasites. J Theor Biol. (2004) 226:186–94. doi: 10.1016/j.jtbi.2003.08.012 PubMed DOI

Šimková A, Košař M, Vetešník L, Vyskočilová M. MHC genes and parasitism in Carassius gibelio, a diploid-triploid fish species with dual reproduction strategies. BMC Evol Biol. (2013) 13:122. doi: 10.1186/1471-2148-13-122 PubMed DOI PMC

Šimková A, Hyršl P, Halačka K, Vetešník L. Physiological and condition-related traits in the gynogenetic-sexual Carassius auratus complex: different investments promoting the coexistence of two reproductive forms? BMC Evol Biol. (2015) 15:154. doi: 10.1186/s12862-015-0438-6 PubMed DOI PMC

Vetešník L, Lusk S, Halačka K, Spurný P. Morphometric characteristics and growth of Carassius auratus in the lower part of the River Dyje (Czech Republic). Ecohydrol Hydrobiol. (2004) 4:215–21.

Vetešník L, Halačka K, Šimková A. The effect of ploidy and temporal changes in the biochemical profile of gibel carp (Carassius gibelio): a cyprinid fish species with dual reproductive strategies. Fish Physiol Biochem. (2013) 39:171–80. doi: 10.1007/s10695-012-9688-z PubMed DOI

Xie J, Wen JJ, Chen B, Gui JF. Differential gene expression in fully-grown oocytes between gynogenetic and gonochoristic crucian carps. Gene. (2001) 271:109–16. doi: 10.1016/s0378-1119(01)00491-7 PubMed DOI

Pakosta T, Vetešník L, Šimková A. A long temporal study of parasitism in asexualsexual populations of Carassius gibelio: does the parasite infection support coevolutionary Red Queen dynamics? BioMed Res Int. (2018) 2018:6983740. doi: 10.1155/2018/6983740 PubMed DOI PMC

Hamilton WD. Sex versus non-sex versus parasite. Oikos. (1980) 35:282–90. doi: 10.2307/3544435 DOI

Hamilton WD, Axelrod R, Tanese R. Sexual reproduction as an adaptation to resist parasites (a review). Proc Natl Acad Sci U S A. (1990) 87:3566–73. doi: 10.1073/pnas.87.9.3566 PubMed DOI PMC

Lively CM, Craddock C, Vrijenhoek RC. Red Queen hypothesis supported by parasitism in sexual and clonal fish. Nature. (1990) 344:864–67. doi: 10.1038/344864a0 DOI

Weeks SC. A reevaluation of the Red Queen model for the maintenance of sex in a clonal-sexual fish complex (Poeciliidae: Poeciliopsis). Can J Fish Aquat Sci. (1996) 53:1157–64. doi: 10.1139/f96-041 DOI

Scharsack JP, Kalbe M. Differences in susceptibility and immune responses of three-spined sticklebacks (Gasterosteus aculeatus) from lake and river ecotypes to sequential infections with the eye fluke Diplostomum pseudospathaceum . Parasit Vectors. (2014) 7:109. doi: 10.1186/1756-3305-7-109 PubMed DOI PMC

Niewiadomska K. Verification of the life-cycles of Diplostomum spathaceum (Rudolphi, 1819) and D. pseudospathaceum Niewiadomska, 1984 (Trematoda, Diplostomidae). Syst Parasitol. (1986) 8:23–31. doi: 10.1007/BF00010306 DOI

Frey RA, Barrett LM, Parkin L, Blakeley B, Alund M, Byford G, et al. . Eye flukes (Diplostomum spp.) damage retinal tissue and may cause a regenerative response in wild threespine stickleback fish. Exp Eye Res. (2022) 225:109298. doi: 10.1016/j.exer.2022.109298 PubMed DOI

Hakalahti T, Karvonen A, Valtonen ET. Climate warming and disease risks in temperate regions - Argulus coregoni and Diplostomum spathaceum as case studies. J Helminthol. (2006) 80:93–8. doi: 10.1079/joh2006351 PubMed DOI

Palmieri JR, Cali A, Heckmann RA. Experimental biological-control of eye fluke, Diplostomum spathaceum, by a protozoan hyperparasite, Nosema strigeoidae (Protozoa, Microsporida). J Parasitol. (1976) 62:325–26. doi: 10.2307/3279300 PubMed DOI

Michálková V, Ondračková M. Experimental evidence for parasite-induced over-winter mortality in juvenile. Rhodeus amarus. J Fish Biol. (2014) 84:1377–88. doi: 10.1111/jfb.12363 PubMed DOI

Crowden AE, Broom DM. Effects of the eyefluke, Diplostomum spathaceum, on the behaviour of dace (Leuciscus leuciscus). Anim Behav. (1980) 28:287–94. doi: 10.1016/S0003-3472(80)80031-5 DOI

Mikheev VN, Pasternak AF, Taskinen J, Valtonen ET. Parasite-induced aggression and impaired contest ability in a fish host. Parasit Vectors. (2010) 3:17. doi: 10.1186/1756-3305-3-17 PubMed DOI PMC

Seppälä O, Karvonen A, Valtonen ET. Parasite-induced change in host behaviour and susceptibility to predation in an eye fluke - fish interaction. Anim Behav. (2004) 68:257–63. doi: 10.1016/j.anbehav.2003.10.021 DOI

Seppälä O, Karvonen A, Valtonen ET. Manipulation of fish host by eye flukes in relation to cataract formation and parasite infectivity. Anim Behav. (2005) 70:889–94. doi: 10.1016/j.anbehav.2005.01.020 DOI

Mikheev VN, Pasternak AF. Structure of aggressive behavior in underyearlings of the rainbow trout Oncorhynchus mykiss (Salmonidae) changes under the influence of Diplostomum pseudospathaceum (Trematoda) parasites. J Ichthyol. (2023) 63:816–21. doi: 10.1134/S0032945223040136 DOI

Nezhybová V, Reichard M, Methling C, Ondračková M. Limited impacts of chronic eye fluke infection on the reproductive success of a fish host. Biol J Linn Soc. (2020) 129:334–46. doi: 10.1093/biolinnean/blz189 DOI

Jakobsson S, Brick O, Kullberg C. Escalated fighting behavior incurs increased predation risk. Anim Behav. (1995) 49:235–39. doi: 10.1016/0003-3472(95)80172-3 DOI

McDougall PT, Kramer DL. Short-term behavioral consequences of territory relocation in a Caribbean damselfish, Stegastes diencaeus . Behav Ecol. (2007) 18:53–61. doi: 10.1093/beheco/arl055 DOI

Buchmann K. Antiparasitic immune mechanisms in teleost fish: a two-edged sword? Bull Eur Ass Fish Pathol. (2000) 20:48–59.

Rauch G, Kalbe M, Reusch TBH. One day is enough: rapid and specific host–parasite interactions in a stickleback-trematode system. Biol Lett. (2006) 2:382–84. doi: 10.1098/rsbl.2006.0462 PubMed DOI PMC

Haase D, Rieger JK, Witten A, Stoll M, Bornberg-Bauer E, Kalbe M, et al. . Specific gene expression responses to parasite genotypes reveal redundancy of innate immunity in vertebrates. PLoS One. (2014) 9:e108001. doi: 10.1371/journal.pone.0108001 PubMed DOI PMC

Whyte SK, Chappell LH, Secombes CJ. Cytotoxic reactions of rainbow trout, Salmo gairdneri Richardson, macrophages for larvae of the eye fluke Diplostomum spathaceum (Digenea). J Fish Biol. (1989) 35:333–45. doi: 10.1111/j.1095-8649.1989.tb02986.x DOI

Woo PTK. Immunological responses of fish to parasitic organisms. Ann Rev Fish Dis. (1992) 2:339–66. doi: 10.1016/0169-4758(87)90178-5 DOI

Haase D, Rieger JK, Witten A, Stoll M, Bornberg-Bauer E, Kalbe M, et al. . Immunity comes first: The effect of parasite genotypes on adaptive immunity and immunization in three-spined sticklebacks. Dev Comp Immunol. (2016) 54:137e144. doi: 10.1016/j.dci.2015.09.008 PubMed DOI

Karvonen A, Hudson PJ, Seppälä O, Valtonen ET. Transmission dynamics of a trematode parasite: exposure, acquired resistance and parasite aggregation. Parasitol Res. (2004) 92:183–88. doi: 10.1007/s00436-003-1035-y PubMed DOI

Georgieva S, Soldánová M, Pérez-del-Olmo A, Dangel RD, Sitko J, Sures B, et al. . Molecular prospecting for European Diplostomum (Digenea: Diplostomidae) reveals cryptic diversity. Int J Parasit. (2013) 43:57–72. doi: 10.1016/j.ijpara.2012.10.019 PubMed DOI

Bush AO, Lafferty KD, Lotz JM, Shostaket AW. Parasitology meets ecology on its own terms: Margolis et al. revisited. J Parasitol. (1997) 83:575–83. doi: 10.2307/3284227 PubMed DOI

Andrews S. FastQC: A Quality Control Tool for High Throughput Sequence Data. (2010). Available online at: http://www.bioinformatics.babraham.ac.uk/projects/fastqc/.

Bushnell B. BBMap: A fast, accurate, splice-aware aligner. Lawrence Berkeley National Laboratory. LBNL Report #: LBNL-7065E. (2014). Available at: https://escholarship.org/uc/item/1h3515gn

Dobin A, Carrie A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, et al. . STAR: ultrafast universal RNA-seq aligner. Bioinformatics. (2013) 29:15–21. doi: 10.1093/bioinformatics/bts635 PubMed DOI PMC

Liao Y, Smyth GK, Shi W. FeatureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics. (2014) 30:923–30. doi: 10.1093/bioinformatics/btt656 PubMed DOI

R Core Team . A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; (2023). Available at: https://www.R-project.org/.

Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genom Biol. (2014) 15:550. doi: 10.1186/s13059-014-0550-8 PubMed DOI PMC

Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B. (1995) 57:289–300. doi: 10.1111/j.2517-6161.1995.tb02031.x DOI

Korotkevich G, Sukhov V, Budin N, Shpak B, Artyomov MN, Sergushichev A. Fast gene set enrichment analysis. bioRxiv. (2021). doi: 10.1101/060012 DOI

Supek F, Bošnjak M, Škunca N, Šmuc T. REVIGO summarizes and visualizes long lists of gene ontology terms. PLoS One. (2011) 6:7. doi: 10.1371/journal.pone.0021800 PubMed DOI PMC

Durinck S, Spellman P, Birney E, Huber W. Mapping identifiers for the integration of genomic datasets with the R/Bioconductor package biomaRt. Nat Protoc. (2009) 4:1184–91. doi: 10.1038/nprot.2009.97 PubMed DOI PMC

Yu G, Wang L, Han Y, He Q. ClusterProfiler: an R package for comparing biological themes among gene clusters. OMICS. (2012) 16:284–7. doi: 10.1089/omi.2011.0118 PubMed DOI PMC

Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. (2001) 29:e45. doi: 10.1093/nar/29.9.e45 PubMed DOI PMC

Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, et al. . Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. (2002) 3:1–12. doi: 10.1186/gb-2002-3-7-research0034 PubMed DOI PMC

Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real - time quantitative PCR and the 2–ΔΔCT method. Methods. (2001) 25:402–8. doi: 10.1006/meth.2001.1262 PubMed DOI

Kalbe M, Kurtz J. Local differences in immunocompetence reflect resistance of sticklebacks against the eye fluke Diplostomum pseudospathaceum . Parasitology. (2005) 132:1–12. doi: 10.1017/S0031182005008681 PubMed DOI

Wegner KM, Kalbe M, Reusch TBH. Innate versus adaptive immunity in sticklebacks: evidence for trade-offs from a selection experiment. Evol Ecol. (2007) 21:473–83. doi: 10.1007/s10682-006-9129-5 DOI

Noreikiene K, Ozerov M, Ahmad F, Kõiv T, Kahar S, Gross R, et al. . Humic- acid-driven escape from eye parasites revealed by RNA-seq and target-specific metabarcoding. Parasit Vectors. (2020) 13:433. doi: 10.1186/s13071-020-04306-9 PubMed DOI PMC

Carbon S, Ireland A, Mungall CJ, Shu SQ, Marshall B, Lewis S. AmiGO: online access to ontology and annotation data. Bioinformatics. (2009) 25:288–9. doi: 10.1093/bioinformatics/btn615 PubMed DOI PMC

Neagu M, Constantin C. Signal transduction in immune cells and protein kinases. Adv Exp Med Biol. (2021) 1275:133–49. doi: 10.1007/978-3-030-49844-3_5 PubMed DOI

He L, Zhao L, Li Q, Huang L, Qin Y, Zhuang Z, et al. . Pseudomonas plecoglossicida fliP gene affects the immune response of Epinephelus fuscoguttatus ♀×Epinephelus lanceolatus ♂ to infection. Fish Shellfish Immunol. (2023) 140:108971. doi: 10.1016/j.fsi.2023.108971 PubMed DOI

Gong D, Xu L, Li W, Shang R, Chen J, Hu F, et al. . Comparative analysis of liver transcriptomes associated with hypoxia tolerance in the gynogenetic blunt snout bream. Aquaculture. (2020) 523:735163. doi: 10.1016/j.aquaculture.2020.735163 DOI

Sauerwein H, Bendixen E, Restelli L, Ceciliani F. The adipose tissue in farm animals: a proteomic approach. Curr Protein Pept Sci. (2014) 15:146–55. doi: 10.2174/1389203715666140221123105 PubMed DOI

Sun J, Bian CC, Ji SH, Luo XL, Ji H. Greater potency of adipocytes compared with preadipocytes under lipopolysaccharide exposure in grass carp Ctenopharyngodon idella . Fish Shellfish Immunol. (2019) 91:343–49. doi: 10.1016/j.fsi.2019.04.295 PubMed DOI

Pignatelli J, Castro R, Granja AG, Abós B, González L, Jensen LB, et al. . Immunological characterization of the teleost adipose tissue and its modulation in response to viral infection and fat-content in the diet. PLoS One. (2014) 9:e110920. doi: 10.1371/journal.pone.0110920 PubMed DOI PMC

Wang YD, Rajanbabu V, Chen JY. Transcriptome analysis of medaka following epinecidin-1 and TH1–5 treatment of NNV infection. Fish Shellfish Immunol. (2015) 42:121–31. doi: 10.1016/j.fsi.2014.10.040 PubMed DOI

Chen J, Cai B, Tian C, Jiang D, Shi H, Huang Y, et al. . RNA sequencing (RNA-Seq) analysis reveals liver lipid metabolism divergent adaptive response to low- and high-salinity stress in spotted scat (Scatophagus argus). Animals. (2023) 13:1503. doi: 10.3390/ani13091503 PubMed DOI PMC

Jiang JL, Xu J, Ye L, Sun ML, Jiang ZQ, Mao MG. Identification of differentially expressed genes in gills of tiger puffer (Takifugu rubripes) in response to low-salinity stress. Comp Biochem Physiol B. (2020) 243–4:110437. doi: 10.1016/j.cbpb.2020.110437 PubMed DOI

Li C, Wang L. Molecular characterization, expression and functional analysis of TGFβ1-b in crucian carp (Carassius carassius). Int J Biol Macromol. (2020) 165:1392–401. doi: 10.1016/j.ijbiomac.2020.10.024 PubMed DOI

Gahr SA, Weber GM, Rexroad CE. Identification and expression of Smads associated with TGF-b/activin/nodal signaling pathways in the rainbow trout (Oncorhynchus mykiss). Fish Physiol Biochem. (2012) 38:1233–44. doi: 10.1007/s10695-012-9611-7 PubMed DOI

Zhou S, Liu Y, Dong J, Yang Q, Xu N, Yang Y, et al. . Transcriptome analysis of goldfish (Carassius auratus) in response to Gyrodactylus kobayashii infection. Parasitol Res. (2021) 120:161–71. doi: 10.1007/s00436-020-06827-9 PubMed DOI

O’Connor MN, Salles II, Cvejic A, Watkins NA, Walker A, Garner SF, et al. . Functional genomics in zebrafish permits rapid characterization of novel platelet membrane proteins. Blood. (2009) 113:4754–62. doi: 10.1182/blood-2008-06-162693 PubMed DOI PMC

Harel T, Levy-Lahad E, Daana M, Mechoulam H, Horowitz-Cederboim S, Gur M, et al. . Homozygous stop-gain variant in LRRC32, encoding a TGFβ receptor, associated with cleft palate, proliferative retinopathy, and developmental delay. Eur J Hum Genet. (2019) 27:1315–9. doi: 10.1038/s41431-019-0380-y PubMed DOI PMC

Lehmkuhl P, Gentz M, Garcia de Otezya AC, Grimbacher B, Schulze-Koops H, Skapenko A. Dysregulated immunity in PID patients with low GARP expression on Tregs due to mutations in LRRC32. Cell Mol Immunol. (2021) 18:1677–91. doi: 10.1038/s41423-021-00701-z PubMed DOI PMC

Qu S, Liu Z, Wang B. Down-regulation of Gremlin1 inhibits inflammatory response and vascular permeability in chronic idiopathic urticaria through suppression of TGF-β signaling pathway. Gene. (2020) 756:144916. doi: 10.1016/j.gene.2020.144916 PubMed DOI

Xie Z, Zhou G, Zhang M, Han J, Wang Y, Li X, et al. . Recent developments on BMPs and their antagonists in inflammatory bowel diseases. Cell Death Discovery. (2023) 9:210. doi: 10.1038/s41420-023-01520-z PubMed DOI PMC

Lü AJ, Hu XC, Wang Y, Zhu AH, Shen LL, Tian J, et al. . Skin immune response in the zebrafish, Danio rerio (Hamilton), to Aeromonas hydrophila infection: a transcriptional profiling approach. J Fish Dis. (2015) 38:137–50. doi: 10.1111/jfd.12214 PubMed DOI

Du K, Lu F, Xie C, Ding H, Shen Y, Gao Y, et al. . Toxoplasma gondii infection induces cell apoptosis via multiple pathways revealed by transcriptome analysis. J Zhejiang Univ Sci B. (2022) 23:315–27. doi: 10.1631/jzus.B2100877 PubMed DOI PMC

Ma F, Zhao L, Ma R, Wang J, Du L. FoxO signaling and mitochondria-related apoptosis pathways mediate tsinling lenok trout (Brachymystax lenok tsinlingensis) liver injury under high temperature stress. Int J Biol Macromol. (2023) 251:126404. doi: 10.1016/j.ijbiomac.2023.126404 PubMed DOI

Xiang Y, Jia P, Liu W, Yi M, Jia K. Comparative transcriptome analysis reveals the role of p53 signalling pathway during red-spotted grouper nervous necrosis virus infection in Lateolabrax japonicus brain cells. J Fish Dis. (2019) 42:585–95. doi: 10.1111/jfd.12960 PubMed DOI PMC

Karaji N, Sattentau QJ. Efferocytosis of pathogen-infected cells. Front Immunol. (2017) 22:1863. doi: 10.3389/fimmu.2017.01863 PubMed DOI PMC

Jiang X, Sun J, Li C, Hu X, Ge Y, Li B, et al. . Molecular cloning and sequence characterization of common carp (Cyprinus carpio) integrin β1 (ITGβ1) and its temporal expression in response to CyHV-3. Aquac Int. (2021) 29:1869–84. doi: 10.1007/s10499-021-00723-4 DOI

Podok P, Wang H, Xu L, Xu D, Lu L. Characterization of myeloid-specific peroxidase, keratin 8, and dual specificity phosphatase 1 as innate immune genes involved in the resistance of crucian carp (Carassius auratus gibelio) to cyprinid herpesvirus 2 infection. Fish Shellfish Immunol. (2014) 41:531–40. doi: 10.1016/j.fsi.2014.10.001 PubMed DOI

Shi X, Gao F, Zhao X, Pei C, Zhu L, Zhang J, et al. . Role of HIF in fish inflammation. Fish Shellfish Immunol. (2023) 143:109222. doi: 10.1016/j.fsi.2023.109222 PubMed DOI

Kaczorek E, Szarek J, Mikiewicz M, Terech-Majewska E, Schulz P, Małaczewska J, et al. . Effect of feed supplementation with kynurenic acid on the morphology of the liver, kidney and gills in rainbow trout (Oncorhynchus mykiss Walbaum, 1792), healthy and experimentally infected with Yersinia ruckeri . J Fish Dis. (2017) 40:873–84. doi: 10.1111/jfd.12567 PubMed DOI

Rojo I, de Ilárduya ÓM, Estonba A, Pardo MA. Innate immune gene expression in individual zebrafish after Listonella anguillarum. inoculation. Fish Shellfish Immunol. (2007) 23:1285e1293. doi: 10.1016/j.fsi.2007.07.002 PubMed DOI

Liu J, Yan Y, Yan J, Wang J, Wei J, Xiao J, et al. . Multi-omics analysis revealed crucial genes and pathways associated with black carp antiviral innate immunity. Fish Shellfish Immunol. (2020) 106:724–32. doi: 10.1016/j.fsi.2020.08.047 PubMed DOI

Lu WJ, Zhou L, Gao FX, Zhou YL, Li Z, Zhang XJ, et al. . Dynamic and differential expression of duplicated cxcr4/cxcl12 genes facilitates antiviral response in hexaploid gibel carp. Front Immunol. (2020) 11:2176. doi: 10.3389/fimmu.2020.02176 PubMed DOI PMC

Lin CY, Chen YM, Hsu HH, Shiu CT, Kuo HC, Chen TY. Grouper (Epinephelus coioides) CXCR4 is expressed in response to pathogens infection and early stage of development. Dev Comp Immunol. (2012) 36:112–20. doi: 10.1016/j.dci.2011.06.009 PubMed DOI

Aquilino C, Castro R, Fischer U, Tafall C. Transcriptomic responses in rainbow trout gills upon infection with viral hemorrhagic septicemia virus (VHSV). Dev Comp Immunol. (2014) 44:12–20. doi: 10.1016/j.dci.2013.11.006 PubMed DOI

Zaballos A, Gutiérrez J, Varona R, Ardavín C, Márquez G. Cutting edge: Identification of the orphan chemokine receptor GPR-9–6 as CCR9, the receptor for the chemokine TECK. J Immunol. (1999) 162:5671–5. doi: 10.4049/jimmunol.162.10.5671 PubMed DOI

Liu F, Su B, Fu Q, Shang M, Gao C, Tan F, et al. . Identification, characterization and expression analysis of TLR5 in the mucosal tissues of turbot (Scophthalmus maximus L.) following bacterial challenge. Fish Shellfish Immunol. (2017) 68:272–9. doi: 10.1016/j.fsi.2017.07.021 PubMed DOI

Xue X, Caballero-Solares A, Hall JR, Umasuthan N, Kumar S, Jakob E, et al. . Transcriptome profiling of atlantic salmon (Salmo salar) parr with higher and lower pathogen loads following Piscirickettsia salmonis infection. Front Immunol. (2021) 12:789465. doi: 10.3389/fimmu.2021.789465 PubMed DOI PMC

Zhan F, Li Y, Shi F, Lu Z, Yang M, Li Q, et al. . Characterization analysis of TLR5a and TLR5b immune response after different bacterial infection in grass carp (Ctenopharyngodon idella). Fish Shellfish Immunol. (2023) 136:108716. doi: 10.1016/j.fsi.2023.108716 PubMed DOI

Cordero H, Mauro M, Cuesta A, Cammarata M, Esteban MA. In vitro cytokine profile revealed differences from dorsal and ventral skin susceptibility to pathogen-probiotic interaction in gilthead seabream. Fish Shellfish Immunol. (2016) 56:188–91. doi: 10.1016/j.fsi.2016.07.018 PubMed DOI

Huang P, Cai J, Yu D, Tang J, Lu Y, Wu Z, et al. . An IL-6 gene in humphead snapper (Lutjanus sanguineus): Identification, expression analysis and its adjuvant effects on Vibrio harveyi OmpW DANN vaccine. Fish Shellfish Immunol. (2019) 95:546–55. doi: 10.1016/j.fsi.2019.11.013 PubMed DOI

Huang L, Zhao L, Liu W, Xu X, Su Y, Qin Y, et al. . Dual RNA-seq unveils Pseudomonas plecoglossicida htpG gene functions during host-pathogen interactions with Epinephelus coioides . Front Immunol. (2019) 10:984. doi: 10.3389/fimmu.2019.00984 PubMed DOI PMC

Ling X, Dong W, Zhang Y, Qian X, Zhang W, He W, et al. . Comparative transcriptomics and histopathological analysis of crucian carp infection by atypical Aeromonas salmonicida . Fish Shellfish Immunol. (2019) 94:294–307. doi: 10.1016/j.fsi.2019.09.006 PubMed DOI

Valle A, Leiro JM, Pereiro P, Figueras A, Novoa B, Dirks RPH, et al. . Interactions between the parasite Philasterides dicentrarchi and the immune system of the turbot Scophthalmus maximus . A transcriptomic analysis Biol. (2020) 9:337. doi: 10.3390/biology9100337 PubMed DOI PMC

King KC, Seppälä O, Neiman M. Is more better? Polyploidy and parasite resistance. Biol Lett. (2012) 8:598–600. doi: 10.1098/rsbl.2011.1152 PubMed DOI PMC

Guo Z, Liliom K, Fischer DJ, Bathurst IC, Tomei LD, Kiefer MC, et al. . Molecular cloning of a high-affinity receptor for the growth factor- like lipid mediator lysophosphatidic acid from Xenopus oocytes. Proc Natl Acad Sci USA. (1996) 93:14367–72. doi: 10.1073/pnas.93.25.14367 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...