Chromosome-scale genome assembly for the duckweed Spirodela intermedia, integrating cytogenetic maps, PacBio and Oxford Nanopore libraries
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
33154426
PubMed Central
PMC7645714
DOI
10.1038/s41598-020-75728-9
PII: 10.1038/s41598-020-75728-9
Knihovny.cz E-zdroje
- MeSH
- Araceae genetika MeSH
- chromozomy rostlin * MeSH
- genom rostlinný * MeSH
- karyotyp MeSH
- karyotypizace MeSH
- mapování chromozomů MeSH
- nanopóry MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Duckweeds are small, free-floating, morphologically highly reduced organisms belonging to the monocot order Alismatales. They display the most rapid growth among flowering plants, vary ~ 14-fold in genome size and comprise five genera. Spirodela is the phylogenetically oldest genus with only two mainly asexually propagating species: S. polyrhiza (2n = 40; 160 Mbp/1C) and S. intermedia (2n = 36; 160 Mbp/1C). This study combined comparative cytogenetics and de novo genome assembly based on PacBio, Illumina and Oxford Nanopore (ON) reads to obtain the first genome reference for S. intermedia and to compare its genomic features with those of the sister species S. polyrhiza. Both species' genomes revealed little more than 20,000 putative protein-coding genes, very low rDNA copy numbers and a low amount of repetitive sequences, mainly Ty3/gypsy retroelements. The detection of a few new small chromosome rearrangements between both Spirodela species refined the karyotype and the chromosomal sequence assignment for S. intermedia.
Biology Faculty Dalat University District 8 Dalat City Lamdong Province Vietnam
Institute of Biology Martin Luther University Halle Wittenberg 06120 Halle Germany
Leibniz Institute of Plant Genetics and Crop Plant Research 06466 Gatersleben Stadt Seeland Germany
Zobrazit více v PubMed
Goswami C, Majumder A, Misra AK, Bandyopadhyay K. Arsenic uptake by Lemna minor in hydroponic system. Int. J. Phytoremediation. 2014;16:1221–1227. doi: 10.1080/15226514.2013.821452. PubMed DOI
Tatar ŞY, Öbek E. Potential of Lemna gibba L. and Lemna minor L. for accumulation of Boron from secondary effluents. Ecol. Eng. 2014;70:332–336. doi: 10.1016/j.ecoleng.2014.06.033. DOI
Teixeira S, Vieira MN, Espinha Marques J, Pereira R. Bioremediation of an iron-rich mine effluent by Lemna minor. Int. J. Phytoremediation. 2014;16:1228–1240. doi: 10.1080/15226514.2013.821454. PubMed DOI
Verma R, Suthar S. Synchronized urban wastewater treatment and biomass production using duckweed Lemna gibba L. Ecol. Eng. 2014;64:337–343. doi: 10.1016/j.ecoleng.2013.12.055. DOI
Fourounjian P, Fakhoorian T, Cao X. Importance of duckweeds in basic research and their industrial applications. In: Cao XH, Fourounjian P, Wang W, editors. The Duckweed Genomes. Berlin: Springer; 2020. pp. 1–17.
Vu G, Fourounjian P, Wang W, Cao X. Future prospects of duckweed research and applications. In: Cao XH, Fourounjian P, Wang W, editors. The Duckweed Genomes. Berlin: Springer; 2020. pp. 179–185.
Ziegler P, Sree KS, Appenroth KJ. Duckweeds for water remediation and toxicity testing. Toxicol. Environ. Chem. 2016;98:1127–1154. doi: 10.1080/02772248.2015.1094701. DOI
Ziegler, P., Sree, K. S. & Appenroth, K. J. The uses of duckweed in relation to water remediation. Desalination & Water Treatment, 63, 327–342 (2017). In 5th International Conference on Environmental Management, Engineering, Planning and Economics, Vol. 63, 327–342 (Balaban Publishers - Desalination Publications, Mykonos, Greece, 2017).
Ziegler P, Adelmann K, Zimmer S, Schmidt C, Appenroth KJ. Relative in vitro growth rates of duckweeds (Lemnaceae)—the most rapidly growing higher plants. Plant Biol. 2015;17(Suppl 1):33–41. doi: 10.1111/plb.12184. PubMed DOI
Appenroth K-J, et al. Nutritional value of the duckweed species of the genus Wolffia (Lemnaceae) as human food. Front. Chem. 2018;6:483. doi: 10.3389/fchem.2018.00483. PubMed DOI PMC
Sońta M, Rekiel A, Batorska M. Use of duckweed (Lemna L.) in sustainable livestock production and aquaculture: a review. Ann. Anim. Sci. 2019;19:257–271. doi: 10.2478/aoas-2018-0048. DOI
Ren H, et al. Enhanced biogas production in the duckweed anaerobic digestion process. J. Energy Resour. Technol. 2018;140:041805. doi: 10.1115/1.4039782. DOI
Cui W, Cheng JJ. Growing duckweed for biofuel production: a review. Plant Biol. 2015;17(Suppl 1):16–23. doi: 10.1111/plb.12216. PubMed DOI
Bog M, et al. Genetic structure of the genus Lemna L. (Lemnaceae) as revealed by amplified fragment length polymorphism. Planta. 2010;232:609–619. doi: 10.1007/s00425-010-1201-2. PubMed DOI
Bog M, et al. A taxonomic revision of Lemna sect. Uninerves (Lemnaceae) Taxon. 2020;69:56–66. doi: 10.1002/tax.12188. DOI
Tippery NP, Les DH, Crawford DJ. Evaluation of phylogenetic relationships in Lemnaceae using nuclear ribosomal data. Plant Biol. 2015;17(Suppl 1):50–58. doi: 10.1111/plb.12203. PubMed DOI
Bog M, et al. Genetic characterization and barcoding of taxa in the genera Landoltia and Spirodela (Lemnaceae) by three plastidic markers and amplified fragment length polymorphism (AFLP) Hydrobiologia. 2015;749:169–182. doi: 10.1007/s10750-014-2163-3. PubMed DOI
Hoang PTN, Schubert V, Meister A, Fuchs J, Schubert I. Variation in genome size, cell and nucleus volume, chromosome number and rDNA loci among duckweeds. Sci. Rep. 2019;9:3234. doi: 10.1038/s41598-019-39332-w. PubMed DOI PMC
Landolt E. The family of Lemnaceae: a monographic study (Vol 1) Zürich: Veröffentlichungen des Geobotanischen Institutes der Eidg. Techn. Hochschule; 1986.
Wang W, Kerstetter RA, Michael TP. Evolution of genome size in duckweeds (Lemnaceae) J. Bot. 2011;1–9:2011. doi: 10.1155/2011/570319. DOI
Wang W, et al. The Spirodela polyrhiza genome reveals insights into its neotenous reduction fast growth and aquatic lifestyle. Nat. Commun. 2014;5:3311. doi: 10.1038/ncomms4311. PubMed DOI PMC
Harkess A, et al. A new Spirodela polyrhiza genome and proteome reveal a conserved chromosomal structure with high abundances of proteins favoring energy production. J. bioRxiv. 2020 doi: 10.1101/2020.01.23.909457. PubMed DOI
Cao HX, et al. The map-based genome sequence of Spirodela polyrhiza aligned with its chromosomes, a reference for karyotype evolution. New Phytol. 2016;209:354–363. doi: 10.1111/nph.13592. PubMed DOI
Hoang PNT, et al. Generating a high-confidence reference genome map of the Greater Duckweed by integration of cytogenomic, optical mapping and Oxford Nanopore technologies. Plant J. 2018;96:670–684. doi: 10.1111/tpj.14049. PubMed DOI
Michael TP, et al. Comprehensive definition of genome features in Spirodela polyrhiza by high-depth physical mapping and short-read DNA sequencing strategies. Plant J. 2017 doi: 10.1111/tpj.13400. PubMed DOI
Ho EKH, Bartkowska M, Wright SI, Agrawal AF. Population genomics of the facultatively asexual duckweed Spirodela polyrhiza. New Phytol. 2019;224:1361–1371. doi: 10.1111/nph.16056. PubMed DOI
Xu S, et al. Low genetic variation is associated with low mutation rate in the giant duckweed. Nat. Commun. 2019;10:1243. doi: 10.1038/s41467-019-09235-5. PubMed DOI PMC
Chamala S, et al. Assembly and validation of the genome of the nonmodel basal angiosperm Amborella. Science. 2013;342:1516–1517. doi: 10.1126/science.1241130. PubMed DOI
Hoang PTN, Schubert I. Reconstruction of chromosome rearrangements between the two most ancestral duckweed species Spirodela polyrhiza and S. intermedia. Chromosoma. 2017;126:729–739. doi: 10.1007/s00412-017-0636-7. PubMed DOI
Geber, G. Zur Karyosystematik der Lemnaceae. Ph.D. thesis, University of Vienna, Vienna, Austria, p.140 (1989).
Urbanska-Worytkiewicz, K. Cytological variation within the family of "Lemnaceae". Veröffentlichungen des Geobotanischen Institutes der Eidg. Tech. Hochschule, Stiftung Rübel, in Zürich. 10.5169/seals-308615 (1980).
Koren S, et al. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res. 2017;27:722–736. doi: 10.1101/gr.215087.116. PubMed DOI PMC
Darling AC, Mau B, Blattner FR, Perna NT. Mauve: multiple alignment of conserved genomic sequence with rearrangements. Genome Res. 2004;14:1394–1403. doi: 10.1101/gr.2289704. PubMed DOI PMC
Boetzer M, Pirovano W. SSPACE-LongRead: scaffolding bacterial draft genomes using long read sequence information. BMC Bioinform. 2014;15:211. doi: 10.1186/1471-2105-15-211. PubMed DOI PMC
Li H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics. 2018;34:3094–3100. doi: 10.1093/bioinformatics/bty191. PubMed DOI PMC
Simao FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics. 2015;31:3210–3212. doi: 10.1093/bioinformatics/btv351. PubMed DOI
Waterhouse RM, et al. BUSCO applications from quality assessments to gene prediction and phylogenomics. Mol. Biol. Evol. 2018;35:543–548. doi: 10.1093/molbev/msx319. PubMed DOI PMC
Van Hoeck A, et al. The first draft genome of the aquatic model plant Lemna minor opens the route for future stress physiology research and biotechnological applications. Biotech. Biofuels. 2015;8:188. doi: 10.1186/s13068-015-0381-1. PubMed DOI PMC
Keilwagen J, et al. Using intron position conservation for homology-based gene prediction. Nucl. Acids Res. 2016;44:e89. doi: 10.1093/nar/gkw092. PubMed DOI PMC
Novak P, Neumann P, Pech J, Steinhaisl J, Macas J. RepeatExplorer: a Galaxy-based web server for genome-wide characterization of eukaryotic repetitive elements from next-generation sequence reads. Bioinformatics. 2013;29:792–793. doi: 10.1093/bioinformatics/btt054. PubMed DOI
Price AL, Jones NC, De Pevzner PA. novo identification of repeat families in large genomes. Bioinformatics. 2005;21(Suppl 1):i351–358. doi: 10.1093/bioinformatics/bti1018. PubMed DOI
Benson G. Tandem repeats finder: a program to analyze DNA sequences. Nucl. Acids Res. 1999;27:573–580. doi: 10.1093/nar/27.2.573. PubMed DOI PMC
Borisjuk N, et al. Structural and biochemical properties of duckweed surface cuticle. Front. Chem. 2018;6:317. doi: 10.3389/fchem.2018.00317. PubMed DOI PMC
Chakraborty M, Baldwin-Brown JG, Long AD, Emerson JJ. Contiguous and accurate de novo assembly of metazoan genomes with modest long read coverage. Nucl. Acids Res. 2016;44:e147. doi: 10.1093/nar/gkw654. PubMed DOI PMC
Jiao WB, et al. Improving and correcting the contiguity of long-read genome assemblies of three plant species using optical mapping and chromosome conformation capture data. Genome Res. 2017;27:778–786. doi: 10.1101/gr.213652.116. PubMed DOI PMC
Jayakumar V, Sakakibara Y. Comprehensive evaluation of non-hybrid genome assembly tools for third-generation PacBio long-read sequence data. Br. Bioinform. 2019;20:866–876. doi: 10.1093/bib/bbx147. PubMed DOI PMC
Maumus F, Quesneville H. Deep investigation of Arabidopsis thaliana junk DNA reveals a continuum between repetitive elements and genomic dark matter. PLoS ONE. 2014;9:e94101. doi: 10.1371/journal.pone.0094101. PubMed DOI PMC
Vu GTH, et al. Comparative genome analysis reveals divergent genome size evolution in a carnivorous plant genus. Plant Genome. 2015;8:3. doi: 10.3835/plantgenome2015.04.0021. PubMed DOI
Schubert I, Vu GTH. Genome stability and evolution: attempting a holistic view. Trends Plant Sci. 2016;21:749–757. doi: 10.1016/j.tplants.2016.06.003. PubMed DOI
Gong R, et al. Divergent functions of the GAGA-binding transcription factor family in rice. Plant J. 2018;94:32–47. doi: 10.1111/tpj.13837. PubMed DOI
Wicke S, Costa A, Munoz J, Quandt D. Restless 5S: the re-arrangement(s) and evolution of the nuclear ribosomal DNA in land plants. Mol. Phylogenet. Evol. 2011;61:321–332. doi: 10.1016/j.ympev.2011.06.023. PubMed DOI
Appenroth K-J, Teller S, Horn M. Photophysiology of turion formation and germination in Spirodela polyrhiza. Biol. Plantarum. 1996;38:95–106. doi: 10.1007/bf02879642. DOI
Vondrak T, et al. Characterization of repeat arrays in ultra-long nanopore reads reveals frequent origin of satellite DNA from retrotransposon-derived tandem repeats. Plant J. 2020;101:484–500. doi: 10.1111/tpj.14546. PubMed DOI PMC
Zimin AV, et al. Hybrid assembly of the large and highly repetitive genome of Aegilops tauschii, a progenitor of bread wheat, with the MaSuRCA mega-reads algorithm. Genome Res. 2017;27:787–792. doi: 10.1101/gr.213405.116. PubMed DOI PMC
Lagesen K, et al. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucl. Acids Res. 2007;35:3100–3108. doi: 10.1093/nar/gkm160. PubMed DOI PMC
Chan PP, Lowe TM. tRNAscan-SE: Searching for tRNA genes in genomic sequences. Methods Mol. Biol. 1962;1–14:2019. doi: 10.1007/978-1-4939-9173-0_1. PubMed DOI PMC
Jones P, et al. InterProScan 5: genome-scale protein function classification. Bioinformatics. 2014;30:1236–1240. doi: 10.1093/bioinformatics/btu031. PubMed DOI PMC
Huerta-Cepas J, et al. Fast genome-wide functional annotation through orthology assignment by eggNOG-Mapper. Mol. Biol. Evol. 2017;34:2115–2122. doi: 10.1093/molbev/msx148. PubMed DOI PMC
Huerta-Cepas J, et al. eggNOG 4.5: a hierarchical orthology framework with improved functional annotations for eukaryotic, prokaryotic and viral sequences. Nucl. Acids Res. 2016;44:286–293. doi: 10.1093/nar/gkv1248. PubMed DOI PMC
Neph S, Kuehn MS, Reynolds AP, et al. BEDOPS: high-performance genomic feature operations. Bioinformatics. 2012;28:1919–1920. doi: 10.1093/bioinformatics/bts277. PubMed DOI PMC
Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics. 2010;26:841–842. doi: 10.1093/bioinformatics/btq033. PubMed DOI PMC
Krzywinski M, et al. Circos: an information aesthetic for comparative genomics. Genome Res. 2009;19:1639–1645. doi: 10.1101/gr.092759.109. PubMed DOI PMC
Neumann P, Novak P, Hostakova N, Macas J. Systematic survey of plant LTR-retrotransposons elucidates phylogenetic relationships of their polyprotein domains and provides a reference for element classification. Mob. DNA. 2019;10:1. doi: 10.1186/s13100-018-0144-1. PubMed DOI PMC
Sobreira TJ, Durham AM, Gruber A. TRAP: automated classification, quantification and annotation of tandemly repeated sequences. Bioinformatics. 2006;22:361–362. doi: 10.1093/bioinformatics/bti809. PubMed DOI
Kuzoff RK, Sweere JA, Soltis DE, Soltis PS, Zimmer EA. The phylogenetic potential of entire 26S rDNA sequences in plants. Mol. Biol. Evol. 1998;15:251–263. doi: 10.1093/oxfordjournals.molbev.a025922. PubMed DOI
Shoup S, Lewis LA. Polyphyletic origin of parallel basal bodies in swimming cells of chlorophycean green algae (Chlorophyta) J. Phycol. 2003;39:789–796. doi: 10.1046/j.1529-8817.2003.03009.x. DOI
Lysak MA, et al. Mechanisms of chromosome number reduction in Arabidopsis thaliana and related Brassicaceae species. Proc. Nat. Acad. Sci. USA. 2006;103:5224–5229. doi: 10.1073/pnas.0510791103. PubMed DOI PMC
Probably Correct: Rescuing Repeats with Short and Long Reads