Chromosome-scale genome assembly for the duckweed Spirodela intermedia, integrating cytogenetic maps, PacBio and Oxford Nanopore libraries

. 2020 Nov 05 ; 10 (1) : 19230. [epub] 20201105

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid33154426
Odkazy

PubMed 33154426
PubMed Central PMC7645714
DOI 10.1038/s41598-020-75728-9
PII: 10.1038/s41598-020-75728-9
Knihovny.cz E-zdroje

Duckweeds are small, free-floating, morphologically highly reduced organisms belonging to the monocot order Alismatales. They display the most rapid growth among flowering plants, vary ~ 14-fold in genome size and comprise five genera. Spirodela is the phylogenetically oldest genus with only two mainly asexually propagating species: S. polyrhiza (2n = 40; 160 Mbp/1C) and S. intermedia (2n = 36; 160 Mbp/1C). This study combined comparative cytogenetics and de novo genome assembly based on PacBio, Illumina and Oxford Nanopore (ON) reads to obtain the first genome reference for S. intermedia and to compare its genomic features with those of the sister species S. polyrhiza. Both species' genomes revealed little more than 20,000 putative protein-coding genes, very low rDNA copy numbers and a low amount of repetitive sequences, mainly Ty3/gypsy retroelements. The detection of a few new small chromosome rearrangements between both Spirodela species refined the karyotype and the chromosomal sequence assignment for S. intermedia.

Zobrazit více v PubMed

Goswami C, Majumder A, Misra AK, Bandyopadhyay K. Arsenic uptake by Lemna minor in hydroponic system. Int. J. Phytoremediation. 2014;16:1221–1227. doi: 10.1080/15226514.2013.821452. PubMed DOI

Tatar ŞY, Öbek E. Potential of Lemna gibba L. and Lemna minor L. for accumulation of Boron from secondary effluents. Ecol. Eng. 2014;70:332–336. doi: 10.1016/j.ecoleng.2014.06.033. DOI

Teixeira S, Vieira MN, Espinha Marques J, Pereira R. Bioremediation of an iron-rich mine effluent by Lemna minor. Int. J. Phytoremediation. 2014;16:1228–1240. doi: 10.1080/15226514.2013.821454. PubMed DOI

Verma R, Suthar S. Synchronized urban wastewater treatment and biomass production using duckweed Lemna gibba L. Ecol. Eng. 2014;64:337–343. doi: 10.1016/j.ecoleng.2013.12.055. DOI

Fourounjian P, Fakhoorian T, Cao X. Importance of duckweeds in basic research and their industrial applications. In: Cao XH, Fourounjian P, Wang W, editors. The Duckweed Genomes. Berlin: Springer; 2020. pp. 1–17.

Vu G, Fourounjian P, Wang W, Cao X. Future prospects of duckweed research and applications. In: Cao XH, Fourounjian P, Wang W, editors. The Duckweed Genomes. Berlin: Springer; 2020. pp. 179–185.

Ziegler P, Sree KS, Appenroth KJ. Duckweeds for water remediation and toxicity testing. Toxicol. Environ. Chem. 2016;98:1127–1154. doi: 10.1080/02772248.2015.1094701. DOI

Ziegler, P., Sree, K. S. & Appenroth, K. J. The uses of duckweed in relation to water remediation. Desalination & Water Treatment, 63, 327–342 (2017). In 5th International Conference on Environmental Management, Engineering, Planning and Economics, Vol. 63, 327–342 (Balaban Publishers - Desalination Publications, Mykonos, Greece, 2017).

Ziegler P, Adelmann K, Zimmer S, Schmidt C, Appenroth KJ. Relative in vitro growth rates of duckweeds (Lemnaceae)—the most rapidly growing higher plants. Plant Biol. 2015;17(Suppl 1):33–41. doi: 10.1111/plb.12184. PubMed DOI

Appenroth K-J, et al. Nutritional value of the duckweed species of the genus Wolffia (Lemnaceae) as human food. Front. Chem. 2018;6:483. doi: 10.3389/fchem.2018.00483. PubMed DOI PMC

Sońta M, Rekiel A, Batorska M. Use of duckweed (Lemna L.) in sustainable livestock production and aquaculture: a review. Ann. Anim. Sci. 2019;19:257–271. doi: 10.2478/aoas-2018-0048. DOI

Ren H, et al. Enhanced biogas production in the duckweed anaerobic digestion process. J. Energy Resour. Technol. 2018;140:041805. doi: 10.1115/1.4039782. DOI

Cui W, Cheng JJ. Growing duckweed for biofuel production: a review. Plant Biol. 2015;17(Suppl 1):16–23. doi: 10.1111/plb.12216. PubMed DOI

Bog M, et al. Genetic structure of the genus Lemna L. (Lemnaceae) as revealed by amplified fragment length polymorphism. Planta. 2010;232:609–619. doi: 10.1007/s00425-010-1201-2. PubMed DOI

Bog M, et al. A taxonomic revision of Lemna sect. Uninerves (Lemnaceae) Taxon. 2020;69:56–66. doi: 10.1002/tax.12188. DOI

Tippery NP, Les DH, Crawford DJ. Evaluation of phylogenetic relationships in Lemnaceae using nuclear ribosomal data. Plant Biol. 2015;17(Suppl 1):50–58. doi: 10.1111/plb.12203. PubMed DOI

Bog M, et al. Genetic characterization and barcoding of taxa in the genera Landoltia and Spirodela (Lemnaceae) by three plastidic markers and amplified fragment length polymorphism (AFLP) Hydrobiologia. 2015;749:169–182. doi: 10.1007/s10750-014-2163-3. PubMed DOI

Hoang PTN, Schubert V, Meister A, Fuchs J, Schubert I. Variation in genome size, cell and nucleus volume, chromosome number and rDNA loci among duckweeds. Sci. Rep. 2019;9:3234. doi: 10.1038/s41598-019-39332-w. PubMed DOI PMC

Landolt E. The family of Lemnaceae: a monographic study (Vol 1) Zürich: Veröffentlichungen des Geobotanischen Institutes der Eidg. Techn. Hochschule; 1986.

Wang W, Kerstetter RA, Michael TP. Evolution of genome size in duckweeds (Lemnaceae) J. Bot. 2011;1–9:2011. doi: 10.1155/2011/570319. DOI

Wang W, et al. The Spirodela polyrhiza genome reveals insights into its neotenous reduction fast growth and aquatic lifestyle. Nat. Commun. 2014;5:3311. doi: 10.1038/ncomms4311. PubMed DOI PMC

Harkess A, et al. A new Spirodela polyrhiza genome and proteome reveal a conserved chromosomal structure with high abundances of proteins favoring energy production. J. bioRxiv. 2020 doi: 10.1101/2020.01.23.909457. PubMed DOI

Cao HX, et al. The map-based genome sequence of Spirodela polyrhiza aligned with its chromosomes, a reference for karyotype evolution. New Phytol. 2016;209:354–363. doi: 10.1111/nph.13592. PubMed DOI

Hoang PNT, et al. Generating a high-confidence reference genome map of the Greater Duckweed by integration of cytogenomic, optical mapping and Oxford Nanopore technologies. Plant J. 2018;96:670–684. doi: 10.1111/tpj.14049. PubMed DOI

Michael TP, et al. Comprehensive definition of genome features in Spirodela polyrhiza by high-depth physical mapping and short-read DNA sequencing strategies. Plant J. 2017 doi: 10.1111/tpj.13400. PubMed DOI

Ho EKH, Bartkowska M, Wright SI, Agrawal AF. Population genomics of the facultatively asexual duckweed Spirodela polyrhiza. New Phytol. 2019;224:1361–1371. doi: 10.1111/nph.16056. PubMed DOI

Xu S, et al. Low genetic variation is associated with low mutation rate in the giant duckweed. Nat. Commun. 2019;10:1243. doi: 10.1038/s41467-019-09235-5. PubMed DOI PMC

Chamala S, et al. Assembly and validation of the genome of the nonmodel basal angiosperm Amborella. Science. 2013;342:1516–1517. doi: 10.1126/science.1241130. PubMed DOI

Hoang PTN, Schubert I. Reconstruction of chromosome rearrangements between the two most ancestral duckweed species Spirodela polyrhiza and S. intermedia. Chromosoma. 2017;126:729–739. doi: 10.1007/s00412-017-0636-7. PubMed DOI

Geber, G. Zur Karyosystematik der Lemnaceae. Ph.D. thesis, University of Vienna, Vienna, Austria, p.140 (1989).

Urbanska-Worytkiewicz, K. Cytological variation within the family of "Lemnaceae". Veröffentlichungen des Geobotanischen Institutes der Eidg. Tech. Hochschule, Stiftung Rübel, in Zürich. 10.5169/seals-308615 (1980).

Koren S, et al. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res. 2017;27:722–736. doi: 10.1101/gr.215087.116. PubMed DOI PMC

Darling AC, Mau B, Blattner FR, Perna NT. Mauve: multiple alignment of conserved genomic sequence with rearrangements. Genome Res. 2004;14:1394–1403. doi: 10.1101/gr.2289704. PubMed DOI PMC

Boetzer M, Pirovano W. SSPACE-LongRead: scaffolding bacterial draft genomes using long read sequence information. BMC Bioinform. 2014;15:211. doi: 10.1186/1471-2105-15-211. PubMed DOI PMC

Li H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics. 2018;34:3094–3100. doi: 10.1093/bioinformatics/bty191. PubMed DOI PMC

Simao FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics. 2015;31:3210–3212. doi: 10.1093/bioinformatics/btv351. PubMed DOI

Waterhouse RM, et al. BUSCO applications from quality assessments to gene prediction and phylogenomics. Mol. Biol. Evol. 2018;35:543–548. doi: 10.1093/molbev/msx319. PubMed DOI PMC

Van Hoeck A, et al. The first draft genome of the aquatic model plant Lemna minor opens the route for future stress physiology research and biotechnological applications. Biotech. Biofuels. 2015;8:188. doi: 10.1186/s13068-015-0381-1. PubMed DOI PMC

Keilwagen J, et al. Using intron position conservation for homology-based gene prediction. Nucl. Acids Res. 2016;44:e89. doi: 10.1093/nar/gkw092. PubMed DOI PMC

Novak P, Neumann P, Pech J, Steinhaisl J, Macas J. RepeatExplorer: a Galaxy-based web server for genome-wide characterization of eukaryotic repetitive elements from next-generation sequence reads. Bioinformatics. 2013;29:792–793. doi: 10.1093/bioinformatics/btt054. PubMed DOI

Price AL, Jones NC, De Pevzner PA. novo identification of repeat families in large genomes. Bioinformatics. 2005;21(Suppl 1):i351–358. doi: 10.1093/bioinformatics/bti1018. PubMed DOI

Benson G. Tandem repeats finder: a program to analyze DNA sequences. Nucl. Acids Res. 1999;27:573–580. doi: 10.1093/nar/27.2.573. PubMed DOI PMC

Borisjuk N, et al. Structural and biochemical properties of duckweed surface cuticle. Front. Chem. 2018;6:317. doi: 10.3389/fchem.2018.00317. PubMed DOI PMC

Chakraborty M, Baldwin-Brown JG, Long AD, Emerson JJ. Contiguous and accurate de novo assembly of metazoan genomes with modest long read coverage. Nucl. Acids Res. 2016;44:e147. doi: 10.1093/nar/gkw654. PubMed DOI PMC

Jiao WB, et al. Improving and correcting the contiguity of long-read genome assemblies of three plant species using optical mapping and chromosome conformation capture data. Genome Res. 2017;27:778–786. doi: 10.1101/gr.213652.116. PubMed DOI PMC

Jayakumar V, Sakakibara Y. Comprehensive evaluation of non-hybrid genome assembly tools for third-generation PacBio long-read sequence data. Br. Bioinform. 2019;20:866–876. doi: 10.1093/bib/bbx147. PubMed DOI PMC

Maumus F, Quesneville H. Deep investigation of Arabidopsis thaliana junk DNA reveals a continuum between repetitive elements and genomic dark matter. PLoS ONE. 2014;9:e94101. doi: 10.1371/journal.pone.0094101. PubMed DOI PMC

Vu GTH, et al. Comparative genome analysis reveals divergent genome size evolution in a carnivorous plant genus. Plant Genome. 2015;8:3. doi: 10.3835/plantgenome2015.04.0021. PubMed DOI

Schubert I, Vu GTH. Genome stability and evolution: attempting a holistic view. Trends Plant Sci. 2016;21:749–757. doi: 10.1016/j.tplants.2016.06.003. PubMed DOI

Gong R, et al. Divergent functions of the GAGA-binding transcription factor family in rice. Plant J. 2018;94:32–47. doi: 10.1111/tpj.13837. PubMed DOI

Wicke S, Costa A, Munoz J, Quandt D. Restless 5S: the re-arrangement(s) and evolution of the nuclear ribosomal DNA in land plants. Mol. Phylogenet. Evol. 2011;61:321–332. doi: 10.1016/j.ympev.2011.06.023. PubMed DOI

Appenroth K-J, Teller S, Horn M. Photophysiology of turion formation and germination in Spirodela polyrhiza. Biol. Plantarum. 1996;38:95–106. doi: 10.1007/bf02879642. DOI

Vondrak T, et al. Characterization of repeat arrays in ultra-long nanopore reads reveals frequent origin of satellite DNA from retrotransposon-derived tandem repeats. Plant J. 2020;101:484–500. doi: 10.1111/tpj.14546. PubMed DOI PMC

Zimin AV, et al. Hybrid assembly of the large and highly repetitive genome of Aegilops tauschii, a progenitor of bread wheat, with the MaSuRCA mega-reads algorithm. Genome Res. 2017;27:787–792. doi: 10.1101/gr.213405.116. PubMed DOI PMC

Lagesen K, et al. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucl. Acids Res. 2007;35:3100–3108. doi: 10.1093/nar/gkm160. PubMed DOI PMC

Chan PP, Lowe TM. tRNAscan-SE: Searching for tRNA genes in genomic sequences. Methods Mol. Biol. 1962;1–14:2019. doi: 10.1007/978-1-4939-9173-0_1. PubMed DOI PMC

Jones P, et al. InterProScan 5: genome-scale protein function classification. Bioinformatics. 2014;30:1236–1240. doi: 10.1093/bioinformatics/btu031. PubMed DOI PMC

Huerta-Cepas J, et al. Fast genome-wide functional annotation through orthology assignment by eggNOG-Mapper. Mol. Biol. Evol. 2017;34:2115–2122. doi: 10.1093/molbev/msx148. PubMed DOI PMC

Huerta-Cepas J, et al. eggNOG 4.5: a hierarchical orthology framework with improved functional annotations for eukaryotic, prokaryotic and viral sequences. Nucl. Acids Res. 2016;44:286–293. doi: 10.1093/nar/gkv1248. PubMed DOI PMC

Neph S, Kuehn MS, Reynolds AP, et al. BEDOPS: high-performance genomic feature operations. Bioinformatics. 2012;28:1919–1920. doi: 10.1093/bioinformatics/bts277. PubMed DOI PMC

Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics. 2010;26:841–842. doi: 10.1093/bioinformatics/btq033. PubMed DOI PMC

Krzywinski M, et al. Circos: an information aesthetic for comparative genomics. Genome Res. 2009;19:1639–1645. doi: 10.1101/gr.092759.109. PubMed DOI PMC

Neumann P, Novak P, Hostakova N, Macas J. Systematic survey of plant LTR-retrotransposons elucidates phylogenetic relationships of their polyprotein domains and provides a reference for element classification. Mob. DNA. 2019;10:1. doi: 10.1186/s13100-018-0144-1. PubMed DOI PMC

Sobreira TJ, Durham AM, Gruber A. TRAP: automated classification, quantification and annotation of tandemly repeated sequences. Bioinformatics. 2006;22:361–362. doi: 10.1093/bioinformatics/bti809. PubMed DOI

Kuzoff RK, Sweere JA, Soltis DE, Soltis PS, Zimmer EA. The phylogenetic potential of entire 26S rDNA sequences in plants. Mol. Biol. Evol. 1998;15:251–263. doi: 10.1093/oxfordjournals.molbev.a025922. PubMed DOI

Shoup S, Lewis LA. Polyphyletic origin of parallel basal bodies in swimming cells of chlorophycean green algae (Chlorophyta) J. Phycol. 2003;39:789–796. doi: 10.1046/j.1529-8817.2003.03009.x. DOI

Lysak MA, et al. Mechanisms of chromosome number reduction in Arabidopsis thaliana and related Brassicaceae species. Proc. Nat. Acad. Sci. USA. 2006;103:5224–5229. doi: 10.1073/pnas.0510791103. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...