Personal Perspectives on Plant Ribosomal RNA Genes Research: From Precursor-rRNA to Molecular Evolution
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články, přehledy
PubMed
34992624
PubMed Central
PMC8724763
DOI
10.3389/fpls.2021.797348
Knihovny.cz E-zdroje
- Klíčová slova
- epigenetics, hybridization, molecular evolution, nucleolar dominance, polyploidy, rDNA research history, rRNA precursor, rRNA processing,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
The history of rDNA research started almost 90 years ago when the geneticist, Barbara McClintock observed that in interphase nuclei of maize the nucleolus was formed in association with a specific region normally located near the end of a chromosome, which she called the nucleolar organizer region (NOR). Cytologists in the twentieth century recognized the nucleolus as a common structure in all eukaryotic cells, using both light and electron microscopy and biochemical and genetic studies identified ribosomes as the subcellular sites of protein synthesis. In the mid- to late 1960s, the synthesis of nuclear-encoded rRNA was the only system in multicellular organisms where transcripts of known function could be isolated, and their synthesis and processing could be studied. Cytogenetic observations of NOR regions with altered structure in plant interspecific hybrids and detailed knowledge of structure and function of rDNA were prerequisites for studies of nucleolar dominance, epistatic interactions of rDNA loci, and epigenetic silencing. In this article, we focus on the early rDNA research in plants, performed mainly at the dawn of molecular biology in the 60 to 80-ties of the last century which presented a prequel to the modern genomic era. We discuss - from a personal view - the topics such as synthesis of rRNA precursor (35S pre-rRNA in plants), processing, and the organization of 35S and 5S rDNA. Cloning and sequencing led to the observation that the transcribed and processed regions of the rRNA genes vary enormously, even between populations and species, in comparison with the more conserved regions coding for the mature rRNAs. Epigenetic phenomena and the impact of hybridization and allopolyploidy on rDNA expression and homogenization are discussed. This historical view of scientific progress and achievements sets the scene for the other articles highlighting the immense progress in rDNA research published in this special issue of Frontiers in Plant Science on "Molecular organization, evolution, and function of ribosomal DNA."
Center of Plant Molecular Biology University of Tübingen Tübingen Germany
School of Life Sciences Huaiyin Normal University Huai'an China
Zobrazit více v PubMed
Adesnik M., Levinthal C. (1969). Synthesis and maturation of ribosomal RNA in Escherichia coli. J. Mol. Biol. 46, 281–303. doi: 10.1016/0022-2836(69)90422-7, PMID: PubMed DOI
Appels R., Moran L. B., Gustafson J. P. (1986). Rye heterochromatin. 1. Studies on clusters of the major repeating sequence and the identification of a new dispersed repetitive sequence element. Can. J. Genet. Cytol. 28, 645–657. doi: 10.1139/g86-094 DOI
Appels R., Wang P., Islam S. (2021). Integrating wheat nucleolus structure and function: variation in the wheat ribosomal RNA and protein genes. Front. Plant Sci. PubMed PMC
Bendich A. J., Anderson R. S. (1974). Novel properties of satellite DNA from muskmelon. Proc. Natl. Acad. Sci. U. S. A. 71, 1511–1515. doi: 10.1073/pnas.71.4.1511, PMID: PubMed DOI PMC
Bersaglieri C., Santoro R. (2019). Genome organization in and around the nucleolus. Cell 8:579. doi: 10.3390/cells8060579, PMID: PubMed DOI PMC
Birnstiel M., Speirs J., Purdom I., Jones K., Loening U. E. (1968). Properties and composition of isolated ribosomal DNA satellite of Xenopus laevis. Nature 219, 454–463. doi: 10.1038/219454a0, PMID: PubMed DOI
Birnstiel M. L., Wallace H., Stirlin L., Fischberger M. (1966). Localization of the ribosomal DNA complements in the nucleolar organizer regions in Xenopus laevis. Natl. Cancer Inst. Monogr. 23, 431–447. PMID: PubMed
Borisjuk N., Borisjuk L., Komarnytsky S., Timeva S., Hemleben V., Gleba Y., et al. . (2000). Tobacco ribosomal DNA spacer element stimulates amplification and expression of heterologous genes. Nat. Biotechnol. 18, 1303–1306. doi: 10.1038/82430, PMID: PubMed DOI
Borisjuk N., Borisjuk L., Petjuch G., Hemleben V. (1994). Comparison of nuclear ribosomal RNA genes among Solanum species and other Solanaceae. Genome 37, 271–279. doi: 10.1139/g94-038, PMID: PubMed DOI
Borisjuk N. V., Davidjuk Y. M., Kostishin S. S., Miroshnichenco G. P., Velasco R., Hemleben V., et al. . (1997). Structural analysis of rDNA in the genus Nicotiana. Plant Mol. Biol. 35, 655–660. doi: 10.1023/A:1005856618898, PMID: PubMed DOI
Borisjuk N., Hemleben V. (1993). Nucleotide sequence of the potato rDNA intergenic spacer. Plant Mol. Biol. 21, 381–384. doi: 10.1007/Bf00019953, PMID: PubMed DOI
Borisjuk N. V., Kostyshin S. S., Volkov R. A., Miroshnichenko G. P. (1989). Ribosomal RNA gene organization in higher plants from Nicotiana genus. Mol. Biol. 23, 1067–1074.
Borisjuk N. V., Miroshnichenko G. P. (1989). Organization of ribosomal RNA genes in Brassica oleracea, B. campestris and their natural allotetraploid hybrid B. napus. Genetika 25, 417–424.
Borisjuk N. V., Momot V. P., Gleba Y. (1988). Novel class of rDNA repeat units in somatic hybrids between Nicotiana and Atropa. Theor. Appl. Genet. 76, 108–112. doi: 10.1007/Bf00288839, PMID: PubMed DOI
Brown D. D., Gurdon J. B. (1964). Absence of ribosomal RNA synthesis in anucleolate mutant of Xenopus laevis. Proc. Natl. Acad. Sci. U. S. A. 51, 139–146. doi: 10.1073/pnas.51.1.139, PMID: PubMed DOI PMC
Brown J. W. S., Shaw P. J. (1998). Small nucleolar RNAs and pre-rRNA processing in plants. Plant Cell 10, 649–657. doi: 10.1105/tpc.10.5.649, PMID: PubMed DOI PMC
Brown D. D., Wensink P. C., Jordan E. (1972). A comparison of ribosomal DNAs of Xenopus laevis and Xenopus mulleri: evolution of tandem genes. J. Mol. Biol. 63, 57–73. doi: 10.1016/0022-2836(72)90521-9, PMID: PubMed DOI
Cantara W. A., Crain P. F., Rozenski J., McCloskey J. A., Harris K. A., Zhang X. N., et al. . (2011). The RNA modification database, RNAMDB: 2011 update. Nucl. Acids Res. 39, D195–D201. doi: 10.1093/nar/gkq1028, PMID: PubMed DOI PMC
Capesius I. (1997). Analysis of the ribosomal RNA gene repeat from the moss Funaria hygrometrica. Plant Mol. Biol. 33, 559–564. doi: 10.1023/a:1005740031313, PMID: PubMed DOI
Caudy A. A., Pikaard C. S. (2002). Xenopus ribosomal RNA gene intergenic spacer elements conferring transcriptional enhancement and nucleolar dominance-like competition in oocytes. J. Biol. Chem. 277, 31577–31584. doi: 10.1074/jbc.M202737200, PMID: PubMed DOI
Chandrasekhara C., Mohannath G., Blevins T., Pontvianne F., Pikaard C. S. (2016). Chromosome-specific NOR inactivation explains selective rRNA gene silencing and dosage control in Arabidopsis. Genes Dev. 30, 177–190. doi: 10.1101/gad.273755.115, PMID: PubMed DOI PMC
Chandrashekaran M. (2006). Erwin Bünning (1906–1990): a centennial homage. J. Biosci. 31, 5–12. doi: 10.1007/BF02705230, PMID: PubMed DOI
Chen Z. J., Comai L., Pikaard C. S. (1988). Gene dosage and stochastic effects determine the severity and direction of uniparental ribosomal RNA gene silencing (nucleolar dominance) in Arabidopsis allopolyploids. Proc. Natl. Acad. Sci. USA 95, 14891–14896. doi: 10.1073/pnas.95.25.14891 PubMed DOI PMC
Chen Z. J., Pikaard C. S. (1997a). Epigenetic silencing of RNA polymerase I transcription: a role for DNA methylation and histone modification in nucleolar dominance. Genes Dev. 11, 2124–2136. doi: 10.1101/gad.11.16.2124, PMID: PubMed DOI PMC
Chen Z. J., Pikaard C. S. (1997b). Transcriptional analysis of nucleolar dominance in polyploid plants: biased expression/silencing of progenitor rRNA genes is developmentally regulated in Brassica. Proc. Natl. Acad. Sci. U. S. A. 94, 3442–3447. doi: 10.1073/pnas.94.7.3442, PMID: PubMed DOI PMC
Chen G., Stepanenko A., Borisjuk N. (2021). Mosaic arrangement of the 5S rDNA in the aquatic plant Landoltia punctata (Lemnaceae). Front. Plant Sci. 12:678689. doi: 10.3389/fpls.2021.678689, PMID: PubMed DOI PMC
Cox B. J., Turnock G. (1973). Synthesis and processing of ribosomal RNA in cultured plant cells. Eur. J. Biochem. 37, 367–376. doi: 10.1111/j.1432-1033.1973, PMID: PubMed DOI
Dadejova M., Lim K. Y., Souckova-Skalicka K., Matyasek R., Grandbastien M. A., Leitch A., et al. . (2007). Transcription activity of rRNA genes correlates with a tendency towards intergenomic homogenization in Nicotiana allotetraploids. New Phytol. 174, 658–668. doi: 10.1111/j.1469-8137.2007.02034.x, PMID: PubMed DOI
Dahlberg A. E., Peacock A. C. (1971). Studies of 16 and 23 S ribosomal RNA of Escherichia coli using composite gel electrophoresis. J. Mol. Biol. 55, 61–74. doi: 10.1016/0022-2836(71)90281-6, PMID: PubMed DOI
Delcasso-Tremousaygue D., Grellet F., Panabieres F., Ananiev E. D., Delseny M. (1988). Structural and transcriptional characterization of the external spacer of a ribosomal RNA nuclear gene from a higher plant. Eur. J. Biochem. 172, 767–776. doi: 10.1111/j.1432-1033.1988.tb13956.x, PMID: PubMed DOI
Denk T., Grimm G. (2010). The oaks of western Eurasia: traditional classifications and evidence from two nuclear markers. Taxon 59, 351–366. doi: 10.1002/tax.592002 DOI
Denk T., Grimm G. W., Hemleben V. (2005). Patterns of molecular and morphological differentiation in Fagus (Fagaceae): phylogenetic implications. Am. J. Bot. 92, 1006–1016. doi: 10.3732/ajb.92.6.1006, PMID: PubMed DOI
Dodsworth S., Kovarik A., Grandbastien M.-A., Leitch I. J., Leitch A. R. (2020). “Repetitive DNA dynamics and polyploidization in the genus Nicotiana (Solanaceae),” in The Tobacco Plant Genome. Compendium of Plant Genomes. eds. Ivanov N., Sierro N., Peitsch M. (Cham: Springer; ).
Dover G. A. (1982). Molecular drive: a cohesive mode of species evolution. Nature 299, 111–117. doi: 10.1038/299111a0, PMID: PubMed DOI
Earley K., Lawrence R. J., Pontes O., Reuther R., Enciso A. J., Silva M., et al. . (2006). Erasure of histone acetylation by Arabidopsis HDA6 mediates large-scale gene silencing in nucleolar dominance. Genes Dev. 20, 1283–1293. doi: 10.1101/gad.1417706, PMID: PubMed DOI PMC
Eickbush T. H., Eickbush D. G. (2007). Finely orchestrated movements: evolution of the ribosomal RNA genes. Genetics 175, 477–485. doi: 10.1534/genetics.107.071399, PMID: PubMed DOI PMC
Ellis T. H., Lee D., Thomas C. M., Simpson P. R., Cleary W. G., Newman M. A., et al. . (1988). 5S rRNA genes in Pisum: sequence, long range and chromosomal organization. Mol. Gen. Genet. 214, 333–342. doi: 10.1007/BF00337732, PMID: PubMed DOI
Flavell R. B., O'Dell M., Thompson W. F. (1988). Regulation of cytosine methylation in ribosomal DNA and nucleolus organizer expression in wheat. J. Mol. Biol. 204, 523–534. doi: 10.1016/0022-2836(88)90352-X, PMID: PubMed DOI
Fraser R., Loening U. (1974). RNA synthesis during synchronous cell division in cultured explants of Jerusalem artichoke tuber. J. Exp. Bot. 25, 847–859. doi: 10.1093/jxb/25.5.847, PMID: PubMed DOI
Friedrich H., Hemleben V., Meagher R. B., Key J. L. (1979). Purification and restriction endonuclease mapping of soybean 18 S and 25 S ribosomal RNA genes. Planta 146, 467–473. doi: 10.1007/Bf00380862, PMID: PubMed DOI
Fulnecek J., Lim K. Y., Leitch A. R., Kovarik A., Matyasek R. (2002). Evolution and structure of 5S rDNA loci in allotetraploid Nicotiana tabacum and its putative parental species. Heredity 88, 19–25. doi: 10.1038/sj.hdy.6800001, PMID: PubMed DOI
Fulnecek J., Matyasek R., Kovarik A., Bezdek M. (1998). Mapping of 5-methylcytosine residues in Nicotiana tabacum 5S rRNA genes by genomic sequencing. Mol. Gen. Genet. 259, 133–141. doi: 10.1007/s004380050798, PMID: PubMed DOI
Galian J. A., Rosato M., Rossello J. A. (2012). Early evolutionary colocalization of the nuclear ribosomal 5S and 45S gene families in seed plants: evidence from the living fossil gymnosperm Ginkgo biloba. Heredity 108, 640–646. doi: 10.1038/hdy.2012.2, PMID: PubMed DOI PMC
Gall J. G. (1981). Chromosome structure and the C-value paradox. J. Cell Biol. 91, 3s–14s. doi: 10.1083/jcb.91.3.3s, PMID: PubMed DOI PMC
Ganal M., Hemleben V. (1986). Comparison of the ribosomal-RNA genes in 4 closely related Cucurbitaceae. Plant Syst. Evol. 154, 63–77. doi: 10.1007/Bf00984868 DOI
Ganal M., Torres R., Hemleben V. (1988). Complex structure of the DNA ribosomal spacer of Cucumis sativus (cucumber). Mol. Gen. Genet. 212, 548–554. doi: 10.1007/BF00330863, PMID: PubMed DOI
Garcia S., Borowska-Zuchowska N., Wendel J. F., Ainouche M., Kuderova A., Kovarik A. (2020). The utility of graph clustering of 5S ribosomal DNA homoeologs in plant allopolyploids, homoploid hybrids and cryptic introgressants. Front. Plant Sci. 11:41. doi: 10.3389/fpls.2020.00041, PMID: PubMed DOI PMC
Garcia S., Garnatje T., Kovarik A. (2012). Plant rDNA database: ribosomal DNA loci information goes online. Chromosoma 121, 389–394. doi: 10.1007/s00412-012-0368-7, PMID: PubMed DOI
Garcia S., Kovarik A. (2013). Dancing together and separate again: gymnosperms exhibit frequent changes of fundamental 5S and 35S rRNA gene (rDNA) organisation. Heredity 111, 23–33. doi: 10.1038/hdy.2013.11, PMID: PubMed DOI PMC
Garcia S., Kovarik A., Leitch A. R., Garnatje T. (2016). Cytogenetic features of rRNA genes across land plants: analysis of the plant rDNA database. Plant J. 89, 1020–1030. doi: 10.1111/tpj.13442, PMID: PubMed DOI
Garcia S., Lim K. Y., Chester M., Garnatje T., Pellicer J., Valles J., et al. . (2009). Linkage of 35S and 5S rRNA genes in Artemisia (family Asteraceae): first evidence from angiosperms. Chromosoma 118, 85–97. doi: 10.1007/s00412-008-0179-z, PMID: PubMed DOI
Garcia S., Panero J. L., Siroky J., Kovarik A. (2010). Repeated reunions and splits feature the highly dynamic evolution of 5S and 35S ribosomal RNA genes (rDNA) in the Asteraceae family. BMC Plant Biol. 10:176. doi: 10.1186/1471-2229-10-176, PMID: PubMed DOI PMC
Gerstner J., Schiebel K., von Waldburg G., Hemleben V. (1988). Complex organization of the length heterogeneous 5' external spacer of mung bean (Vigna radiata) ribosomal DNA. Genome 30, 723–733. doi: 10.1139/g88-120, PMID: PubMed DOI
Gleba Y. Y., Hinnisdaels S., Sidorov V. A., Kaleda V. A., Parokonny A. S., Boryshuk N. V., et al. . (1988). Intergeneric asymmetric hybrids between Nicotiana plumbaginifolia and Atropa belladonna obtained by "gamma-fusion". Theor. Appl. Genet. 76, 760–766. doi: 10.1007/BF00303523, PMID: PubMed DOI
Goldberg R. B., Bemis W. P., Siegel A. (1972). Nucleic acid hybridization studies within the genus Cucurbitaceae. Genetics 72, 253–266. doi: 10.1093/genetics/72.2.253, PMID: PubMed DOI PMC
Goodspeed T. H. (1954). The Genus Nicotiana. Massachusetts, USA: Waltham
Gray M. W. (2017). Lynn Margulis and the endosymbiont hypothesis: 50 years later. Mol. Biol. Cell 28, 1285–1287. doi: 10.1091/mbc.E16-07-0509, PMID: PubMed DOI PMC
Grebenstein B., Röser M., Sauer W., Hemleben V. (1998). Molecular phylogenetic relationships in Aveneae (Poaceae) species and other grasses as inferred from ITS1 and ITS2 rDNA sequences. Plant Syst. Evol. 213, 233–250. doi: 10.1007/Bf00985203 DOI
Grierson D. (1972). The Synthesis of rRNA in Developing Primary Leaves of Phaseolus aureus. PhD, Edinburgh, UK.
Grierson D. (1984). “Structure and expression of nuclear genes,” in Plant Molecular Biology. eds. Grierson D., Covey S. N. (Glasgow: Blackie; ).
Grierson D., Hemleben V. (1977). Ribonucleic acid from higher plant Matthiola incana. Molecular weight measurements and DNA RNA hybridization studies. Biochim. Biophys. Acta 475, 424–436. doi: 10.1016/0005-2787(77)90058-2, PMID: PubMed DOI
Grierson D., Loening U. E. (1972). Distinct transcription products of ribosomal genes in 2 different tissues. Nature New Biol. 235, 80–82. doi: 10.1038/newbio235080a0, PMID: PubMed DOI
Grierson D., Loening U. (1974). Ribosomal RNA precursors and synthesis of chloroplast and cytoplasmic ribosomal acid in leaves of Phaseolus aureus. Eur. J. Biochem. 44, 501–507. doi: 10.1111/j.1432-1033.1974.tb03508.x, PMID: PubMed DOI
Grierson D., Rogers M. E., Sartiran M., Loening U. E. (1970). The synthesis of ribosomal RNA in different organisms: structure and evolution of rRNA precursor. Cold Spring Harb. Symp. Quant. Biol. 35, 589–598. doi: 10.1101/Sqb.1970.035.01.074 DOI
Grierson D., Smith H. (1973). The synthesis and stability of ribosomal RNA in blue-green algae. Eur. J. Biochem. 36, 280–285. doi: 10.1111/j.1432-1033.1973.tb02911.x, PMID: PubMed DOI
Grimm G. W., Schlee M., Komarova N. Y., Volkov R. A., Hemleben V. (2005). “Low-level taxonomy and intrageneric evolutionary trends in higher plants,” in From Plant Taxonomy to Evolutionary Biology. Nova Acta Leopoldina NF, Vol. 92, No. 342. eds. Endress P. K., Lüttge U., Parthier B. (Stuttgart: Wissenschaftl. Verlagsges. mbH; ), 129–145.
Grossmann K., Friedrich H., Seitz U. (1980). Purification and characterization of chromatin-bound DNA-dependent RNA polymerase-I from parsley (Petroselinum crispum) - influence of nucleoside triphosphates. Biochem. J. 191, 165–171. doi: 10.1042/bj1910165, PMID: PubMed DOI PMC
Grossmann K., Seitz U., Seitz H. U. (1979). Transcription and release of RNA in isolated nuclei from parsley cells. Z. Naturforsch. C. J. Biosci. 34, 431–435. doi: 10.1515/znc-1979-5-619 DOI
Gruendler P., Unfried I., Pointner R., Schweizer D. (1989). Nucleotide sequence of the 25S-18S ribosomal gene spacer from Arabidopsis thaliana. Nucl. Acids Res. 17, 6395–6396. doi: 10.1093/nar/17.15.6395, PMID: PubMed DOI PMC
Grummt I., Sorbaz H., Hofmann A., Roth E. (1985). Spacer sequences downstream of the 28S RNA coding region are part of the mouse rDNA transcription unit. Nucl. Acids Res. 13, 2293–2304. doi: 10.1093/nar/13.7.2293, PMID: PubMed DOI PMC
Handa H., Kanamori H., Tanaka T., Murata K., Kobayashi F., Robinson S. J., et al. . (2018). Structural features of two major nucleolar organizer regions (NORs), nor-B1 and nor-B2, and chromosome-specific rRNA gene expression in wheat. Plant J. 96, 1148–1159. doi: 10.1111/tpj.14094, PMID: PubMed DOI
Hartley M. R., Ellis R. J. (1973). Ribonucleic acid synthesis in chloroplasts. Biochem. J. 134, 249–262. doi: 10.1042/bj1340249, PMID: PubMed DOI PMC
Hemleben V. (1972). Untersuchungen zur Biosynthese und Funktion von Nucleinsäuren in höheren Pflanzen. Habilitation, University of Tübingen.
Hemleben V., Ermisch N., Kimmich D., Leber B., Peter G. (1975). Studies on fate of homologous DNA applied to seedlings of Matthiola incana. Eur. J. Biochem. 56, 403–411. doi: 10.1111/j.1432-1033.1975.tb02246.x PubMed DOI
Hemleben V., Grierson D. (1978). Evidence that in higher plants the 25S and 18S rRNA genes are not interspersed with genes for 5S rRNA. Chromosoma 65, 353–358. doi: 10.1007/Bf00286414 DOI
Hemleben V., Grierson D., Dertmann H. (1977). Use of equilibrium centrifugation in actinomycin cesium chloride for purification of ribosomal DNA. Plant Sci. Lett. 9, 129–135. doi: 10.1016/0304-4211(77)90090-6 DOI
Hemleben V., Kovarik A., Torres R. A., Volkov R. A., Beridze T. (2007). Plant highly repeated satellite DNA: molecular evolution, distribution and use for identification of hybrids. Syst. Biodivers. 5, 277–289. doi: 10.1017/S147720000700240X DOI
Hemleben V., Werts D. (1988). Sequence organization and putative regulatory elements in the 5S rRNA genes of 2 higher plants (Vigna radiata and Matthiola incana). Gene 62, 165–169. doi: 10.1016/0378-1119(88)90591-4, PMID: PubMed DOI
Hemleben V., Zentgraf U. (1994). “Structural organisation and regulation of transcription by RNA polymerase I of plant nuclear ribosomal genes,” in Plant Promoters and Transcription Factors. ed. Nover L. (Berlin/Heidelberg: Springer-Verlag; ), 3–24. PubMed
Hemleben-Vielhaben V. (1966). Characterization of rapidly labelled nucleic acids in tissues of plant seedlings. Z. Naturforsch. Pt. B. 21, 983–992. doi: 10.1515/znb-1966-1016 DOI
Hoang P. T. N., Fiebig A., Novák P., Macas J., Cao H. X., Stepanenko A., et al. . (2020). Chromosome-scale genome assembly for the duckweed Spirodela intermedia, integrating cytogenetic maps, PacBio and Oxford Nanopore libraries. Sci. Rep. 10:19230. doi: 10.1038/s41598-020-75728-9, PMID: PubMed DOI PMC
Ingle J., Timmis J. N., Sinclair J. (1975). The relationship between satellite deoxyribonucleic acid, ribosomal ribonucleic acid gene redundancy, and genome size in plants. Plant Physiol. 55, 496–501. doi: 10.1104/pp.55.3.496, PMID: PubMed DOI PMC
Ishchenko O. O., Bednarska O. I., Panchuk I. I. (2021). Application of 5S ribosomal DNA for molecular taxonomy of subtribe Loliinae (Poaceae). Cytol. Genet. 55, 10–18. doi: 10.3103/S0095452721010096 DOI
Ishchenko O. O., Mel’nyk V. М., Parnikoza І. Y., Budzhak V. V., Panchuk І. І., Kunakh V. А., et al. . (2020). Molecular organization of 5S ribosomal DNA and taxonomic status of Avenella flexuosa (L.) Drejer (Poaceae). Cytol. Genet. 54, 505–513. doi: 10.3103/S0095452720060055 DOI
Ishchenko O. O., Panchuk І. І., Andreev І. O., Kunakh V. A., Volkov R. A. (2018). Molecular organization of 5S ribosomal DNА of Deschampsia antarctica. Cytol. Genet. 52, 416–421. doi: 10.3103/S0095452718060105 DOI
Jo S. H., Koo D. H., Kim J. F., Hu C.-G., Lee S., Yang T. J., et al. . (2009). Evolution of ribosomal DNA-derived satellite repeat in tomato genome. BMC Plant Biol. 9:42. doi: 10.1186/1471-2229-9-42, PMID: PubMed DOI PMC
Jobst J., King K., Hemleben V. (1998). Molecular evolution of the internal transcribed spacers (ITS1 and ITS2) and phylogenetic relationships among species of the family Cucurbitaceae. Mol. Phylogenetics Evol. 9, 204–219. doi: 10.1006/mpev.1997.0465, PMID: PubMed DOI
Jung H., Winefield C., Bombarelym A., Prentis P., Waterhouse P. (2019). Tools and strategies for long-read sequencing and de novo assembly of plant genomes. Trends Plant Sci. 24, 700–724. doi: 10.1016/j.tplants.2019.05.003, PMID: PubMed DOI
Kalendar R., Tanskanen J., Chang W., Antonius K., Sela H., Peleg O., et al. . (2008). Cassandra retrotransposons carry independently transcribed 5S RNA. Proc. Natl. Acad. Sci. U. S. A. 105, 5833–5838. doi: 10.1073/pnas.0709698105, PMID: PubMed DOI PMC
King K., Torres R. A., Zentgraf U., Hemleben V. (1993). Molecular evolution of the intergenic spacer in the nuclear ribosoma RNA genes of Cucurbitaceae. J. Mol. Evol. 36, 144–152. doi: 10.1007/Bf00166250, PMID: PubMed DOI
Kirov I., Gilyok M., Knyazev A., Fesenko I. (2018). Pilot satellitome analysis of the model plant, Physcomitrella patens, revealed a transcribed and high-copy IGS related tandem repeat. Comp. Cytogenet. 12, 493–513. doi: 10.3897/CompCytogen.v12i4.31015, PMID: PubMed DOI PMC
Komarova N. Y., Grabe T., Huigen D. J., Hemleben V., Volkov R. A. (2004). Organization, differential expression and methylation of rDNA in artificial Solanum allopolyploids. Plant Mol. Biol. 56, 439–463. doi: 10.1007/s11103-004-4678-x, PMID: PubMed DOI
Komarova N. Y., Grimm G. W., Hemleben V., Volkov R. A. (2008). Molecular evolution of 35S rDNA and taxonomic status of Lycopersicon within Solanum sect. Petota. Plant Syst. Evol. 276, 59–71. doi: 10.1007/s00606-008-0091-2 DOI
Koukalova B., Fojtova M., Lim K. Y., Fulnecek J., Leitch A. R., Kovarik A. (2005). Dedifferentiation of tobacco cells is associated with ribosomal RNA gene hypomethylation, increased transcription, and chromatin alterations. Plant Physiol. 139, 275–286. doi: 10.1104/pp.105.061788, PMID: PubMed DOI PMC
Kovarik A., Dadejova M., Lim Y. K., Chase M. W., Clarkson J. J., Knapp S., et al. . (2008). Evolution of rDNA in Nicotiana allopolyploids: a potential link between rDNA homogenization and epigenetics. Ann. Bot. 101, 815–823. doi: 10.1093/aob/mcn019, PMID: PubMed DOI PMC
Kovarik A., Fajkus J., Koukalova B., Bezdek M. (1996). Species-specific evolution of telomeric and rDNA repeats in the tobacco composite genome. Theor. Appl. Genet. 92, 1108–1111. doi: 10.1007/BF00224057, PMID: PubMed DOI
Kovarik A., Matyasek R., Lim K. Y., Skalicka K., Koukalova B., Knapp S., et al. . (2004). Concerted evolution of 18-5.8-26S rDNA repeats in Nicotiana allotetraploids. Biol. J. Linn. Soc. 82, 615–625. doi: 10.1111/j.1095-8312.2004.00345.x DOI
Layat E., Sáez-Vásquez J., Tourmente S. (2012). Regulation of pol I-transcribed 45S rDNA and pol III-transcribed 5S rDNA in Arabidopsis. Plant Cell Physiol. 53, 267–276. doi: 10.1093/pcp/pcr177, PMID: PubMed DOI
Leaver C. J., Key J. L. (1970). Ribosomal RNA synthesis in plants. J. Mol. Biol. 49, 671–680. doi: 10.1016/0022-2836(70)90290-1, PMID: PubMed DOI
Leber B., Hemleben V. (1979). Structure of plant nuclear and ribosomal DNA containing chromatin. Nucl. Acids Res. 7, 1263–1282. doi: 10.1093/nar/7.5.1263, PMID: PubMed DOI PMC
Leweke B., Hemleben V. (1982). Organization of rDNA in chromatin: plants. Cell Nucleus 11, 225–253.
Lim K. Y., Kovarik A., Matyasek R., Bezdek M., Lichtenstein C. P., Leitch A. R. (2000). Gene conversion of ribosomal DNA in Nicotiana tabacum is associated with undermethylated, decondensed and probably active gene units. Chromosoma 109, 161–172. doi: 10.1007/s004120050424, PMID: PubMed DOI
Lim K. Y., Kovarik A., Matyasek R., Chase M. W., Clarkson J. J., Grandbastien M. A., et al. . (2007). Sequence of events leading to near complete genome turnover in allopolyploid Nicotiana within five million years. New Phytol. 175, 756–763. doi: 10.1111/j.1469-8137.2007.02121.x, PMID: PubMed DOI
Lim K. Y., Matyasek R., Kovarik A., Leitch A. (2004a). Genome evolution in allotetraploid Nicotiana. Biol. J. Linn. Soc. 82, 599–606. doi: 10.1111/j.1095-8312.2004.00344.x DOI
Lim K. Y., Skalicka K., Koukalova B., Volkov R. A., Matyasek R., Hemleben V., et al. . (2004b). Dynamic changes in the distribution of a satellite homologous to intergenic 26-18S rDNA spacer in the evolution of Nicotiana. Genetics 166, 1935–1946. doi: 10.1534/genetics.166.4.1935, PMID: PubMed DOI PMC
Lin C. Y., Chen Y. M., Guilfoyle T. J., Key J. L. (1976). Selective modulation of RNA polymerase I activity during growth transitions in the soybean seedling. Plant Physiol. 58, 614–617. doi: 10.1104/pp.58.5.614 PubMed DOI PMC
Loening U. E. (1969). The determination of molecular weight of ribonucleic acid by polyacrylamide-gel electrophoresis - effects of changes in conformation. Biochem. J. 113, 131–138. doi: 10.1042/bj1130131, PMID: PubMed DOI PMC
Lunerova J., Renny-Byfield S., Matyasek R., Leitch A., Kovarik A. (2017). Concerted evolution rapidly eliminates sequence variation in rDNA coding regions but not in intergenic spacers in Nicotiana tabacum allotetraploid. Plant Syst. Evol. 303, 1043–1060. doi: 10.1007/s00606-017-1442-7 DOI
Macas J., Navratilova A., Meszaros T. (2003). Sequence subfamilies of satellite repeats related to rDNA intergenic spacer are differentially amplified on Vicia sativa chromosomes. Chromosoma 112, 152–158. doi: 10.1007/s00412-003-0255-3, PMID: PubMed DOI
Manoharlal R., Saiprasad G. V. S., Kovarik A. (2019). “Smoking and tobacco use,” in New Research on Tobacco. ed. Dreher U. (New York: Nova Science Publishers Inc; ), 23–82.
Marazia T., Barsanti P., Maggini F. (1980). Individual quantitative rDNA variation in 3 species of the Cucurbitaceae family. Biochem. Genet. 18, 509–517. doi: 10.1007/Bf00484398, PMID: PubMed DOI
Matsuda K., Siegel A. (1967). Hybridization of plant ribosomal RNA to DNA - isolation of a DNA component rich in ribosomal RNA cistrons. Proc. Natl. Acad. Sci. U. S. A. 58, 673–680. doi: 10.1073/pnas.58.2.673, PMID: PubMed DOI PMC
Matyasek R., Dobesova E., Huska D., Jezkova I., Soltis P. S., Soltis D. E., et al. . (2016). Interpopulation hybridization generates meiotically stable rDNA epigenetic variants in allotetraploid Tragopogon mirus. Plant J. 85, 362–377. doi: 10.1111/tpj.13110, PMID: PubMed DOI
Matyasek R., Lim K. Y., Kovarik A., Leitch A. R. (2003). Ribosomal DNA evolution and gene conversion in Nicotiana rustica. Heredity 91, 268–275. doi: 10.1038/sj.hdy.6800333, PMID: PubMed DOI
McClintock B. (1934). The relationship of a particular crhomosomal element to the development of the nucleoli in Zea mays. Z. Zellforsch Microsk. 21, 294–398. doi: 10.1007/BF00374060 DOI
Michael T., Bryant D., Gutierrez R., Borisjuk N., Chu P., Zhang H., et al. . (2017). Comprehensive definitions of genome features in Spirodela polyrhiza by high-depth physical mapping and short-read DNA sequencing strategies. Plant J. 89, 617–635. doi: 10.1111/tpj.13400, PMID: PubMed DOI
Michael T. P., Van Buren R. (2020). Building near-complete plant genomes. Curr. Opin. Plant Biol. 54, 26–33. doi: 10.1016/j.pbi.2019.12.009, PMID: PubMed DOI
Miroshnichenko G. P., Borisjuk N. V., Volkov R. A. (1989). Organization of rDNA repeat units in the Solanaceae sexual and parasexual hybrids. Biochemistry 54, 669–675.
Mohannath G., Pontvianne F., Pikaard C. S. (2016). Chromosome-specific selective nucleolus organizer inactivation in Arabisopsis is a chromosome position-effect phenomenon. Proc. Natl. Acad. Sci. U. S. A. 113, 13426–13431. doi: 10.1073/pnas.1608140113, PMID: PubMed DOI PMC
Moss T. (2004). At the crossroads of growth control: making ribosomal RNA. Curr. Opin. Genet. Dev. 14, 210–217. doi: 10.1016/j.gde.2004.02.005, PMID: PubMed DOI
Nagl W., Ehrendorfer F., Hemleben V. (1979). “Genome and Chromatin: Organization, Evolution and Function,” in Plant Systematics and Evolution. 2nd Edn. eds. Nagl W., Ehrendorfer F., Hemleben V. (Wien: Springer Verlag; ).
Navashin M. (1934). Chromosomal alterations caused by hybridisation and their bearing upon certain genetic problems. Cytologia 5, 169–203.
Nieto Feliner G., Rossello J. A. (2012). “Concerted evolution of multigene families and homeologous recombination,” in Plant Genome Diversity. ed. Wendel J. F. (Wien: Springer-Verlag; ), 171–194.
Noller H. F., Kop J., Wheaton V., Brosius J., Gutell R. R., Kopylov A. M., et al. . (1981). Secondary structure model for 23S ribosomal RNA. Nucl. Acids Res. 9, 6167–6189. doi: 10.1093/nar/9.22.6167, PMID: PubMed DOI PMC
Pikaard C. S., Reeder R. H. (1988). Sequence elements essential for function of the Xenopus laevis ribosomal DNA enhancers. Mol. Cell. Biol. 8, 4282–4288. doi: 10.1128/Mcb.8.10.4282, PMID: PubMed DOI PMC
Poczai P., Hyvonen J. (2010). Nuclear ribosomal spacer regions in plant phylogenetics: problems and prospects. Mol. Biol. Rep. 37, 1897–1912. doi: 10.1007/s11033-009-9630-3, PMID: PubMed DOI
Pontvianne F., Abou-Ellail M., Douet J., Comella P., Matia I., Chandrasekhara C., et al. . (2010). Nucleolin is required for DNA methylation state and the expression of rRNA gene variants in Arabidopsis thaliana. PLoS Genet. 6:e1001225. doi: 10.1371/journal.pgen.1001225, PMID: PubMed DOI PMC
Quast C., Pruesse E., Yilmaz P., Gerken J., Schweer T., Yarza P., et al. . (2012). The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucl. Acids Res. 41, D590–D596. doi: 10.1093/nar/gks1219, PMID: PubMed DOI PMC
Rabanal F. A., Mandáková T., Soto-Jiménez L. M., Greenhalgh R., Parrott D. L., Lutzmayer S., et al. . (2017). Epistatic and allelic interactions control expression of ribosomal RNA gene clusters in Arabidopsis thaliana. Genome Biol. 18:75. doi: 10.1186/s13059-017-1209-z, PMID: PubMed DOI PMC
Rathgeber J., Capesius I. (1990). Nucleotide sequence of the intergenic spacer and the 18S ribosomal-RNA gene from mustard (Sinapis alba). Nucl. Acids Res. 18, 1288–1288. doi: 10.1093/nar/18.5.1288, PMID: PubMed DOI PMC
Ribeiro T., Dos Santos K. G., Richard M. M., Sévignac M., Thareau V., Geffroy V., et al. . (2017). Evolutionary dynamics of satellite DNA repeats from Phaseolus beans. Protoplasma 254, 791–801. doi: 10.1007/s00709-016-0993-8, PMID: PubMed DOI
Robicheau B. M., Susko E., Harrigan A. M., Snyder M. (2017). Ribosomal RNA genes contribute to the formation of pseudogenes and junk DNA in the human genome. Genome Biol. Evol. 9, 380–397. doi: 10.1093/gbe/evw307, PMID: PubMed DOI PMC
Rogers S. O., Bendich A. J. (1987). Ribosomal RNA genes in plants: variability in copy number and in the intergenic spacer. Plant Mol. Biol. 9, 509–520. doi: 10.1007/BF00015882, PMID: PubMed DOI
Rogers S. O., Honda S., Bendich A. J. (1986). Variation in the ribosomal RNA genes among individuals of Vicia faba. Plant Mol. Biol. 6, 339–345. doi: 10.1007/Bf00034941, PMID: PubMed DOI
Röser M., Winterfeld G., Grebenstein B., Hemleben V. (2001). Molecular diversity and physical mapping of 5S rDNA in wild, and cultivated oat grasses (Poaceae: Aveneae). Mol. Phylogenet. Evol. 21, 198–217. doi: 10.1006/mpev.2001.1003, PMID: PubMed DOI
Sáez-Vásquez J., Delseny M. (2019). Ribosome biogenesis in plants: from functional 45S ribosomal DNA organization to ribosome assembly factors. Plant Cell 31, 1945–1967. doi: 10.1105/tpc.18.00874, PMID: PubMed DOI PMC
Sáez-Vásquez J., Pikaard C. S. (2000). RNA polymerase I holoenzyme-promoter interactions. J. Biol. Chem. 275, 37173–37180. doi: 10.1074/jbc.M006057200 PubMed DOI
Salim D., Bradford W. D., Freeland A., Cady G., Wang J., Pruitt S. C., et al. . (2017). DNA replication stress restricts ribosomal DNA copy number. PLoS Genet. 13:e1007006. doi: 10.1371/journal.pgen.1007006, PMID: PubMed DOI PMC
Sanger F., Nicklen S., Coulson A. R. (1977). DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. U. S. A. 74, 5463–5467. doi: 10.1073/pnas.74.12.5463, PMID: PubMed DOI PMC
Sardana R., Odell M., Flavell R. (1993). Correlation between the size of the intergenic regulatory region, the status of cytosine methylation of ribosomal-RNA genes and nucleolar expression in wheat. Mol. Gen. Genet. 236, 155–162. doi: 10.1007/Bf00277107, PMID: PubMed DOI
Schiebel K., Hemleben V. (1989). Nucleotide sequence of the 18S-25S spacer region from rDNA of mung bean. Nucl. Acids Res. 17, 2852–2852. doi: 10.1093/nar/17.7.2852, PMID: PubMed DOI PMC
Schlee M., Göker M., Grimm G. W., Hemleben V. (2011). Genetic patterns in the Lathyrus pannonicus complex (Fabaceae) reflect ecological differentiation rather than biogeography and traditional subspecific division. Biol. J. Linn. Soc. 165, 402–421. doi: 10.1111/j.1095-8339.2011.01125.x DOI
Schlotterer C., Tautz D. (1994). Chromosomal homogeneity of Drosophila ribosomal DNA arrays suggests intrachromosomal exchanges drive concerted evolution. Curr. Biol. 4, 777–783. doi: 10.1016/S0960-9822(00)00175-5, PMID: PubMed DOI
Schweizer G., Borisjuk N., Borisjuk L., Stadler M., Stelzer T., Schilde L., et al. . (1993). Molecular analysis of highly repeated genome fractions in Solanum and their use as markers for the characterization of species and cultivars. Theor. Appl. Genet. 85-85, 801–808. doi: 10.1007/Bf00225022, PMID: PubMed DOI
Scoles C. J., Gill B. S. Z., Xin Y., Clarke B. C., McIntyre C. L., Chapman C., et al. . (1988). Frequent duplication and deletion events in the 5S RNA genes and the associated spacer regions of the Triticeae. Plant Syst. Evol. 160, 105–122.
Seitz U., Seitz U. (1973). Biosynthetic pathway of ribosomal-RNA in blue-green algae (Anacystis nidulans). Archiv fur Mikrobiologie. 90, 213–222. doi: 10.1007/Bf00424973 PubMed DOI
Seitz U., Seitz U. (1979). Molecular weight of rRNA precursor molecules and their processing in higher plant cells. Z. Naturforsch. C. J. Biosci. 34, 253–258. doi: 10.1515/znc-1979-3-416, PMID: PubMed DOI
Selig C., Wolf M., Müller T., Dandekar T., Schultz J. (2008). The ITS2 database II: homology modelling RNA structure for molecular systematics. Nucl. Acids Res. 36, D377–D380. doi: 10.1093/nar/gkm827, PMID: PubMed DOI PMC
Sims J., Sestini G., Elgert C., von Haeseler A., Schlögelhofer P. (2021). Sequencing of the Arabidopsis NOR2 reveals its distinct organization and tissue-specific rRNA ribosomal variants. Nat. Commun. 12, 387. doi: 10.1038/s41467-020-20728-6, PMID: PubMed DOI PMC
Soltis D. E., Soltis P. S. (2016). Mobilizing and integrating big data in studies of spatial and phylogenetic patterns of biodiversity. Plant Divers. 38, 264–270. doi: 10.1016/0022-2836(88)90353-1, PMID: PubMed DOI PMC
Souza G., Marques A., Ribeiro T., Dantas L. G., Speranza P., Guerra M., et al. . (2019). Allopolyploidy and extensive rDNA site variation underlie rapid karyotype evolution in Nothoscordum section Nothoscordum (Amaryllidaceae). Bot. J. Linn. Soc. 190, 215–228. doi: 10.1093/botlinnean/boz008 DOI
Szymanski M., Specht T., Barciszewska M. Z., Barciszewski J., Erdmann V. A. (1998). 5S rRNA Data Bank. Nucl. Acids Res. 26, 156–159. doi: 10.1093/nar/26.1.156, PMID: PubMed DOI PMC
Thompson W. F., Flavell R. B. (1988). DNAse-I sensitivity of ribosomal RNA genes in chromatin and nucleolar dominance in wheat. J. Mol. Biol. 204, 535–548. doi: 10.1016/0022-2836(88)90353-1, PMID: PubMed DOI
Tomecki R., Sikorski P. J., Zakrzewska-Placzek M. (2017). Comparison of preribosomal RNA processing pathways in yeast, plant and human cells - focus on coordinated action of endo- and exoribonucleases. FEBS Lett. 591, 1801–1850. doi: 10.1002/1873-3468.12682, PMID: PubMed DOI
Torres R. A., Zentgraf U., Hemleben V. (1989). Species and genus specificity of the intergenic spacer (IGS) in the ribosoma RNA genes of Cucurbitaceae. Z. Naturforsch. C. J. Biosci. 44, 1029–1034. doi: 10.1515/znc-1989-11-1224, PMID: PubMed DOI
Torres-Ruiz R. A., Hemleben V. (1994). Pattern and degree of methylation in ribosomal RNA genes of Cucurbita pepo L. Plant Mol. Biol. 26, 1167–1179. doi: 10.1007/Bf00040697, PMID: PubMed DOI
Tulpová Y. O., Kovařík A., Toegelová H., Navrátilová P., Kapustová V., Hřibová E., et al. . (2020). Anatomy, transcription dynamics and evolution of wheat ribosomal RNA loci deciphered by a multi-omics approach. BioRxriv [Preprint]. doi: 10.1101/2020.08.29.273623 PubMed DOI
Tynkevich Y. O., Volkov R. A. (2014). Structural organization of 5S ribosomal DNA in Rosa rugosa. Cytol. Genet. 48, 1–6. doi: 10.3103/S0095452714010095, PMID: PubMed DOI
Tynkevich Y. O., Volkov R. A. (2019). 5S ribosomal DNA of distantly related Quercus species: molecular organization and taxonomic application. Cytol. Genet. 53, 459–466. doi: 10.3103/S0095452719060100 DOI
Unfried K., Schiebel K., Hemleben V. (1991). Subrepeats of rDNA intergenic spacer present as prominent independent satellite DNA in Vigna radiata but not in Vigna angularis. Gene 99, 63–68. doi: 10.1016/0378-1119(91)90034-9, PMID: PubMed DOI
Volkov R. A., Bachmair A., Panchuk I. I., Kostyshyn S. S., Schweizer D. (1999a). 25S-18S rDNA intergenic spacer of Nicotiana sylvestris (Solanaceae): primary and secondary structure analysis. Plant Syst. Evol. 218, 89–97. doi: 10.1007/bf01087037 DOI
Volkov R. A., Borisjuk N. V., Kostishin S. S., Panchuk I. I. (1991). Variability of rRNA genes in Nicotiana correlates with the chromosome reconstruction. Mol. Biol. 25, 442–450.
Volkov R. A., Borisjuk N. V., Panchuk I. I., Schweizer D., Hemleben V. (1999b). Elimination and rearrangement of parental rDNA in the allotetraploid Nicotiana tabacum. Mol. Biol. Evol. 16, 311–320. doi: 10.1093/oxfordjournals.molbev.a026112, PMID: PubMed DOI
Volkov R. A., Komarova N. Y., Hemleben V. (2007). Ribosomal DNA in plant hybrids: inheritance, rearrangement, expression. Syst. Biodivers. 5, 261–276. doi: 10.1017/S1477200007002447 DOI
Volkov R. A., Komarova N. Y., Panchuk I. I., Hemleben V. (2003). Molecular evolution of rDNA external transcribed spacer and phylogeny of sect. Petota (genus Solanum). Mol. Phylogenetics Evol. 29, 187–202. doi: 10.1016/s1055-7903(03)00092-7, PMID: PubMed DOI
Volkov R., Kostishin S., Ehrendorfer E., Schweizer D. (1996). Molecular organization and evolution of the external transcribed rDNA spacer region in two diploid relatives of Nicotiana tabacum (Solanaceae). Plant Syst. Evol. 201, 117–129. doi: 10.1007/Bf00989055 DOI
Volkov R. A., Kozeretska I. A., Kyryachenko S. S., Andreev I. O., Maidanyuk D. N., Parnikoza I. Y., et al. . (2010). Molecular evolution and variability of ITS1–ITS2 in populations of Deschampsia antarctica from two regions of the maritime Antarctic. Pol. Sci. 4, 469–478. doi: 10.1016/j.polar.2010.04.011 DOI
Volkov R. A., Medina F. J., Zentgraf U., Hemleben V. (2004). “Molecular cell biology: organization and molecular evolution of rDNA, nucleolar dominance and nucleolus structure,” in Progress in Botany. Vol. 65. eds. Esser K., Lüttge U., Beyschlag W., Murata J. (Berlin, Heidelberg, New York: Springer Verlag; ), 106–146.
Volkov R. A., Panchuk I. I., Borisjuk N. V., Maluszynska J., Hemleben V. (2017). Evolutional dynamics of 45S and 5S ribosomal DNA in ancient allohexaploid Atropa belladonna. BMC Plant Biol. 17, 21–24. doi: 10.1186/s12870-017-0978-6, PMID: PubMed DOI PMC
Volkov R. A., Zanke C., Panchuk I. I., Hemleben V. (2001). Molecular evolution of 5S rDNA of Solanum species (sect. Petota): application for molecular phylogeny and breeding. Theor. Appl. Genet. 103, 1273–1282. doi: 10.1007/s001220100670 DOI
Wang W., Wan T., Becher H., Kuderova A., Leitch I. J., Garcia S., et al. . (2019). Remarkable variation of ribosomal DNA organization and copy number in gnetophytes, a distinct lineage of gymnosperms. Ann. Bot. 123, 767–781. doi: 10.1093/aob/mcy172, PMID: PubMed DOI PMC
Weis B. L., Kovacevic J., Missbach S., Schleiff E. (2015). Plant-specific features of ribosome biogenesis. Trends Plant Sci. 20, 729–740. doi: 10.1016/j.tplants.2015.07.003, PMID: PubMed DOI
Wenzel W., Hemleben V. (1982a). A comparative study of genomes in angiosperms. Plant Syst. Evol. 139, 209–227. doi: 10.1007/Bf00989326 DOI
Wenzel W., Hemleben V. (1982b). DNA-sequence organization and RNA complexity in Matthiola incana (Brassicaceae). Plant Syst. Evol. 140, 75–86. doi: 10.1007/Bf02409898 DOI
Wicke S., Costa A., Munoz J., Quandt D. (2011). Restless 5S: the re-arrangement(s) and evolution of the nuclear ribosomal DNA in land plants. Mol. Phylogenet. Evol. 61, 321–332. doi: 10.1016/j.ympev.2011.06.023, PMID: PubMed DOI
Yan Q., Zhu C. M., Guang S. H., Feng X. Z. (2019). The functions of non-coding RNAs in rRNA regulation. Front. Genet. 10:290. doi: 10.3389/fgene.2019.00290, PMID: PubMed DOI PMC
Yokota Y., Kawata T., Iida Y., Kato A., Tanifuji S. (1989). Nucleotide sequences of the 5.8S rRNA gene and internal transcribed spacer regions in carrot and broad bean ribosomal DNA. J. Mol. Evol. 29, 294–301. doi: 10.1007/Bf02103617, PMID: PubMed DOI
Zakrzewska-Placzek M., Souret F. F., Sobczyk G. J., Green P. J., Kufel J. (2010). Arabidopsis thaliana XRN2 is required for primary cleavage in the pre-ribosomal RNA. Nucl. Acids Res. 38, 4487–4502. doi: 10.1093/nar/gkq172, PMID: PubMed DOI PMC
Zentgraf U., Hemleben V. (1992). Complex-formation of nuclear proteins with the RNA polymerase-I promoter and repeated elements in the external transcribed spacer of Cucumis sativus ribosomal DNA. Nucl. Acids Res. 20, 3685–3691. doi: 10.1093/nar/20.14.3685, PMID: PubMed DOI PMC
Zentgraf U., Hemleben V. (1993). Nuclear proteins interact with RNA polymerase-I promoter and repeated elements of the 5' external transcribed spacer of the rDNA of cucumber in a single-stranded stage. Plant Mol. Biol. 22, 1153–1156. doi: 10.1007/Bf00028984, PMID: PubMed DOI
Zimmer E. A., Martin S. L., Beverley S. M., Kan Y. W., Wilson A. C. (1980). Rapid duplication and loss of genes-coding for the alpha-chains of hemoglobin. Proc. Natl. Acad. Sci. U. S. A. 77, 2158–2162. doi: 10.1073/pnas.77.4.2158, PMID: PubMed DOI PMC
Intragenomic rDNA variation - the product of concerted evolution, mutation, or something in between?