Remarkable variation of ribosomal DNA organization and copy number in gnetophytes, a distinct lineage of gymnosperms
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
30265284
PubMed Central
PMC6526317
DOI
10.1093/aob/mcy172
PII: 5108462
Knihovny.cz E-zdroje
- Klíčová slova
- Gnetophytes, chromosome evolution, concerted evolution, high-throughput sequencing, intragenomic diversity, pseudogenes, rDNA organization,
- MeSH
- cykasy * MeSH
- fylogeneze MeSH
- hybridizace in situ fluorescenční MeSH
- molekulární evoluce MeSH
- ribozomální DNA MeSH
- variabilita počtu kopií segmentů DNA MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- ribozomální DNA MeSH
INTRODUCTION: Gnetophytes, comprising the genera Ephedra, Gnetum and Welwitschia, are an understudied, enigmatic lineage of gymnosperms with a controversial phylogenetic relationship to other seed plants. Here we examined the organization of ribosomal DNA (rDNA) across representative species. METHODS: We applied high-throughput sequencing approaches to isolate and reconstruct rDNA units and to determine their intragenomic homogeneity. In addition, fluorescent in situ hybridization and Southern blot hybridization techniques were used to reveal the chromosome and genomic organization of rDNA. KEY RESULTS: The 5S and 35S rRNA genes were separate (S-type) in Gnetum montanum, Gnetum gnemon and Welwitschia mirabilis and linked (L-type) in Ephedra altissima. There was considerable variability in 5S rDNA abundance, ranging from as few as ~4000 (W. mirabilis) to >100 000 (G. montanum) copies. A similar large variation was also observed in 5S rDNA locus numbers (two to 16 sites per diploid cell). 5S rRNA pseudogenes were interspersed between functional genes forming a single unit in E. altissima and G. montanum. Their copy number was comparable or even higher than that of functional 5S rRNA genes. In E. altissima internal transcribed spacers of 35S rDNA were long and intrinsically repetitive while in G. montanum and W. mirabilis they were short without the subrepeats. CONCLUSIONS: Gnetophytes are distinct from other gymnosperms and angiosperms as they display surprisingly large variability in rDNA organization and rDNA copy and locus numbers between genera, with no relationship between copy numbers and genome sizes apparent. Concerted evolution of 5S rDNA units seems to have led to the amplification of 5S pseudogenes in both G. montanum and E. altissima. Evolutionary patterns of rDNA show both gymnosperm and angiosperm features underlining the diversity of the group.
Institut Botànic de Barcelona Passeig del Migdia s n Parc de Montjuïc Barcelona Catalonia Spain
Institute of Biophysics Academy of Sciences of the Czech Republic Brno Czech Republic
Jodrell Laboratory Royal Botanic Gardens Kew Richmond UK
School of Biological and Chemical Sciences Queen Mary University of London London UK
Sino Africa Joint Research Center Chinese Academy of Science Wuhan PR China
Zobrazit více v PubMed
Becher H, Ma L, Kelly LJ, Kovařík A, Leitch IJ, Leitch AR.. 2014. Endogenous pararetrovirus sequences associated with 24 nt small RNAs at the centromeres of Fritillaria imperialis L. (Liliaceae), a species with a giant genome. Plant Journal 80: 823–833. PubMed
Bennett MD, Leitch I.. 2012. Angiosperm DNA C-values Database (release 6.0, December 2012) http://data.kew.org/cvalues/.
Besendorfer V, Krajacic-Sokol I, Jelenic S, et al. . 2005. Two classes of 5S rDNA unit arrays of the silver fir, Abies alba Mill.: structure, localization and evolution. Theoretical and Applied Genetics 110: 730–741. PubMed
Bobola MS, Smith DE, Klein AS.. 1992. Five major nuclear ribosomal repeats represent a large and variable fraction of the genomic DNA of Picea rubens and P. mariana. Molecular Biology and Evolution 9: 125–137. PubMed
Boutte J, Aliaga B, Lima O, et al. . 2016. Haplotype detection from next-generation sequencing in high-ploidy-level species: 45S rDNA gene copies in the hexaploid Spartina maritima. G3: Genes, Genomes, Genetics 6: 29–40. PubMed PMC
Brown GR, Carlson JE.. 1997. Molecular cytogenetics of the genes encoding 18S-5.8S-26S rRNA and 5S rRNA in two species of spruce (Picea). Theoretical and Applied Genetics 95: 1–9.
Cai Q, Zhang DM, Liu ZL, Wang XR.. 2006. Chromosomal localization of 5S and 18S rDNA in five species of subgenus Strobus and their implications for genome evolution of Pinus. Annals of Botany 97: 715–722. PubMed PMC
Campbell CS, Wright WA, Cox M, Vining TF, Major CS, Arsenault MP.. 2005. Nuclear ribosomal DNA internal transcribed spacer 1 (ITS1) in Picea (Pinaceae): sequence divergence and structure. Molecular Phylogenetics and Evolution 35: 165–185. PubMed
Campell BR, Song Y, Posch TE, Cullis CA, Town CD.. 1992. Sequence and organization of 5S ribosomal RNA-encoding genes of Arabidopsis thaliana. Gene 112: 225–228. PubMed
Carlquist S. 1996. Wood, bark, and stem anatomy of gnetales: a summary. International Journal of Plant Sciences 157: S58–S76.
Carvalho A, Guedes-Pinto H, Lima-Brito J.. 2011. Intergenic spacer length variants in Old Portuguese bread wheat cultivars. Journal of Genetics 90: 203–208. PubMed
Dereeper A, Guignon V, Blanc G, et al. . 2008. Phylogeny.fr: robust phylogenetic analysis for the non-specialist. Nucleic Acids Research 36: W465–W469. PubMed PMC
Dover GA. 1982. Molecular drive: a cohesive mode of species evolution. Nature 299: 111–117. PubMed
Doyle J. 1991. DNA protocols for plants. In: Hewitt GM, Johnston AWB, Young JPW, eds. Molecular techniques in taxonomy. Berlin: Springer, 283–293.
Doyle JA. 1996. Seed plant phylogeny and the relationships of gnetales. International Journal of Plant Sciences 157: S3–S39.
Doyle JA, Donoghue MJ.. 1986. Seed plant phylogeny and the origin of angiosperms – an experimental cladistic approach. Botanical Review 52: 321–431.
Eickbush TH, Eickbush DG.. 2007. Finely orchestrated movements: evolution of the ribosomal RNA genes. Genetics 175: 477–485. PubMed PMC
Ellis TH, Lee D, Thomas CM, et al. . 1988. 5S rRNA genes in Pisum: sequence, long range and chromosomal organization. Molecular and General Genetics 214: 333–342. PubMed
Fagerlind F. 1941. Bau und Entwicklung der Gnetum-Gametophyten. Kgl. Sv. Vetenskapsakad., Handl 19: 1.
Fernandez A. 1936. Sur la caryologie de Welwitschia mirabilis Hook. Boletim da Sociedade Broteriana 11: 267–282.
Florin R. 1932. Die Chromosommenzahlen bei Welwitschia und eingen Ephedra-Arten. Svensk Bot Tidsk 26: 205–214.
Galián JA, Rosato M, Rosselló JA.. 2012. Early evolutionary colocalization of the nuclear ribosomal 5S and 45S gene families in seed plants: evidence from the living fossil gymnosperm Ginkgo biloba. Heredity 108: 640–646. PubMed PMC
Garcia-Gil MR. 2008. Evolutionary aspects of functional and pseudogene members of the phytochrome gene family in Scots pine. Journal of Molecular Evolution 67: 222–232. PubMed
Garcia S, Kovařík A.. 2013. Dancing together and separate again: gymnosperms exhibit frequent changes of fundamental 5S and 35S rRNA gene (rDNA) organisation. Heredity 111: 23–33. PubMed PMC
Garcia S, Lim KY, Chester M, et al. . 2009. Linkage of 35S and 5S rRNA genes in Artemisia (family Asteraceae): first evidence from angiosperms. Chromosoma 118: 85–97. PubMed
Garcia S, Kovařík A, Leitch AR, Garnatje T.. 2017. Cytogenetic features of rRNA genes across land plants: analysis of the Plant rDNA database. Plant Journal 89: 1020–1030. PubMed
Gernandt DS, Liston A, Pinero D.. 2001. Variation in the nrDNA ITS of Pinus subsection Cembroides: Implications for molecular systematic studies of pine species complexes. Molecular Phylogenetics and Evolution 21: 449–467. PubMed
Gorman SW, Teasdale RD, Cullis CA.. 1992. Structure and organization of the 5S ribosomal RNA genes (5S DNA) in Pinus radiata (Pinaceae). Plant Systematics and Evolution 183: 223–234.
Harpke D, Peterson A.. 2006. Non-concerted ITS evolution in Mammillaria (Cactaceae). Molecular Phylogenetics and Evolution 41: 579–593. PubMed
Hemleben V, Grierson D.. 1978. Evidence that in higher plants the 25S and 18S rRNA genes are not interspersed with genes for 5S rRNA. Chromosoma 65: 353–358.
Hemleben V, Ganal M, Gerstner J, Schiebel K, Torres RA.. 1988. Organization and length heterogeneity of plant ribosomal RNA genes. Weinheim: VCH.
Hidalgo O, Vitales D, Valles J, et al. . 2017. Cytogenetic insights into an oceanic island radiation: the dramatic evolution of pre-existing traits in Cheirolophus (Asteraceae: Cardueae: Centaureinae). Taxon 66: 146–157.
Hizume M, Tominanga K.. 2016. Fluorescent band pattern of chromosomes in Ephedra americana var. andina, Ephedraceae. Chromosome Botany 11: 27–30.
Hizume M, Ishida F, Kondo K.. 1992. Differential staining and in situ hybridization of nucleolar organizers and centromeres in Cycas revoluta chromosomes. Japanese Journal of Genetics 67: 381–387.
Hizume M, Shibata F, Matsusaki Y, Kondo T.. 1999. Mapping of 45S rRNA and 5S rRNA loci in Cryptomeria japonica, Cunninghamia lanceolata and Ginkgo biloba. Chromosome Science 3: 142.
Hou C. 2016. Evolutionary studies of the Gnetales. PhD Thesis, Stockhom University, Stockhom.
Hou C, Humphreys AM, Thureborn O, Rydin C.. 2015. New insights into the evolutionary history of Gnetum (Gnetales). Taxon 64: 239–253.
Huang JL, Giannasi DE, Huang J.. 2005. Phylogenetic relationships in Ephedra (Ephedraceae) inferred from chloroplast and nuclear DNA sequences. Molecular Phylogenetics and Evolution 35: 48–59. PubMed
Ickert-Bond SM, Renner SS.. 2016. The Gnetales: recent insights on their morphology, reproductive biology, chromosome numbers, biogeography, and divergence times. Journal of Systematics and Evolution 54: 1–16.
Ickert-Bond SM, Wojciechowski MF.. 2004. Phylogenetic relationships in Ephedra (Gnetales): evidence from nuclear and chloroplast DNA sequence data. Systematic Botany 29: 834–849.
Ickert-Bond SM, Rydin C, Renner SS.. 2009. A fossil-calibrated relaxed clock for Ephedra indicates an Oligocene age for the divergence of Asian and New World clades and Miocene dispersal into South America. Journal of Systematics and Evolution 47: 444–456.
Ide S, Miyazaki T, Maki H, Kobayashi T.. 2010. Abundance of ribosomal RNA gene copies maintains genome integrity. Science 327: 693–696. PubMed
Islam-Faridi MN, Nelson CD, Kubisiak TL.. 2007. Reference karyotype and cytomolecular map for loblolly pine (Pinus taeda L.). Genome 50: 241–251. PubMed
Keller I, Chintauan-Marquier IC, Veltsos P, Nichols RA.. 2006. Ribosomal DNA in the grasshopper Podisma pedestris: escape from concerted evolution. Genetics 174: 863–874. PubMed PMC
Khoshoo TN, Ahuja MR.. 1963. The chromosomes and relationships of Welwitschia mirabilis. Chromosoma 14: 522–533.
Kovařík A, Koukalova B, Lim KY, et al. . 2000. Comparative analysis of DNA methylation in tobacco heterochromatic sequences. Chromosome Research 8: 527–541. PubMed
Leitch AR, Leitch IJ.. 2012. Ecological and genetic factors linked to contrasting genome dynamics in seed plants. New Phytologist 194: 629–646. PubMed
Li Z, De La Torre AR, Sterck L, et al. . 2017. Single-copy genes as molecular markers for phylogenomic studies in seed plants. Genome Biology and Evolution 9: 1130–1147. PubMed PMC
Liston A, Robinson WA, Oliphant JM, AlvarezBuylla ER.. 1996. Length variation in the nuclear ribosomal DNA internal transcribed spacer region of non-flowering seed plants. Systematic Botany 21: 109–120.
Liu ZL, Zhang DM, Wang XQ, Ma XF, Wang XR.. 2003. Intragenomic and interspecific 5S rDNA sequence variation in five Asian pines. American Journal of Botany 90: 17–24. PubMed
Loera I, Ickert-Bond SM, Sosa V.. 2015. Ecological consequences of contrasting dispersal syndromes in New World Ephedra: higher rates of niche evolution related to dispersal ability. Ecography 38: 1187–1199.
Long EO, Dawid IB.. 1980. Repeated genes in eukaryotes. Annual Review of Biochemistry 49: 727–764. PubMed
Lorenz R, Bernhart SH, Siederdissen CHZ, et al. . 2011. ViennaRNA Package 2.0. Algorithms for Molecular Biology 6: 26. PubMed PMC
Lu Y, Ran JH, Guo DM, Yang ZY, Wang XQ.. 2014. Phylogeny and divergence times of gymnosperms inferred from single-copy nuclear genes. PLoS ONE 9: e107679. PubMed PMC
Lubaretz O, Fuchs J, Ahne R, Meister A, Schubert I.. 1996. Karyotyping of three Pinaceae species via fluorescent in situ hybridization and computer-aided chromosome analysis. Theoretical and Applied Genetics 92: 411–416. PubMed
Lunerova J, Renny-Byfield S, Matyasek R, Leitch A, Kovařík A.. 2017. Concerted evolution rapidly eliminates sequence variation in rDNA coding regions but not in intergenic spacers in Nicotiana tabacum allotetraploid. Plant Systematics and Evolution 303: 1043–1060.
Maggini F, Baldassini S.. 1995. Ribosomal RNA genes in the genus Pinus. I. Caryologia 48: 17–25.
Matyasek R, Renny-Byfield S, Fulnecek J, et al. . 2012. Next generation sequencing analysis reveals a relationship between rDNA unit diversity and locus number in Nicotiana diploids. BMC Genomics 13: 722. PubMed PMC
Mehra PN. 1946. A study of the karyotypes and the occurence of diploid gametophytes in some species of the genus Ephedra. Proceedings of the National Academy of Sciences (India) 16: 259–286.
Melekhovets YF, Troitsky AV, Valiejo-Roman KM, Bobrova VK, Antonov AS.. 1988. Nucleotide sequences of cytosolic 5S ribosomal RNAs from two gymnosperms, Gnetum gnemon and Ephedra kokanica. Nucleic Acids Research 16: 4155. PubMed PMC
Miranda M, Almeida CCD, Guerra M.. 2007. Karyotype of Araucaria angustifolia and the decondensation/activation mode of its nucleolus organiser region. Australian Journal of Botany 55: 165–170.
Murray BG, Friesen N, Heslop-Harrison JS.. 2002. Molecular cytogenetic analysis of Podocarpus and comparison with other gymnosperm species. Annals of Botany 89: 483–489. PubMed PMC
Novak P, Neumann P, Macas J.. 2010. Graph-based clustering and characterization of repetitive sequences in next-generation sequencing data. BMC Bioinformatics 11: 378. PubMed PMC
Novak P, Neumann P, Pech J, Steinhaisl J, Macas J.. 2013. RepeatExplorer: a Galaxy-based web server for genome-wide characterization of eukaryotic repetitive elements from next-generation sequence reads. Bioinformatics 29: 792–793. PubMed
Nystedt B, Street NR, Wetterbom A, et al. . 2013. The Norway spruce genome sequence and conifer genome evolution. Nature 497: 579–584. PubMed
Pearson HHW. 1908. Further observations on Welwitschia. Proceedings of the Royal Society of London Series B 80: 530–531.
Price RA. 1996. Systematics of the gnetales: a review of morphological and molecular evidence. International Journal of Plant Sciences 157: S40–S49.
Prokopowich CD, Gregory TR, Crease TJ.. 2003. The correlation between rDNA copy number and genome size in eukaryotes. Genome 46: 48–50. PubMed
Puizina J, Sviben T, Krajacic-Sokol I, et al. . 2008. Cytogenetic and molecular characterization of the Abies alba genome and its relationship with other members of the Pinaceae. Plant Biology 10: 256–267. PubMed
R Core Development Team 2013. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.
Resende F. 1936. Über die Ubiquität der SAT-Chromosomen bei den Blütenpflanzen. Planta 25: 757–807.
Roser M, Winterfeld G, Grebenstein B, Hemleben V.. 2001. Molecular diversity and physical mapping of 5S rDNA in wild and cultivated oat grasses (Poaceae: Aveneae). Molecular Phylogenetics and Evolution 21: 198–217. PubMed
Rydin C, Pedersen KR, Friis EM.. 2004. On the evolutionary history of Ephedra: Cretaceous fossils and extant molecules. Proceedings of the National Academy of Sciences of the USA 101: 16571–16576. PubMed PMC
Sano Y, Sano R.. 1990. Variation of the intergenic spacer region of ribosomal DNA in cultivated and wild rice species. Genome 33: 209–218.
Schwarzacher T, Heslop-Harrison JPT.. 2000. Practical in situ hybridization. Oxford: BIOS Scientific Publishers.
Shibata F, Matsusaki Y, Hizume M.. 2016. A comparative analysis of multi-probe fluorescence in situ hybridisation (FISH) karyotypes in 26 Pinus species (Pinaceae). Cytologia 81: 409–421.
Siljak-Yakovlev S, Cerbah M, Coulaud J, et al. . 2002. Nuclear DNA content, base composition, heterochromatin and rDNA in Picea omorika and Picea abies. Theoretical and Applied Genetics 104: 505–512. PubMed
Stage DE, Eickbush TH.. 2007. Sequence variation within the rRNA gene loci of 12 Drosophila species. Genome Research 17: 1888–1897. PubMed PMC
Van De Peer Y, Mizrachi E, Marchal K.. 2017. The evolutionary significance of polyploidy. Nature Reviews Genetics 18: 411–424. PubMed
Volkov RA, Borisjuk NV, Panchuk II, Schweizer D, Hemleben V.. 1999. Elimination and rearrangement of parental rDNA in the allotetraploid Nicotiana tabacum. Molecular Phylogenetics and Evolution 16: 311–320. PubMed
Wan T, Liu Z-M, Li L-F, et al. . 2018. A genome for gnetophytes and early evolution of seed plants. Nature Plants 4: 82–89. PubMed
Wang WC, Ma L, Becher H, et al. . 2016. Astonishing 35S rDNA diversity in the gymnosperm species Cycas revoluta Thunb. Chromosoma 125: 683–699. PubMed PMC
Wang XQ, Ran JH.. 2014. Evolution and biogeography of gymnosperms. Molecular Phylogenetics and Evolution 75: 24–40. PubMed
Wei XX, Wang XQ, Hong DY.. 2003. Marked intragenomic heterogeneity and geographical differentiation of nrDNA ITS in Larix potaninii (Pinaceae). Journal of Molecular Evolution 57: 623–635. PubMed
Weitemier K, Straub SC, Fishbein M, Liston A.. 2015. Intragenomic polymorphisms among high-copy loci: a genus-wide study of nuclear ribosomal DNA in Asclepias (Apocynaceae). PeerJ 3: e718. PubMed PMC
Wendel JF. 2015. The wondrous cycles of polyploidy in plants. American Journal of Botany 102: 1753–1756. PubMed
Wicke S, Costa A, Munoz J, Quandt D.. 2011. Restless 5S: the re-arrangement(s) and evolution of the nuclear ribosomal DNA in land plants. Molecular Phylogenetics and Evolution 61: 321–32. PubMed
Wickett NJ, Mirarab S, Nguyen N, et al. . 2014. Phylotranscriptomic analysis of the origin and early diversification of land plants. Proceedings of the National Academy of Sciences of the USA 111: E4859–E4868. PubMed PMC
Winter KU, Becker A, Munster T, Kim JT, Saedler H, Theissen G.. 1999. MADS-box genes reveal that gnetophytes are more closely related to conifers than to flowering plants. Proceedings of the National Academy of Sciences of the USA 96: 7342–7347. PubMed PMC
Won H, Renner SS.. 2005. The internal transcribed spacer of nuclear ribosomal DNA in the gymnosperm Gnetum. Molecular Phylogenetics and Evolution 36: 581–597. PubMed
Xiao LQ, Moller M, Zhu H.. 2010. High nrDNA ITS polymorphism in the ancient extant seed plant Cycas: incomplete concerted evolution and the origin of pseudogenes. Molecular Phylogenetics and Evolution 55: 168–177. PubMed
Zimmer EA, Martin SL, Beverley SM, Kan YW, Wilson AC.. 1980. Rapid duplication and loss of genes coding for the alpha chains of hemoglobin. Proceedings of the National Academy of Sciences of the USA 77: 2158–2162. PubMed PMC
Contrasting distributions and expression characteristics of transcribing repeats in Setaria viridis
Analysis of 5S rDNA Genomic Organization Through the RepeatExplorer2 Pipeline: A Simplified Protocol
Large-scale comparative analysis of cytogenetic markers across Lepidoptera