Horizontally Acquired nrDNAs Persist in Low Amounts in Host Hordeum Genomes and Evolve Independently of Native nrDNA
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
34079572
PubMed Central
PMC8165317
DOI
10.3389/fpls.2021.672879
Knihovny.cz E-zdroje
- Klíčová slova
- copy number variation (CNV), fluorescent in situ hybridisation (FISH), horizontal gene transfer (HGT), internal transcribed spacer (ITS), nuclear ribosomal DNA (nrDNA), phylogeny, qPCR (quantitative PCR), xenolog,
- Publikační typ
- časopisecké články MeSH
Nuclear ribosomal DNA (nrDNA) has displayed extraordinary dynamics during the evolution of plant species. However, the patterns and evolutionary significance of nrDNA array expansion or contraction are still relatively unknown. Moreover, only little is known of the fate of minority nrDNA copies acquired between species via horizontal transfer. The barley genus Hordeum (Poaceae) represents a good model for such a study, as species of section Stenostachys acquired nrDNA via horizontal transfer from at least five different panicoid genera, causing long-term co-existence of native (Hordeum-like) and non-native (panicoid) nrDNAs. Using quantitative PCR, we investigated copy number variation (CNV) of nrDNA in the diploid representatives of the genus Hordeum. We estimated the copy number of the foreign, as well as of the native ITS types (ribotypes), and followed the pattern of their CNV in relation to the genus' phylogeny, species' genomes size and the number of nrDNA loci. For the native ribotype, we encountered an almost 19-fold variation in the mean copy number among the taxa analysed, ranging from 1689 copies (per 2C content) in H. patagonicum subsp. mustersii to 31342 copies in H. murinum subsp. glaucum. The copy numbers did not correlate with any of the genus' phylogeny, the species' genome size or the number of nrDNA loci. The CNV was high within the recognised groups (up to 13.2 × in the American I-genome species) as well as between accessions of the same species (up to 4×). Foreign ribotypes represent only a small fraction of the total number of nrDNA copies. Their copy numbers ranged from single units to tens and rarely hundreds of copies. They amounted, on average, to between 0.1% (Setaria ribotype) and 1.9% (Euclasta ribotype) of total nrDNA. None of the foreign ribotypes showed significant differences with respect to phylogenetic groups recognised within the sect. Stenostachys. Overall, no correlation was found between copy numbers of native and foreign nrDNAs suggesting the sequestration and independent evolution of native and non-native nrDNA arrays. Therefore, foreign nrDNA in Hordeum likely poses a dead-end by-product of horizontal gene transfer events.
Czech Academy of Sciences Institute of Botany Prùhonice Czechia
Faculty of Environmental Sciences Czech University of Life Sciences Prague Prague 6 Czechia
German Centre of Integrative Biodiversity Research Halle Jena Leipzig Leipzig Germany
Zobrazit více v PubMed
Albach D. C., Greilhuber J. (2004). Genome size variation and evolution in Veronica. PubMed DOI PMC
Álvarez I., Wendel J. F. (2003). Ribosomal ITS sequences and plant phylogenetic inference. PubMed DOI
Arnheim N., Krystal M., Schmickel R., Wilson G., Ryder O., Zimmer E. (1980). Molecular evidence for genetic exchanges among ribosomal genes on nonhomologous chromosomes in man and apes. PubMed DOI PMC
Ben-Shem A., de Loubresse N., Melnikov S., Jenner L., Yusupova G., Yusupov M. (2011). The structure of the eukaryotic ribosome at 3.0 Å resolution. PubMed DOI
Blattner F. R. (2004). Phylogenetic analysis of PubMed DOI
Blattner F. R. (2009). Progress in phylogenetic analysis and a new infrageneric classification of the barley genus DOI
Blommaert J., Riss S., Hecox-Lea B., Mark Welch D. B., Stelzer C. P. (2019). Small, but surprisingly repetitive genomes: transposon expansion and not polyploidy has driven a doubling in genome size in a metazoan species complex. PubMed DOI PMC
Brassac J., Blattner F. R. (2015). Species-level phylogeny and polyploid relationships in PubMed DOI PMC
Chrtek J., Zahradníček J., Krak K., Fehrer J. (2009). Genome size in PubMed DOI PMC
Cronn R. C., Zhao X., Paterson A. H., Wendel J. F. (1996). Polymorphism and concerted evolution in a tandemly repeated gene family: 5S ribosomal DNA in diploid and allopolyploid cottons. PubMed DOI
Dubcovsky J., Dvořák J. (1995). Ribosomal RNA multigene loci: nomads of the Triticeae genomes. PubMed DOI PMC
Fehrer J., Krak K., Chrtek J. (2009). Intra-individual polymorphism in diploid and apomictic polyploid hawkweeds ( PubMed DOI PMC
Fuertes Aguilar J., Rosselló J. A., Nieto Feliner G. (1999). Nuclear ribosomal DNA (nrDNA) concerted evolution in natural and artificial hybrids of PubMed DOI
Govindaraju D. R., Cullis C. (1992). Ribosomal DNA variation among populations of a DOI
Hloušková P., Mandáková T., Pouch M., Trávníček P., Lysák M. A. (2019). The large genome size variation in the PubMed DOI PMC
Jakob S. S., Meister A., Blattner F. R. (2004). The considerable genome size variation of PubMed DOI
Jakob S. S., Rödder D., Engler J. O., Shaaf S., Özkan H., Blattner F. R., et al. (2014). Evolutionary history of wild barley ( PubMed DOI PMC
Jayakodi M., Padmarasu S., Haberer G., Bonthala V. S., Gundlach H., Monat C., et al. (2020). The barley pan-genome reveals the hidden legacy of mutation breeding. PubMed DOI PMC
Johnson S. M., Carlson E. L., Pappagianis D. (2015). Determination of ribosomal DNA copy number and comparison among strains of PubMed DOI
Kang M., Tao J., Wang J., Ren C., Qi Q., Xiang Q. Y., et al. (2014). Adaptive and nonadaptive genome size evolution in Karst endemic flora of China. PubMed DOI
Ko K. S., Jung H. S. (2002). Three nonorthologous ITS1 types are present in a polypore fungus PubMed DOI
Kono T. J. Y., Liu C., Vonderharr E. E., Koenig D., Fay J. C., Smith K. P., et al. (2019). The fate of deleterious variants in a barley genomic prediction population. PubMed DOI PMC
Kovařík A., Dadejová M., Lim Y. K., Chase M. W., Clarkson J. J., Knapp S., et al. (2008). Evolution of rDNA in PubMed DOI PMC
Langmead B., Salzberg S. (2012). Fast gapped-read alignment with Bowtie 2. PubMed DOI PMC
Leitch I. J., Heslop-Harrison J. S. (1992). Physical mapping of the 18S-5.8S-26S rRNA genes in barley by in situ hybridization. DOI
Liu M., Li Y., Ma Y., Zhao Q., Stiller J., Feng Q., et al. (2019). The draft genome of a wild barley genotype reveals its enrichment in genes related to biotic and abiotic stresses compared to cultivated barley. PubMed DOI PMC
Long Q., Rabanal F. A., Meng D., Huber C. D., Farlow A., Platzer A., et al. (2013). Massive genomic variation and strong selection in PubMed DOI PMC
Mahelka V., Kopecký D. (2010). Gene capture from across the grass family in the allohexaploid PubMed DOI
Mahelka V., Krak K., Fehrer J., Caklová P., Nagy Nejedlá M., Čegan R., et al. (2021). A PubMed DOI
Mahelka V., Krak K., Kopecký D., Fehrer J., Šafář J., Bartoš J., et al. (2017). Multiple horizontal transfers of nuclear ribosomal genes between phylogenetically distinct grass lineages. PubMed DOI PMC
Malinská H., Tate J. A., Matyášek R., Leitch A. R., Soltis D. E., Soltis P. S., et al. (2010). Similar patterns of rDNA evolution in synthetic and recently formed natural populations of PubMed DOI PMC
Mandák B., Krak K., Vít P., Pavlíková Z., Lomonosova M. N., Habibi F., et al. (2016). How genome size variation is linked with evolution within DOI
Mascher M., Richmond T. A., Gerhardt D. J., Himmelbach A., Clissold L., Sampath D., et al. (2013). Barley whole exome capture: a tool for genomic research in the genus PubMed DOI PMC
Matyášek R., Tate J. A., Lim Y. K., Šrubařová H., Koh J., Leitch A. R., et al. (2007). Concerted evolution of rDNA in recently formed PubMed DOI PMC
McCann J., Macas J., Novák P., Stuessy T. F., Villaseñor J. L., Weiss-Schneeweiss H. (2020). Differential genome size and repetitive DNA evolution in diploid species of PubMed DOI PMC
Monat C., Padmarasu S., Lux T., Wicker T., Gundlach H., Himmelbach A., et al. (2019). TRITEX: chromosome-scale sequence assembly of Triticeae genomes with open-source tools. PubMed DOI PMC
Potapova T. A., Gerton J. L. (2019). Ribosomal DNA and the nucleolus in the context of genome organization. PubMed DOI
Prokopowich C. D., Gregory T. R., Crease T. J. (2003). The correlation between rDNA copy number and genome size in eukaryotes. PubMed DOI
R Core Team (2020).
Rabanal F. A., Nizhynska V., Mandáková T., Novikova P. Y., Lysák M. A., Mott R., et al. (2017). Unstable inheritance of 45S rRNA genes in PubMed DOI PMC
Rogers S. O., Bendich A. J. (1987). Heritability and variability in ribosomal RNA genes of PubMed PMC
Rosato M., Kovařík A., Garilleti R., Rosselló J. A. (2016). Conserved organisation of 45S rDNA sites and rDNA gene copy number among major clades of early land plants. PubMed DOI PMC
Saghai-Maroof M. A., Soliman K. M., Jorgensen R. A., Allard R. W. (1984). Ribosomal DNA spacer-length polymorphisms in barley: Mendelian inheritance, chromosomal location, and population dynamics. PubMed DOI PMC
Sproul J. S., Barton L. M., Maddison D. R. (2020). Repetitive DNA profiles reveal evidence of rapid genome evolution and reflect species boundaries in ground beetles. PubMed DOI
Srivastava A. K., Schlessinger D. (1991). Structure and organization of ribosomal DNA. PubMed DOI
Taketa S., Ando H., Takeda K., von Bothmer R. (2001). Physical locations of 5S and 18S-25S rDNA in Asian and American diploid PubMed DOI
Taketa S., Harrison G. E., Heslop-Harrison J. S. (1999). Comparative physical mapping of the 5S and 18S-25S rDNA in nine wild DOI
Talla V., Suh A., Kalsoom F., Dinca V., Vila R., Friberg M., et al. (2017). Rapid increase in genome size as a consequence of transposable element hyperactivity in wood-white (Leptidea) butterflies. PubMed DOI PMC
Veiko N. N., Shubaeva N. O., Malashenko A. M., Beskova T. B., Agapova R. K., Lyapunova N. A. (2007). Ribosomal genes in inbred mouse strains: interstrain and intrastrain variation of copy number and extent of methylation. PubMed DOI
Vitales D., Álvarez I., Garcia S., Hidalgo O., Nieto Feliner G., Pellicer J., et al. (2020). Genome size variation at constant chromosome number is not correlated with repetitive DNA dynamism in PubMed DOI PMC
Wang W., Wan T., Becher H., Kuderová A., Leitch I. J., Garcia S., et al. (2019). Remarkable variation of ribosomal DNA organization and copy number in gnetophytes, a distinct lineage of gymnosperms. PubMed DOI PMC
Weiss-Schneeweiss H., Greilhuber J., Schneeweiss G. M. (2006). Genome size evolution in holoparasitic PubMed DOI
Wendel J. F., Schnabel A., Seelanan T. (1995). Bidirectional interlocus concerted evolution following allopolyploid speciation in cotton ( PubMed DOI PMC
Wong W. Y., Simakov O., Bridge D. M., Cartwright P., Bellantuono A. J., Kuhn A., et al. (2019). Expansion of a single transposable element family is associated with genome-size increase and radiation in the genus PubMed DOI PMC
Xu W., Tucker J. R., Bekele W. A., You F. M., Fu Y.-B., Khanal R., et al. (2021). Genome assembly of the Canadian two-row malting barley cultivar AAC Synergy. PubMed DOI PMC
Zedek F., Šmerda J., Šmarda P., Bureš P. (2010). Correlated evolution of LTR retrotransposons and genome size in the genus PubMed DOI PMC
Zozomová-Lihová J., Mandáková T., Kovaříková A., Muhlhausen A., Mummenhoff K., Lysák M. A., et al. (2014). When fathers are instant losers: homogenization of rDNA loci in recently formed PubMed DOI