Horizontally Acquired nrDNAs Persist in Low Amounts in Host Hordeum Genomes and Evolve Independently of Native nrDNA
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
34079572
PubMed Central
PMC8165317
DOI
10.3389/fpls.2021.672879
Knihovny.cz E-zdroje
- Klíčová slova
- copy number variation (CNV), fluorescent in situ hybridisation (FISH), horizontal gene transfer (HGT), internal transcribed spacer (ITS), nuclear ribosomal DNA (nrDNA), phylogeny, qPCR (quantitative PCR), xenolog,
- Publikační typ
- časopisecké články MeSH
Nuclear ribosomal DNA (nrDNA) has displayed extraordinary dynamics during the evolution of plant species. However, the patterns and evolutionary significance of nrDNA array expansion or contraction are still relatively unknown. Moreover, only little is known of the fate of minority nrDNA copies acquired between species via horizontal transfer. The barley genus Hordeum (Poaceae) represents a good model for such a study, as species of section Stenostachys acquired nrDNA via horizontal transfer from at least five different panicoid genera, causing long-term co-existence of native (Hordeum-like) and non-native (panicoid) nrDNAs. Using quantitative PCR, we investigated copy number variation (CNV) of nrDNA in the diploid representatives of the genus Hordeum. We estimated the copy number of the foreign, as well as of the native ITS types (ribotypes), and followed the pattern of their CNV in relation to the genus' phylogeny, species' genomes size and the number of nrDNA loci. For the native ribotype, we encountered an almost 19-fold variation in the mean copy number among the taxa analysed, ranging from 1689 copies (per 2C content) in H. patagonicum subsp. mustersii to 31342 copies in H. murinum subsp. glaucum. The copy numbers did not correlate with any of the genus' phylogeny, the species' genome size or the number of nrDNA loci. The CNV was high within the recognised groups (up to 13.2 × in the American I-genome species) as well as between accessions of the same species (up to 4×). Foreign ribotypes represent only a small fraction of the total number of nrDNA copies. Their copy numbers ranged from single units to tens and rarely hundreds of copies. They amounted, on average, to between 0.1% (Setaria ribotype) and 1.9% (Euclasta ribotype) of total nrDNA. None of the foreign ribotypes showed significant differences with respect to phylogenetic groups recognised within the sect. Stenostachys. Overall, no correlation was found between copy numbers of native and foreign nrDNAs suggesting the sequestration and independent evolution of native and non-native nrDNA arrays. Therefore, foreign nrDNA in Hordeum likely poses a dead-end by-product of horizontal gene transfer events.
Czech Academy of Sciences Institute of Botany Prùhonice Czechia
Faculty of Environmental Sciences Czech University of Life Sciences Prague Prague 6 Czechia
German Centre of Integrative Biodiversity Research Halle Jena Leipzig Leipzig Germany
Zobrazit více v PubMed
Albach D. C., Greilhuber J. (2004). Genome size variation and evolution in Veronica. Ann. Bot. 94 897–911. 10.1093/aob/mch219 PubMed DOI PMC
Álvarez I., Wendel J. F. (2003). Ribosomal ITS sequences and plant phylogenetic inference. Mol. Phylogenet. Evol. 29 417–434. 10.1016/S1055-7903(03)00208-2 PubMed DOI
Arnheim N., Krystal M., Schmickel R., Wilson G., Ryder O., Zimmer E. (1980). Molecular evidence for genetic exchanges among ribosomal genes on nonhomologous chromosomes in man and apes. Proc. Natl. Acad. Sci. U.S.A. 77 7323–7327. 10.1073/pnas.77.12.7323 PubMed DOI PMC
Ben-Shem A., de Loubresse N., Melnikov S., Jenner L., Yusupova G., Yusupov M. (2011). The structure of the eukaryotic ribosome at 3.0 Å resolution. Science 334 1524–1529. 10.1126/science.1212642 PubMed DOI
Blattner F. R. (2004). Phylogenetic analysis of Hordeum (Poaceae) as inferred by nuclear rDNA ITS sequences. Mol. Phylogenet. Evol. 33 289–299. 10.1016/j.ympev.2004.05.012 PubMed DOI
Blattner F. R. (2009). Progress in phylogenetic analysis and a new infrageneric classification of the barley genus Hordeum (Poaceae: Triticeae). Breed. Sci. 59 471–480. 10.1270/jsbbs.59.471 PubMed DOI
Blommaert J., Riss S., Hecox-Lea B., Mark Welch D. B., Stelzer C. P. (2019). Small, but surprisingly repetitive genomes: transposon expansion and not polyploidy has driven a doubling in genome size in a metazoan species complex. BMC Genomics 20:466. 10.1186/s12864-019-5859-y PubMed DOI PMC
Brassac J., Blattner F. R. (2015). Species-level phylogeny and polyploid relationships in Hordeum (Poaceae) inferred by next-generation sequencing and in silico cloning of multiple nuclear loci. Syst. Biol. 64 792–808. 10.1093/sysbio/syv035 PubMed DOI PMC
Chrtek J., Zahradníček J., Krak K., Fehrer J. (2009). Genome size in Hieracium subgenus Hieracium (Asteraceae) is strongly correlated with major phylogenetic groups. Ann. Bot. 104 161–178. 10.1093/aob/mcp107 PubMed DOI PMC
Cronn R. C., Zhao X., Paterson A. H., Wendel J. F. (1996). Polymorphism and concerted evolution in a tandemly repeated gene family: 5S ribosomal DNA in diploid and allopolyploid cottons. J. Mol. Evol. 42 685–705. 10.1007/BF02338802 PubMed DOI
Dubcovsky J., Dvořák J. (1995). Ribosomal RNA multigene loci: nomads of the Triticeae genomes. Genetics 140 1367–1377. 10.1093/genetics/140.4.1367 PubMed DOI PMC
Fehrer J., Krak K., Chrtek J. (2009). Intra-individual polymorphism in diploid and apomictic polyploid hawkweeds (Hieracium, Lactuceae, Asteraceae): disentangling phylogenetic signal, reticulation, and noise. BMC Evol. Biol. 9:239. 10.1186/1471-2148-9-239 PubMed DOI PMC
Fuertes Aguilar J., Rosselló J. A., Nieto Feliner G. (1999). Nuclear ribosomal DNA (nrDNA) concerted evolution in natural and artificial hybrids of Armeria (Plumbaginaceae). Mol. Ecol. 8 1341–1346. 10.1046/j.1365-294X.1999.00690.x PubMed DOI
Govindaraju D. R., Cullis C. (1992). Ribosomal DNA variation among populations of a Pinus rigida Mill. (pitch pine) ecosystem: I. distribution of copy numbers. Heredity (Edinb) 69 133–140. 10.1038/hdy.1992.106 DOI
Hloušková P., Mandáková T., Pouch M., Trávníček P., Lysák M. A. (2019). The large genome size variation in the Hesperis clade was shaped by the prevalent proliferation of DNA repeats and rarer genome downsizing. Ann. Bot. 124 103–120. 10.1093/aob/mcz036 PubMed DOI PMC
Jakob S. S., Meister A., Blattner F. R. (2004). The considerable genome size variation of Hordeum Species (Poaceae) is linked to phylogeny, life form, ecology, and speciation rates. Mol. Biol. Evol. 21 860–869. 10.1093/molbev/msh092 PubMed DOI
Jakob S. S., Rödder D., Engler J. O., Shaaf S., Özkan H., Blattner F. R., et al. (2014). Evolutionary history of wild barley (Hordeum vulgare subsp. spontaneum) analyzed using multilocus sequence data and paleodistribution modeling. Genome Biol. Evol. 6 685–702. 10.1093/gbe/evu047 PubMed DOI PMC
Jayakodi M., Padmarasu S., Haberer G., Bonthala V. S., Gundlach H., Monat C., et al. (2020). The barley pan-genome reveals the hidden legacy of mutation breeding. Nature 588 284–289. 10.1038/s41586-020-2947-8 PubMed DOI PMC
Johnson S. M., Carlson E. L., Pappagianis D. (2015). Determination of ribosomal DNA copy number and comparison among strains of Coccidioides. Mycopathologia 179 45–51. 10.1007/s11046-014-9820-y PubMed DOI
Kang M., Tao J., Wang J., Ren C., Qi Q., Xiang Q. Y., et al. (2014). Adaptive and nonadaptive genome size evolution in Karst endemic flora of China. New Phytol. 202 1371–1381. 10.1111/nph.12726 PubMed DOI
Ko K. S., Jung H. S. (2002). Three nonorthologous ITS1 types are present in a polypore fungus Trichaptum abietinum. Mol. Phylogenet. Evol. 23 112–122. 10.1016/S1055-7903(02)00009-X PubMed DOI
Kono T. J. Y., Liu C., Vonderharr E. E., Koenig D., Fay J. C., Smith K. P., et al. (2019). The fate of deleterious variants in a barley genomic prediction population. Genetics 213 1531–1544. 10.1534/genetics.119.302733 PubMed DOI PMC
Kovařík A., Dadejová M., Lim Y. K., Chase M. W., Clarkson J. J., Knapp S., et al. (2008). Evolution of rDNA in Nicotiana allopolyploids: A potential link between rDNA homogenization and epigenetics. Ann. Bot. 101 815–823. 10.1093/aob/mcn019 PubMed DOI PMC
Langmead B., Salzberg S. (2012). Fast gapped-read alignment with Bowtie 2. Nat. Methods 9 357–359. 10.1038/nmeth.1923 PubMed DOI PMC
Leitch I. J., Heslop-Harrison J. S. (1992). Physical mapping of the 18S-5.8S-26S rRNA genes in barley by in situ hybridization. Genome 35 1013–1018. 10.1139/g92-155 DOI
Liu M., Li Y., Ma Y., Zhao Q., Stiller J., Feng Q., et al. (2019). The draft genome of a wild barley genotype reveals its enrichment in genes related to biotic and abiotic stresses compared to cultivated barley. Plant Biotechnol. J. 18 443–456. 10.1111/pbi.13210 PubMed DOI PMC
Long Q., Rabanal F. A., Meng D., Huber C. D., Farlow A., Platzer A., et al. (2013). Massive genomic variation and strong selection in Arabidopsis thaliana lines from Sweden. Nat. Genet. 45 884–890. 10.1038/ng.2678 PubMed DOI PMC
Mahelka V., Kopecký D. (2010). Gene capture from across the grass family in the allohexaploid Elymus repens (L.) Gould (Poaceae, Triticeae) as evidenced by ITS, GBSSI, and molecular cytogenetics. Mol. Biol. Evol. 27 1370–1390. 10.1093/molbev/msq021 PubMed DOI
Mahelka V., Krak K., Fehrer J., Caklová P., Nagy Nejedlá M., Čegan R., et al. (2021). A Panicum-derived chromosomal segment captured by Hordeum a few million years ago preserves a set of stress-related genes. Plant J. 105 1141–1164. 10.1111/tpj.15167 PubMed DOI
Mahelka V., Krak K., Kopecký D., Fehrer J., Šafář J., Bartoš J., et al. (2017). Multiple horizontal transfers of nuclear ribosomal genes between phylogenetically distinct grass lineages. Proc. Natl. Acad. Sci. U.S.A. 114 1726–1731. 10.1073/pnas.1613375114 PubMed DOI PMC
Malinská H., Tate J. A., Matyášek R., Leitch A. R., Soltis D. E., Soltis P. S., et al. (2010). Similar patterns of rDNA evolution in synthetic and recently formed natural populations of Tragopogon (Asteraceae) allotetraploids. BMC Evol. Biol. 10:291. 10.1186/1471-2148-10-291 PubMed DOI PMC
Mandák B., Krak K., Vít P., Pavlíková Z., Lomonosova M. N., Habibi F., et al. (2016). How genome size variation is linked with evolution within Chenopodium sensu lato. Perspect. Plant Ecol. Evol. Syst. 23 18–32. 10.1016/j.ppees.2016.09.004 DOI
Mascher M., Richmond T. A., Gerhardt D. J., Himmelbach A., Clissold L., Sampath D., et al. (2013). Barley whole exome capture: a tool for genomic research in the genus Hordeum and beyond. Plant J. 76 494–505. 10.1111/tpj.12294 PubMed DOI PMC
Matyášek R., Tate J. A., Lim Y. K., Šrubařová H., Koh J., Leitch A. R., et al. (2007). Concerted evolution of rDNA in recently formed Tragopogon allotetraploids is typically associated with an inverse correlation between gene copy number and expression. Genetics 176 2509–2519. 10.1534/genetics.107.072751 PubMed DOI PMC
McCann J., Macas J., Novák P., Stuessy T. F., Villaseñor J. L., Weiss-Schneeweiss H. (2020). Differential genome size and repetitive DNA evolution in diploid species of Melampodium sect. Melampodium (Asteraceae). Front. Plant Sci. 11:362. 10.3389/fpls.2020.00362 PubMed DOI PMC
Monat C., Padmarasu S., Lux T., Wicker T., Gundlach H., Himmelbach A., et al. (2019). TRITEX: chromosome-scale sequence assembly of Triticeae genomes with open-source tools. Genome Biol. 20 284. 10.1186/s13059-019-1899-5 PubMed DOI PMC
Potapova T. A., Gerton J. L. (2019). Ribosomal DNA and the nucleolus in the context of genome organization. Chromosom. Res. 27 109–127. 10.1007/s10577-018-9600-5 PubMed DOI
Prokopowich C. D., Gregory T. R., Crease T. J. (2003). The correlation between rDNA copy number and genome size in eukaryotes. Genome 46 48–50. 10.1139/g02-103 PubMed DOI
R Core Team (2020). R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing.
Rabanal F. A., Nizhynska V., Mandáková T., Novikova P. Y., Lysák M. A., Mott R., et al. (2017). Unstable inheritance of 45S rRNA genes in Arabidopsis thaliana. G3 Genes Genom. Genet. 7 1201–1209. 10.1534/g3.117.040204 PubMed DOI PMC
Rogers S. O., Bendich A. J. (1987). Heritability and variability in ribosomal RNA genes of Vicia faba. Genetics 117 285–295. PubMed PMC
Rosato M., Kovařík A., Garilleti R., Rosselló J. A. (2016). Conserved organisation of 45S rDNA sites and rDNA gene copy number among major clades of early land plants. PLoS One 11:e0162544. 10.1371/journal.pone.0162544 PubMed DOI PMC
Saghai-Maroof M. A., Soliman K. M., Jorgensen R. A., Allard R. W. (1984). Ribosomal DNA spacer-length polymorphisms in barley: Mendelian inheritance, chromosomal location, and population dynamics. Proc. Natl. Acad. Sci. U.S.A. 81 8014–8018. 10.1073/pnas.81.24.8014 PubMed DOI PMC
Sproul J. S., Barton L. M., Maddison D. R. (2020). Repetitive DNA profiles reveal evidence of rapid genome evolution and reflect species boundaries in ground beetles. Syst. Biol. 69 1137–1148. 10.1093/sysbio/syaa030 PubMed DOI
Srivastava A. K., Schlessinger D. (1991). Structure and organization of ribosomal DNA. Biochimie 73 631–638. 10.1016/0300-9084(91)90042-Y PubMed DOI
Taketa S., Ando H., Takeda K., von Bothmer R. (2001). Physical locations of 5S and 18S-25S rDNA in Asian and American diploid Hordeum species with the I-genome. Heredity (Edinb) 86 522–530. 10.1046/j.1365-2540.2001.00768.x PubMed DOI
Taketa S., Harrison G. E., Heslop-Harrison J. S. (1999). Comparative physical mapping of the 5S and 18S-25S rDNA in nine wild Hordeum species and cytotypes. Theor. Appl. Genet. 98 1–9. 10.1007/s001220051033 DOI
Talla V., Suh A., Kalsoom F., Dinca V., Vila R., Friberg M., et al. (2017). Rapid increase in genome size as a consequence of transposable element hyperactivity in wood-white (Leptidea) butterflies. Genome Biol. Evol. 9 2491–2505. 10.1093/gbe/evx163 PubMed DOI PMC
Veiko N. N., Shubaeva N. O., Malashenko A. M., Beskova T. B., Agapova R. K., Lyapunova N. A. (2007). Ribosomal genes in inbred mouse strains: interstrain and intrastrain variation of copy number and extent of methylation. Russ. J. Genet. 43 1021–1031. 10.1134/S1022795407090086 PubMed DOI
Vitales D., Álvarez I., Garcia S., Hidalgo O., Nieto Feliner G., Pellicer J., et al. (2020). Genome size variation at constant chromosome number is not correlated with repetitive DNA dynamism in Anacyclus (Asteraceae). Ann. Bot. 125 611–623. 10.1093/aob/mcz183 PubMed DOI PMC
Wang W., Wan T., Becher H., Kuderová A., Leitch I. J., Garcia S., et al. (2019). Remarkable variation of ribosomal DNA organization and copy number in gnetophytes, a distinct lineage of gymnosperms. Ann. Bot. 123 767–781. 10.1093/aob/mcy172 PubMed DOI PMC
Weiss-Schneeweiss H., Greilhuber J., Schneeweiss G. M. (2006). Genome size evolution in holoparasitic Orobanche (Orobanchaceae) and related genera. Am. J. Bot. 93 148–156. 10.3732/ajb.93.1.148 PubMed DOI
Wendel J. F., Schnabel A., Seelanan T. (1995). Bidirectional interlocus concerted evolution following allopolyploid speciation in cotton (Gossypium). Proc. Natl. Acad. Sci. U.S.A. 92 280–284. 10.1073/pnas.92.1.280 PubMed DOI PMC
Wong W. Y., Simakov O., Bridge D. M., Cartwright P., Bellantuono A. J., Kuhn A., et al. (2019). Expansion of a single transposable element family is associated with genome-size increase and radiation in the genus Hydra. Proc. Natl. Acad. Sci. U.S.A. 116 22915–22917. 10.1073/pnas.1910106116 PubMed DOI PMC
Xu W., Tucker J. R., Bekele W. A., You F. M., Fu Y.-B., Khanal R., et al. (2021). Genome assembly of the Canadian two-row malting barley cultivar AAC Synergy. G3 Genes Genom. Genet. 11:jkab031. 10.1093/g3journal/jkab031 PubMed DOI PMC
Zedek F., Šmerda J., Šmarda P., Bureš P. (2010). Correlated evolution of LTR retrotransposons and genome size in the genus Eleocharis. BMC Plant Biol. 10:265. 10.1186/1471-2229-10-265 PubMed DOI PMC
Zozomová-Lihová J., Mandáková T., Kovaříková A., Muhlhausen A., Mummenhoff K., Lysák M. A., et al. (2014). When fathers are instant losers: homogenization of rDNA loci in recently formed Cardamine schulzii trigenomic allopolyploid. N. Phytol. 203 1096–1108. 10.1111/nph.12873 PubMed DOI