Unstable Inheritance of 45S rRNA Genes in Arabidopsis thaliana
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
W 1225
Austrian Science Fund FWF - Austria
PubMed
28188182
PubMed Central
PMC5386868
DOI
10.1534/g3.117.040204
PII: g3.117.040204
Knihovny.cz E-zdroje
- Klíčová slova
- 45S rRNA genes, Arabidopsis thaliana, natural variation, ribosomes,
- MeSH
- Arabidopsis genetika MeSH
- genetické lokusy MeSH
- genová dávka MeSH
- inbreeding MeSH
- křížení genetické MeSH
- organizátor jadérka genetika MeSH
- rekombinace genetická genetika MeSH
- repetitivní sekvence nukleových kyselin genetika MeSH
- RNA ribozomální genetika MeSH
- rostlinné geny * MeSH
- typy dědičnosti genetika MeSH
- variabilita počtu kopií segmentů DNA genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- RNA ribozomální MeSH
- RNA, ribosomal, 45S MeSH Prohlížeč
The considerable genome size variation in Arabidopsis thaliana has been shown largely to be due to copy number variation (CNV) in 45S ribosomal RNA (rRNA) genes. Surprisingly, attempts to map this variation by means of genome-wide association studies (GWAS) failed to identify either of the two likely sources, namely the nucleolus organizer regions (NORs). Instead, GWAS implicated a trans-acting locus, as if rRNA gene CNV was a phenotype rather than a genotype. To explain these results, we investigated the inheritance and stability of rRNA gene copy number using the variety of genetic resources available in A. thaliana - F2 crosses, recombinant inbred lines, the multiparent advanced-generation inter-cross population, and mutation accumulation lines. Our results clearly show that rRNA gene CNV can be mapped to the NORs themselves, with both loci contributing equally to the variation. However, NOR size is unstably inherited, and dramatic copy number changes are visible already within tens of generations, which explains why it is not possible to map the NORs using GWAS. We did not find any evidence of trans-acting loci in crosses, which is also expected since changes due to such loci would take very many generations to manifest themselves. rRNA gene copy number is thus an interesting example of "missing heritability"-a trait that is heritable in pedigrees, but not in the general population.
Central European Institute of Technology Masaryk University 625 00 Brno Czech Republic
Gregor Mendel Institute Austrian Academy of Sciences Vienna Biocenter 1030 Austria
Zobrazit více v PubMed
1001 Genomes Consortium , 2016. 1,135 genomes reveal the global pattern of polymorphism in Arabidopsis thaliana. Cell 166: 481–491. PubMed PMC
Alonso-Blanco C., Peeters A. J., Koornneef M., Lister C., Dean C., et al. , 1998. Development of an AFLP based linkage map of Ler, Col and Cvi Arabidopsis thaliana ecotypes and construction of a Ler/Cvi recombinant inbred line population. Plant J. 14: 259–271. PubMed
Arends D., Prins P., Jansen R. C., Broman K. W., 2010. R/qtl: high-throughput multiple QTL mapping. Bioinformatics 26: 2990–2992. PubMed PMC
Averbeck K. T., Eickbush T. H., 2005. Monitoring the mode and tempo of concerted evolution in the Drosophila melanogaster rDNA locus. Genetics 171: 1837–1846. PubMed PMC
Becker C., Hagmann J., Müller J., Koenig D., Stegle O., et al. , 2011. Spontaneous epigenetic variation in the Arabidopsis thaliana methylome. Nature 480: 245–249. PubMed
Bik H. M., Fournier D., Sung W., Bergeron R. D., Thomas W. K., 2013. Intra-genomic variation in the ribosomal repeats of nematodes. PLoS One 8: e78230. PubMed PMC
Broman K. W., Wu H., Sen S., Churchill G. A., 2003. R/qtl: QTL mapping in experimental crosses. Bioinformatics 19: 889–890. PubMed
Chambon P., 1975. Eukaryotic nuclear RNA polymerases. Annu. Rev. Biochem. 44: 613–638. PubMed
Chandrasekhara C., Mohannath G., Blevins T., Pontvianne F., Pikaard C. S., 2016. Chromosome-specific NOR inactivation explains selective rRNA gene silencing and dosage control in Arabidopsis. Genes Dev. 30: 177–190. PubMed PMC
Cokus S. J., Feng S., Zhang X., Chen Z., Merriman B., et al. , 2008. Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning. Nature 452: 215–219. PubMed PMC
Copenhaver G. P., Pikaard C. S., 1996a RFLP and physical mapping with an rDNA-specific endonuclease reveals that nucleolus organizer regions of Arabidopsis thaliana adjoin the telomeres on chromosomes 2 and 4. Plant J. 9: 259–272. PubMed
Copenhaver G. P., Pikaard C. S., 1996b Two-dimensional RFLP analyses reveal megabase-sized clusters of rRNA gene variants in Arabidopsis thaliana, suggesting local spreading of variants as the mode for gene homogenization during concerted evolution. Plant J. 9: 273–282. PubMed
Copenhaver G. P., Doelling J. H., Gens S., Pikaard C. S., 1995. Use of RFLPs larger than 100 kbp to map the position and internal organization of the nucleolus organizer region on chromosome 2 in Arabidopsis thaliana. Plant J. 7: 273–286. PubMed
Davison J., Tyagi A., Comai L., 2007. Large-scale polymorphism of heterochromatic repeats in the DNA of Arabidopsis thaliana. BMC Plant Biol. 7: 44. PubMed PMC
DePristo M. A., Banks E., Poplin R., Garimella K. V., Maguire J. R., et al. , 2011. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat. Genet. 43: 491–498. PubMed PMC
Dobešová E., Malinská H., Matyášek R., Leitch A. R., Soltis D. E., et al. , 2015. Silenced rRNA genes are activated and substitute for partially eliminated active homeologs in the recently formed allotetraploid, Tragopogon mirus (Asteraceae). Heredity 114: 356–365. PubMed PMC
Earley K., Lawrence R. J., Pontes O., Reuther R., Enciso A. J., et al. , 2006. Erasure of histone acetylation by Arabidopsis HDA6 mediates large-scale gene silencing in nucleolar dominance. Genes Dev. 20: 1283–1293. PubMed PMC
Earley K. W., Pontvianne F., Wierzbicki A. T., Blevins T., Tucker S., et al. , 2010. Mechanisms of HDA6-mediated rRNA gene silencing: suppression of intergenic Pol II transcription and differential effects on maintenance vs. siRNA-directed cytosine methylation. Genes Dev. 24: 1119–1132. PubMed PMC
Eickbush T. H., Eickbush D. G., 2007. Finely orchestrated movements: evolution of the ribosomal RNA genes. Genetics 175: 477–485. PubMed PMC
Gibbons J. G., Branco A. T., Godinho S. A., Yu S., Lemos B., 2015. Concerted copy number variation balances ribosomal DNA dosage in human and mouse genomes. Proc. Natl. Acad. Sci. USA 112: 2485–2490. PubMed PMC
Gruendler P., Unfried I., Pointner R., Schweizer D., 1989. Nucleotide sequence of the 25S–18S ribosomal gene spacer from Arabidopsis thaliana. Nucleic Acids Res. 17: 6395–6396. PubMed PMC
Hagmann J., Becker C., Müller J., Stegle O., Meyer R. C., et al. , 2015. Century-scale methylome stability in a recently diverged Arabidopsis thaliana lineage. PLoS Genet. 11: e1004920. PubMed PMC
Imprialou, M., A. Kahles, J. B. Steffen, E. J. Osborne, X. Gan et al., 2017 Genomic rearrangements in Arabidopsis considered as quantitative traits. Genetics DOI: 10.1534/genetics.116.192823. PubMed DOI PMC
Kover P. X., Valdar W., Trakalo J., Scarcelli N., Ehrenreich I. M., et al. , 2009. A multiparent advanced generation inter-cross to fine-map quantitative traits in Arabidopsis thaliana. PLoS Genet. 5: e1000551. PubMed PMC
Kuick R., Asakawa J., Neel J. V., Kodaira M., Satoh C., et al. , 1996. Studies of the inheritance of human ribosomal DNA variants detected in two-dimensional separations of genomic restriction fragments. Genetics 144: 307–316. PubMed PMC
Lemos B., Araripe L. O., Hartl D. L., 2008. Polymorphic Y chromosomes harbor cryptic variation with manifold functional consequences. Science 319: 91–93. PubMed
Lewis M. S., Cheverud J. M., Pikaard C. S., 2004. Evidence for nucleolus organizer regions as the units of regulation in nucleolar dominance in Arabidopsis thaliana interecotype hybrids. Genetics 167: 931–939. PubMed PMC
Li H., 2013 Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv Available at: https://arxiv.org/abs/1303.3997.
Li H., Durbin R., 2009. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25: 1754–1760. PubMed PMC
Li H., Handsaker B., Wysoker A., Fennell T., Ruan J., et al. 1000 Genome Project Data Processing Subgroup , 2009. The sequence alignment/map format and SAMtools. Bioinformatics 25: 2078–2079. PubMed PMC
Long E. O., Dawid I. B., 1980. Repeated genes in eukaryotes. Annu. Rev. Biochem. 49: 727–764. PubMed
Long Q., Rabanal F. A., Meng D., Huber C. D., Farlow A., et al. , 2013. Massive genomic variation and strong selection in Arabidopsis thaliana lines from Sweden. Nat. Genet. 45: 884–890. PubMed PMC
Lysak M. A., Mandáková T., 2013. Analysis of plant meiotic chromosomes by chromosome painting. Methods Mol. Biol. 990: 13–24. PubMed
Mandáková T., Lysak M. A., 2016. Chromosome preparation for cytogenetic analyses in Arabidopsis. Curr. Protoc. Plant Biol. 1: 43–51. PubMed
Manolio T. A., Collins F. S., Cox N. J., Goldstein D. B., Hindorff L. A., et al. , 2009. Finding the missing heritability of complex diseases. Nature 461: 747–753. PubMed PMC
McTaggart S. J., Dudycha J. L., Omilian A., Crease T. J., 2007. Rates of recombination in the ribosomal DNA of apomictically propagated Daphnia obtusa lines. Genetics 175: 311–320. PubMed PMC
Mott R., Talbot C. J., Turri M. G., Collins A. C., Flint J., 2000. A method for fine mapping quantitative trait loci in outbred animal stocks. Proc. Natl. Acad. Sci. USA 97: 12649–12654. PubMed PMC
Ossowski S., Schneeberger K., Lucas-Lledó J. I., Warthmann N., Clark R. M., et al. , 2010. The rate and molecular spectrum of spontaneous mutations in Arabidopsis thaliana. Science 327: 92–94. PubMed PMC
Paredes S., Maggert K. A., 2009. Ribosomal DNA contributes to global chromatin regulation. Proc. Natl. Acad. Sci. USA 106: 17829–17834. PubMed PMC
Paredes S., Branco A. T., Hartl D. L., Maggert K. A., Lemos B., 2011. Ribosomal DNA deletions modulate genome-wide gene expression: “rDNA-sensitive” genes and natural variation. PLoS Genet. 7: e1001376. PubMed PMC
Petes T. D., 1980. Unequal meiotic recombination within tandem arrays of yeast ribosomal DNA genes. Cell 19: 765–774. PubMed
Phillips R. L., 1978. Molecular cytogenetics of the nucleolus organizer region, pp. 711–741 in Maize Breeding and Genetics, edited by Walden D. B. John Wiley & Sons, New York.
Pontvianne F., Abou-Ellail M., Douet J., Comella P., Matia I., et al. , 2010. Nucleolin is required for DNA methylation state and the expression of rRNA gene variants in Arabidopsis thaliana. PLoS Genet. 6: e1001225. PubMed PMC
Pontvianne F., Blevins T., Chandrasekhara C., Mozgová I., Hassel C., et al. , 2013. Subnuclear partitioning of rRNA genes between the nucleolus and nucleoplasm reflects alternative epiallelic states. Genes Dev. 27: 1545–1550. PubMed PMC
R Core Team , 2014. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.
Riddle N. C., Richards E. J., 2002. The control of natural variation in cytosine methylation in Arabidopsis. Genetics 162: 355–363. PubMed PMC
Riddle N. C., Richards E. J., 2005. Genetic variation in epigenetic inheritance of ribosomal RNA gene methylation in Arabidopsis. Plant J. 41: 524–532. PubMed
Rogers S. O., Bendich A. J., 1987. Heritability and variability in ribosomal RNA genes of Vicia faba. Genetics 117: 285–295. PubMed PMC
Ryan, J. A., and Ulrich J. M., 2014 xts: extensible time series. R package version 0.9–7. Available at: http://CRAN.R-project.org/package=xts.
Schlötterer C., Tautz D., 1994. Chromosomal homogeneity of Drosophila ribosomal DNA arrays suggests intrachromosomal exchanges drive concerted evolution. Curr. Biol. 4: 777–783. PubMed
Schmickel R. D., Gonzalez I. L., Erickson J. M., 1985. Nucleolus organizing genes on chromosome 21: recombination and nondisjunction. Ann. N. Y. Acad. Sci. 450: 121–131. PubMed
Schmitz R. J., Schultz M. D., Lewsey M. G., O’Malley R. C., Urich M. A., et al. , 2011. Transgenerational epigenetic instability is a source of novel methylation variants. Science 334: 369–373. PubMed PMC
Schmuths H., Meister A., Horres R., Bachmann K., 2004. Genome size variation among accessions of Arabidopsis thaliana. Ann. Bot. 93: 317–321. PubMed PMC
Seperack P., Slatkin M., Arnheim N., 1988. Linkage disequilibrium in human ribosomal genes: implications for multigene family evolution. Genetics 119: 943–949. PubMed PMC
Shaw R. G., Byers D. L., Darmo E., 2000. Spontaneous mutational effects on reproductive traits of Arabidopsis thaliana. Genetics 155: 369–378. PubMed PMC
Stults D. M., Killen M. W., Pierce H. H., Pierce A. J., 2008. Genomic architecture and inheritance of human ribosomal RNA gene clusters. Genome Res. 18: 13–18. PubMed PMC
Szostak J. W., Wu R., 1980. Unequal crossing over in the ribosomal DNA of Saccharomyces cerevisiae. Nature 284: 426–430. PubMed
Tessadori F., van Zanten M., Pavlova P., Clifton R., Pontvianne F., et al. , 2009. PHYTOCHROME B and HISTONE DEACETYLASE 6 control light-induced chromatin compaction in Arabidopsis thaliana. PLoS Genet. 5: e1000638. PubMed PMC
Unfried I., Gruendler P., 1990. Nucleotide sequence of the 5.8S and 25S rRNA genes and of the internal transcribed spacers from Arabidopsis thaliana. Nucleic Acids Res. 18: 4011. PubMed PMC
Unfried I., Stocker U., Gruendler P., 1989. Nucleotide sequence of the 18S rRNA gene from Arabidopsis thaliana Co10. Nucleic Acids Res. 17: 7513. PubMed PMC
Van der Auwera G. A., Carneiro M. O., Hartl C., Poplin R., Del Angel G., et al. , 2013. From FastQ data to high confidence variant calls: the Genome Analysis Toolkit best practices pipeline. Curr. Protoc. Bioinformatics 43: 11.10.1–11.10.33. PubMed PMC
Walbot V., Cullis C. A., 1985. Rapid genomic change in higher plants. Annu. Rev. Plant Physiol. 36: 367–396.
Williams S. M., Kennison J. A., Robbins L. G., Strobeck C., 1989. Reciprocal recombination and the evolution of the ribosomal gene family of Drosophila melanogaster. Genetics 122: 617–624. PubMed PMC
Intragenomic rDNA variation - the product of concerted evolution, mutation, or something in between?
Gradual evolution of allopolyploidy in Arabidopsis suecica
The rDNA Loci-Intersections of Replication, Transcription, and Repair Pathways
Large tandem duplications affect gene expression, 3D organization, and plant-pathogen response