Large tandem duplications affect gene expression, 3D organization, and plant-pathogen response
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
33033057
PubMed Central
PMC7605254
DOI
10.1101/gr.261586.120
PII: gr.261586.120
Knihovny.cz E-zdroje
- MeSH
- Arabidopsis genetika MeSH
- duplikace genu * MeSH
- exprese genu MeSH
- genom rostlinný MeSH
- geny rRNA * MeSH
- nestabilita genomu MeSH
- odolnost vůči nemocem genetika MeSH
- regulace genové exprese u rostlin * MeSH
- rostlinné geny MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Rapid plant genome evolution is crucial to adapt to environmental changes. Chromosomal rearrangements and gene copy number variation (CNV) are two important tools for genome evolution and sources for the creation of new genes. However, their emergence takes many generations. In this study, we show that in Arabidopsis thaliana, a significant loss of ribosomal RNA (rRNA) genes with a past history of a mutation for the chromatin assembly factor 1 (CAF1) complex causes rapid changes in the genome structure. Using long-read sequencing and microscopic approaches, we have identified up to 15 independent large tandem duplications in direct orientation (TDDOs) ranging from 60 kb to 1.44 Mb. Our data suggest that these TDDOs appeared within a few generations, leading to the duplication of hundreds of genes. By subsequently focusing on a line only containing 20% of rRNA gene copies (20rDNA line), we investigated the impact of TDDOs on 3D genome organization, gene expression, and cytosine methylation. We found that duplicated genes often accumulate more transcripts. Among them, several are involved in plant-pathogen response, which could explain why the 20rDNA line is hyper-resistant to both bacterial and nematode infections. Finally, we show that the TDDOs create gene fusions and/or truncations and discuss their potential implications for the evolution of plant genomes.
CNRS LGDP UMR5096 Université de Perpignan 66860 Perpignan France
Department of Plant Pathology and Microbiology Iowa State University Ames Iowa 50011 USA
ENS IBENS CNRS INSERM PSL Research University 75005 Paris France
Institute of Plant and Microbial Biology University of Zurich CH 8008 Zurich Switzerland
IRD UMR232 DIADE 34394 Montpellier France
Mendel Centre for Plant Genomics and Proteomics CEITEC Masaryk University 625 00 Brno Czech Republic
UPVD LGDP UMR5096 Université de Perpignan 66860 Perpignan France
Zobrazit více v PubMed
Alonge M, Wang X, Benoit M, Soyk S, Pereira L, Zhang L, Suresh H, Ramakrishnan S, Maumus F, Ciren D, et al. 2020. Major impacts of widespread structural variation on gene expression and crop improvement in tomato. Cell 182: 145–161.e23. 10.1016/j.cell.2020.05.021 PubMed DOI PMC
Bersaglieri C, Santoro R. 2019. Genome organization in and around the nucleolus. Cells 8: 579 10.3390/cells8060579 PubMed DOI PMC
Blanc G, Wolfe KH. 2004. Functional divergence of duplicated genes formed by polyploidy during Arabidopsis evolution. Plant Cell 16: 1679–1691. 10.1105/tpc.021410 PubMed DOI PMC
Blanc G, Barakat A, Guyot R, Cooke R, Delseny M. 2000. Extensive duplication and reshuffling in the Arabidopsis genome. Plant Cell 12: 1093–1101. 10.1105/tpc.12.7.1093 PubMed DOI PMC
Carpentier MC, Picart-Picolo A, Pontvianne F. 2018. A method to identify nucleolus-associated chromatin domains (NADs). Methods Mol Biol 1675: 99–109. 10.1007/978-1-4939-7318-7_7 PubMed DOI
Chandrasekhara C, Mohannath G, Blevins T, Pontvianne F, Pikaard CS. 2016. Chromosome-specific NOR inactivation explains selective rRNA gene silencing and dosage control in Arabidopsis. Genes Dev 30: 177–190. 10.1101/gad.273755.115 PubMed DOI PMC
Charbonnel C, Gallego ME, White CI. 2010. Xrcc1-dependent and Ku-dependent DNA double-strand break repair kinetics in Arabidopsis plants. Plant J Cell Mol Biol 64: 280–290. 10.1111/j.1365-313X.2010.04331.x PubMed DOI
Chen S, Krinsky BH, Long M. 2013. New genes as drivers of phenotypic evolution. Nat Rev Genet 14: 645–660. 10.1038/nrg3521 PubMed DOI PMC
Cook DE, Lee TG, Guo X, Melito S, Wang K, Bayless AM, Wang J, Hughes TJ, Willis DK, Clemente TE, et al. 2012. Copy number variation of multiple genes at Rhg1 mediates nematode resistance in soybean. Science 338: 1206–1209. 10.1126/science.1228746 PubMed DOI
Copenhaver GP, Pikaard CS. 1996. RFLP and physical mapping with an rDNA-specific endonuclease reveals that nucleolus organizer regions of Arabidopsis thaliana adjoin the telomeres on chromosomes 2 and 4. Plant J 9: 259–272. 10.1046/j.1365-313X.1996.09020259.x PubMed DOI
Debladis E, Llauro C, Carpentier M-C, Mirouze M, Panaud O. 2017. Detection of active transposable elements in Arabidopsis thaliana using Oxford Nanopore Sequencing technology. BMC Genomics 18: 537 10.1186/s12864-017-3753-z PubMed DOI PMC
Dopman EB, Hartl DL. 2007. A portrait of copy-number polymorphism in Drosophila melanogaster. Proc Natl Acad Sci 104: 19920–19925. 10.1073/pnas.0709888104 PubMed DOI PMC
Exner V, Taranto P, Schonrock N, Gruissem W, Hennig L. 2006. Chromatin assembly factor CAF-1 is required for cellular differentiation during plant development. Dev Camb Engl 133: 4163–4172. 10.1242/dev.02599 PubMed DOI
Fulgione A, Hancock AM. 2018. Archaic lineages broaden our view on the history of Arabidopsis thaliana. New Phytol 219: 1194–1198. 10.1111/nph.15244 PubMed DOI
Gabur I, Chawla HS, Snowdon RJ, Parkin IAP. 2019. Connecting genome structural variation with complex traits in crop plants. Theor Appl Genet 132: 733–750. 10.1007/s00122-018-3233-0 PubMed DOI
Gibbons JG, Branco AT, Godinho SA, Yu S, Lemos B. 2015. Concerted copy number variation balances ribosomal DNA dosage in human and mouse genomes. Proc Natl Acad Sci 112: 2485–2490. 10.1073/pnas.1416878112 PubMed DOI PMC
Grob S, Schmid MW, Grossniklaus U. 2014. Hi-C analysis in Arabidopsis identifies the KNOT, a structure with similarities to the flamenco locus of Drosophila. Mol Cell 55: 678–693. 10.1016/j.molcel.2014.07.009 PubMed DOI
Grummt I, Längst G. 2013. Epigenetic control of RNA polymerase I transcription in mammalian cells. Biochim Biophys Acta 1829: 393–404. 10.1016/j.bbagrm.2012.10.004 PubMed DOI
Guschanski K, Warnefors M, Kaessmann H. 2017. The evolution of duplicate gene expression in mammalian organs. Genome Res 27: 1461–1474. 10.1101/gr.215566.116 PubMed DOI PMC
Henry Y, Bedhomme M, Blanc G. 2006. History, protohistory and prehistory of the Arabidopsis thaliana chromosome complement. Trends Plant Sci 11: 267–273. 10.1016/j.tplants.2006.04.002 PubMed DOI
Himmelbach A, Ruban A, Walde I, Šimková H, Doležel J, Hastie A, Stein N, Mascher M. 2018. Discovery of multi-megabase polymorphic inversions by chromosome conformation capture sequencing in large-genome plant species. Plant J Cell Mol Biol 96: 1309–1316. 10.1111/tpj.14109 PubMed DOI
Ide S, Miyazaki T, Maki H, Kobayashi T. 2010. Abundance of ribosomal RNA gene copies maintains genome integrity. Science 327: 693–696. 10.1126/science.1179044 PubMed DOI
Jiao WB, Schneeberger K. 2020. Chromosome-level assemblies of multiple Arabidopsis genomes reveal hotspots of rearrangements with altered evolutionary dynamics. Nat Commun 11: 989 10.1038/s41467-020-14779-y PubMed DOI PMC
Kobayashi T. 2011. Regulation of ribosomal RNA gene copy number and its role in modulating genome integrity and evolutionary adaptability in yeast. Cell Mol Life Sci 68: 1395–1403. 10.1007/s00018-010-0613-2 PubMed DOI PMC
Kondrashov FA. 2012. Gene duplication as a mechanism of genomic adaptation to a changing environment. Proc Biol Sci 279: 5048–5057. 10.1098/rspb.2012.1108 PubMed DOI PMC
Krasileva KV. 2019. The role of transposable elements and DNA damage repair mechanisms in gene duplications and gene fusions in plant genomes. Curr Opin Plant Biol 48: 18–25. 10.1016/j.pbi.2019.01.004 PubMed DOI
Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, Jones SJ, Marra MA. 2009. Circos: An information aesthetic for comparative genomics. Genome Res 19: 1639–1645. 10.1101/gr.092759.109 PubMed DOI PMC
Li H. 2018. Minimap2: Pairwise alignment for nucleotide sequences. Bioinformatics 34: 3094–3100. 10.1093/bioinformatics/bty191 PubMed DOI PMC
Lieberman-Aiden E, van Berkum NL, Williams L, Imakaev M, Ragoczy T, Telling A, Amit I, Lajoie BR, Sabo PJ, Dorschner MO, et al. 2009. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326: 289–293. 10.1126/science.1181369 PubMed DOI PMC
Loehlin DW, Carroll SB. 2016. Expression of tandem gene duplicates is often greater than twofold. Proc Natl Acad Sci 113: 5988–5992. 10.1073/pnas.1605886113 PubMed DOI PMC
Long Q, Rabanal FA, Meng D, Huber CD, Farlow A, Platzer A, Zhang Q, Vilhjalmsson BJ, Korte A, Nizhynska V, et al. 2013. Massive genomic variation and strong selection in Arabidopsis thaliana lines from Sweden. Nat Genet 45: 884–890. 10.1038/ng.2678 PubMed DOI PMC
Mozgová I, Mokroš P, Fajkus J. 2010. Dysfunction of Chromatin Assembly Factor 1 induces shortening of telomeres and loss of 45S rDNA in Arabidopsis thaliana. Plant Cell 22: 2768–2780. 10.1105/tpc.110.076182 PubMed DOI PMC
Mozgová I, Wildhaber T, Liu Q, Abou-Mansour E, L'Haridon F, Métraux JP, Gruissem W, Hofius D, Hennig L. 2015. Chromatin assembly factor CAF-1 represses priming of plant defence response genes. Nat Plants 1: 15127 10.1038/nplants.2015.127 PubMed DOI
Nelson JO, Watase GJ, Warsinger-Pepe N, Yamashita YM. 2019. Mechanisms of rDNA copy number maintenance. Trends Genet 35: 734–742. 10.1016/j.tig.2019.07.006 PubMed DOI PMC
Németh A, Conesa A, Santoyo-Lopez J, Medina I, Montaner D, Peterfia B, Solovei I, Cremer T, Dopazo J, Langst G. 2010. Initial genomics of the human nucleolus. PLoS Genet 6: e1000889 10.1371/journal.pgen.1000889 PubMed DOI PMC
Newman S, Hermetz KE, Weckselblatt B, Rudd MK. 2015. Next-generation sequencing of duplication CNVs reveals that most are tandem and some create fusion genes at breakpoints. Am J Hum Genet 96: 208–220. 10.1016/j.ajhg.2014.12.017 PubMed DOI PMC
Nurmberg PL, Knox KA, Yun BW, Morris PC, Shafiei R, Hudson A, Loake GJ. 2007. The developmental selector AS1 is an evolutionarily conserved regulator of the plant immune response. Proc Natl Acad Sci 104: 18795–18800. 10.1073/pnas.0705586104 PubMed DOI PMC
Paredes S, Maggert KA. 2009. Ribosomal DNA contributes to global chromatin regulation. Proc Natl Acad Sci 106: 17829–17834. 10.1073/pnas.0906811106 PubMed DOI PMC
Paredes S, Branco AT, Hartl DL, Maggert KA, Lemos B. 2011. Ribosomal DNA deletions modulate genome-wide gene expression: “rDNA-sensitive” genes and natural variation. PLoS Genet 7: e1001376 10.1371/journal.pgen.1001376 PubMed DOI PMC
Pavlištová V, Dvořáčková M, Jež M, Mozgová I, Mokroš P, Fajkus J. 2016. Phenotypic reversion in fas mutants of Arabidopsis thaliana by reintroduction of FAS genes: variable recovery of telomeres with major spatial rearrangements and transcriptional reprogramming of 45S rDNA genes. Plant J Cell Mol Biol 88: 411–424. 10.1111/tpj.13257 PubMed DOI
Pham GM, Newton L, Wiegert-Rininger K, Vaillancourt B, Douches DS, Buell CR. 2017. Extensive genome heterogeneity leads to preferential allele expression and copy number-dependent expression in cultivated potato. Plant J Cell Mol Biol 92: 624–637. 10.1111/tpj.13706 PubMed DOI
Picart-Picolo A, Picault N, Pontvianne F. 2019. Ribosomal RNA genes shape chromatin domains associating with the nucleolus. Nucleus 10: 67–72. 10.1080/19491034.2019.1591106 PubMed DOI PMC
Picart-Picolo A, Picart C, Picault N, Pontvianne F. 2020. Nucleolus-associated chromatin domains are maintained under heat stress, despite nucleolar reorganization in Arabidopsis thaliana. J Plant Res 133: 463–470. 10.1007/s10265-020-01201-3 PubMed DOI
Pontvianne F, Grob S. 2020. Three-dimensional nuclear organization in Arabidopsis thaliana. J Plant Res 133: 479–488. 10.1007/s10265-020-01185-0 PubMed DOI
Pontvianne F, Liu C. 2020. Chromatin domains in space and their functional implications. Curr Opin Plant Biol 54: 1–10. 10.1016/j.pbi.2019.11.005 PubMed DOI
Pontvianne F, Abou-Ellail M, Douet J, Comella P, Matia I, Chandrasekhara C, Debures A, Blevins T, Cooke R, Medina FJ, et al. 2010. Nucleolin is required for DNA methylation state and the expression of rRNA gene variants in Arabidopsis thaliana. PLoS Genet 6: e1001225 10.1371/journal.pgen.1001225 PubMed DOI PMC
Pontvianne F, Blevins T, Chandrasekhara C, Feng W, Stroud H, Jacobsen SE, Michaels SD, Pikaard CS. 2012. Histone methyltransferases regulating rRNA gene dose and dosage control in Arabidopsis. Genes Dev 26: 945–957. 10.1101/gad.182865.111 PubMed DOI PMC
Pontvianne F, Blevins T, Chandrasekhara C, Mozgova I, Hassel C, Pontes OMF, Tucker S, Mokros P, Muchova V, Fajkus J, et al. 2013. Subnuclear partitioning of rRNA genes between the nucleolus and nucleoplasm reflects alternative epiallelic states. Genes Dev 27: 1545–1550. 10.1101/gad.221648.113 PubMed DOI PMC
Pontvianne F, Boyer-Clavel M, Sáez-Vásquez J. 2016a. Fluorescence-activated nucleolus sorting in Arabidopsis. Methods Mol Biol 1455: 203–211. 10.1007/978-1-4939-3792-9_15 PubMed DOI
Pontvianne F, Carpentier MC, Durut N, Pavlištová V, Jaške K, Schořová S, Parrinello H, Rohmer M, Pikaard CS, Fojtová M, et al. 2016b. Identification of nucleolus-associated chromatin domains reveals a role for the nucleolus in 3D organization of the A. thaliana genome. Cell Rep 16: 1574–1587. 10.1016/j.celrep.2016.07.016 PubMed DOI PMC
Quadrana L, Etcheverry M, Gilly A, Caillieux E, Madoui M-A, Guy J, Bortolini Silveira A, Engelen S, Baillet V, Wincker P, et al. 2019. Transposition favors the generation of large effect mutations that may facilitate rapid adaption. Nat Commun 10: 3421 10.1038/s41467-019-11385-5 PubMed DOI PMC
Quigley DA, Dang HX, Zhao SG, Lloyd P, Aggarwal R, Alumkal JJ, Foye A, Kothari V, Perry MD, Bailey AM, et al. 2018. Genomic hallmarks and structural variation in metastatic prostate cancer. Cell 174: 758–769.e9. 10.1016/j.cell.2018.06.039 PubMed DOI PMC
Quinlan AR, Hall IM. 2010. BEDTools: A flexible suite of utilities for comparing genomic features. Bioinformatics 26: 841–842. 10.1093/bioinformatics/btq033 PubMed DOI PMC
Quinodoz SA, Ollikainen N, Tabak B, Palla A, Schmidt JM, Detmar E, Lai MM, Shishkin AA, Bhat P, Takei Y, et al. 2018. Higher-order inter-chromosomal hubs shape 3D genome organization in the nucleus. Cell 174: 744–757.e24. 10.1016/j.cell.2018.05.024 PubMed DOI PMC
Rabanal FA, Nizhynska V, Mandáková T, Novikova PY, Lysak MA, Mott R, Nordborg M. 2017. Unstable inheritance of 45S rRNA genes in Arabidopsis thaliana. G3 (Bethesda) 7: 1201–1209. 10.1534/g3.117.040204 PubMed DOI PMC
Ramirez-Parra E, Gutierrez C. 2007. The many faces of chromatin assembly factor 1. Trends Plant Sci 12: 570–576. 10.1016/j.tplants.2007.10.002 PubMed DOI
Santos AP, Gaudin V, Mozgová I, Pontvianne F, Schubert D, Tek AL, Dvořáčková M, Liu C, Fransz P, Rosa S, et al. 2020. Tidying-up the plant nuclear space: domains, function and dynamics. J Exp Bot 71: 5160−5179. 10.1093/jxb/eraa282 PubMed DOI PMC
Takeuchi Y, Horiuchi T, Kobayashi T. 2003. Transcription-dependent recombination and the role of fork collision in yeast rDNA. Genes Dev 17: 1497–1506. 10.1101/gad.1085403 PubMed DOI PMC
Tartof KD. 1974a. Unequal mitotic sister chromatid exchange and disproportionate replication as mechanisms regulating ribosomal RNA gene redundancy. Cold Spring Harb Symp Quant Biol 38: 491–500. 10.1101/SQB.1974.038.01.053 PubMed DOI
Tartof KD. 1974b. Unequal mitotic sister chromatin exchange as the mechanism of ribosomal RNA gene magnification. Proc Natl Acad Sci 71: 1272–1276. 10.1073/pnas.71.4.1272 PubMed DOI PMC
van Koningsbruggen S, Gierliński M, Schofield P, Martin D, Barton GJ, Ariyurek Y, den Dunnen JT, Lamond AI. 2010. High-resolution whole-genome sequencing reveals that specific chromatin domains from most human chromosomes associate with nucleoli. Mol Biol Cell 21: 3735–3748. 10.1091/mbc.e10-06-0508 PubMed DOI PMC
Varas J, Santos JL, Pradillo M. 2017. The absence of the Arabidopsis chaperone complex CAF-1 produces mitotic chromosome abnormalities and changes in the expression profiles of genes involved in DNA repair. Front Plant Sci 8: 525 10.3389/fpls.2017.00525 PubMed DOI PMC
Wang M, Lemos B. 2017. Ribosomal DNA copy number amplification and loss in human cancers is linked to tumor genetic context, nucleolus activity, and proliferation. PLoS Genet 13: e1006994 10.1371/journal.pgen.1006994 PubMed DOI PMC
Wee Y, Wang T, Liu Y, Li X, Zhao M. 2018. A pan-cancer study of copy number gain and up-regulation in human oncogenes. Life Sci 211: 206–214. 10.1016/j.lfs.2018.09.032 PubMed DOI
Wubben MJE, Jin J, Baum TJ. 2008. Cyst nematode parasitism of Arabidopsis thaliana is inhibited by salicylic acid (SA) and elicits uncoupled SA-independent pathogenesis-related gene expression in roots. Mol Plant-Microbe Interact 21: 424–432. 10.1094/MPMI-21-4-0424 PubMed DOI
Xu B, Li H, Perry JM, Singh VP, Unruh J, Yu Z, Zakari M, McDowell W, Li L, Gerton JL. 2017. Ribosomal DNA copy number loss and sequence variation in cancer. PLoS Genet 13: e1006771 10.1371/journal.pgen.1006771 PubMed DOI PMC
Yang JY, Iwasaki M, Machida C, Machida Y, Zhou X, Chua NH. 2008. βC1, the pathogenicity factor of TYLCCNV, interacts with AS1 to alter leaf development and suppress selective jasmonic acid responses. Genes Dev 22: 2564–2577. 10.1101/gad.1682208 PubMed DOI PMC
Yeh YH, Chang YH, Huang PY, Huang JB, Zimmerli L. 2015. Enhanced Arabidopsis pattern-triggered immunity by overexpression of cysteine-rich receptor-like kinases. Front Plant Sci 6: 322 10.3389/fpls.2015.00322 PubMed DOI PMC
Zapata L, Ding J, Willing EM, Hartwig B, Bezdan D, Jiao WB, Patel V, Velikkakam James G, Koornneef M, Ossowski S, et al. 2016. Chromosome-level assembly of Arabidopsis thaliana Ler reveals the extent of translocation and inversion polymorphisms. Proc Natl Acad Sci 113: E4052–E4060. 10.1073/pnas.1607532113 PubMed DOI PMC
Zhang J, Zuo T, Peterson T. 2013. Generation of tandem direct duplications by reversed-ends transposition of maize ac elements. PLoS Genet 9: e1003691 10.1371/journal.pgen.1003691 PubMed DOI PMC
The rDNA Loci-Intersections of Replication, Transcription, and Repair Pathways