A Panicum-derived chromosomal segment captured by Hordeum a few million years ago preserves a set of stress-related genes
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
33484020
DOI
10.1111/tpj.15167
Knihovny.cz E-zdroje
- Klíčová slova
- Hordeum, Panicoideae, Triticeae, bacterial artificial chromosome (BAC), fluorescent in situ hybridization, horizontal gene transfer, transposable elements,
- MeSH
- hybridizace in situ fluorescenční MeSH
- ječmen (rod) genetika MeSH
- přenos genů horizontální genetika MeSH
- proso genetika MeSH
- transpozibilní elementy DNA genetika MeSH
- umělé bakteriální chromozomy genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- transpozibilní elementy DNA MeSH
Intra-specific variability is a cornerstone of evolutionary success of species. Acquiring genetic material from distant sources is an important adaptive mechanism in bacteria, but it can also play a role in eukaryotes. In this paper, we investigate the nature and evolution of a chromosomal segment of panicoid (Poaceae, Panicoideae) origin occurring in the nuclear genomes of species of the barley genus Hordeum (Pooideae). The segment, spanning over 440 kb in the Asian Hordeum bogdanii and 219 kb in the South American Hordeum pubiflorum, resides on a pair of nucleolar organizer region (NOR)-bearing chromosomes. Conserved synteny and micro-collinearity of the segment in both species indicate a common origin of the segment, which was acquired before the split of the respective barley lineages 5-1.7 million years ago. A major part of the foreign DNA consists of several approximately 68 kb long repeated blocks containing five stress-related protein-coding genes and transposable elements (TEs). Whereas outside these repeats, the locus was invaded by multiple TEs from the host genome, the repeated blocks are rather intact and appear to be preserved. The protein-coding genes remained partly functional, as indicated by conserved reading frames, a low amount of non-synonymous mutations, and expression of mRNA. A screen across Hordeum species targeting the panicoid protein-coding genes revealed the presence of the genes in all species of the section Stenostachys. In summary, our study shows that grass genomes can contain large genomic segments obtained from distantly related species. These segments usually remain undetected, but they may play an important role in the evolution and adaptation of species.
Institute of Biophysics Czech Academy of Sciences Brno 61265 Czech Republic
Institute of Botany Czech Academy of Sciences Průhonice 25243 Czech Republic
Zobrazit více v PubMed
Ambrose, K.V., Koppenhöfer, A.M. & Belanger, F.C. (2014) Horizontal gene transfer of a bacterial insect toxin gene into the Epichloë fungal symbionts of grasses. Scientific Reports, 4, 5562.
Anjaneyulu, A., Satapathy, M.K. & Shukla, V.D. (1995) Rice Tungro. Lebanon, USA: Science Publishers Inc.
Blattner, F.R. (2006) Multiple intercontinental dispersals shaped the distribution area of Hordeum (Poaceae). New Phytologist, 169, 603-614.
Blattner, F.R. (2009) Progress in phylogenetic analysis and a new infrageneric classification of the barley genus Hordeum (Poaceae: Triticeae). Breeding Science, 59, 471-480.
Bock, R. (2010) The give-and-take of DNA: horizontal gene transfer in plants. Trends in Plant Science, 15, 11-22.
Borchsenius, F. (2009) Department of Biosciences, Aarhus University, Denmark. Available from: http://www.aubot.dk/FastGap_home.htm.
Brassac, J. & Blattner, F.R. (2015) Species-level phylogeny and polyploid relationships in Hordeum (Poaceae) inferred by next-generation sequencing and in silico cloning of multiple nuclear loci. Systematic Biology, 64, 792-808.
Catoni, M., Noris, E., Vaira, A.M., Jonesman, T., Matić, S., Soleimani, R. et al. (2018) Virus-mediated export of chromosomal DNA in plants. Nature Comm, 9, 1-8.
Christin, P.A., Edwards, E.J., Besnard, G. et al. (2012) Adaptive evolution of C4 photosynthesis through recurrent lateral gene transfer. Current Biology, 22, 445-449.
Cusimano, N. & Renner, S.S. (2019) Sequential horizontal gene transfers from different hosts in a widespread Eurasian parasitic plant, Cynomorium coccineum. Amer. J. Bot. 106, 679-689.
Diao, X.M., Freeling, M. & Lisch, D. (2006) Horizontal transfer of a plant transposon. PLoS Biology, 4, 119-128.
Dubcovsky, J. & Dvořák, J. (1995) Ribosomal RNA multigene loci: nomads of the Triticeae genomes. Genetics, 140, 1367-1377.
Dunning, L.T., Olofsson, J.K., Parisod, C. et al. (2019) Lateral transfers of large DNA fragments spread functional genes among grasses. Proceedings of the National Academy of Sciences of the United States of America, 116, 4416-4425.
El Baidouri, M., Carpentier, M.-C., Cooke, R., Gao, D., Lasserre, E., Llauro, C. et al. (2014) Widespread and frequent horizontal transfers of transposable elements in plants. Genome Research, 24, 831-838.
Fuentes, I., Stegemann, S., Golczyk, H., Karcher, D. & Bock, R. (2014) Horizontal genome transfer as an asexual path to the formation of new species. Nature, 511, 232-235.
Gaut, B.S. (2002) Evolutionary dynamics of grass genomes. New Phytologist, 154, 15-28.
Gernand, D., Rutten, T., Varshney, A., Rubtsova, M., Prodanovic, S., Brub, C. et al. (2005) Uniparental chromosome elimination at mitosis and interphase in wheat and pearl millet crosses involves micronucleus formation, progressive heterochromatinization, and DNA fragmentation. The Plant Cell, 17, 2431-2438.
Ghosh, R., Chakraborty, S., Chakrabarti, C.h., Dattagupta, J.K. & Biswas, S. (2008) Structural insights into the substrate specificity and activity of ervatamins, the papain-like cysteine proteases from a tropical plant, Ervatamia coronaria. FEBS Journal, 275, 421-434.
Grudkowska, M. & Zagdanska, B. (2004) Multifunctional role of plant cysteine proteinases. Acta Biochimica Polonica, 51, 609-624.
Harlan, J.R. & deWet, J.M.J. (1975) On Ö. Winge and a prayer: The origins of polyploidy. Botanical Review, 41, 361-390.
Huang, J. (2013) Horizontal gene transfer in eukaryotes: the weak-link model. BioEssays, 35, 868-875.
Ishii, T., Tanaka, H., Eltayeb, A.E. & Tsujimoto, H. (2013) Wide hybridization between oat and pearl millet belonging to different subfamilies of Poaceae. Plant Reprod, 26, 25-32.
Ishii, T., Ueda, T., Tanaka, H. & Tsujimoto, H. (2010) Chromosome elimination by wide hybridization between Triticeae or oat plant and pearl millet: pearl millet chromosome dynamics in hybrid embryo cells. Chromosome Research, 18, 821-831.
Jakowitsch, J., Mette, M.F., van der Winden, J., Matzke, M.A. & Matzke, A.J.M. (1999) Integrated pararetroviral sequences define a unique class of dispersed repetitive DNA in plants. Proceedings of the National Academy of Sciences of the United States of America, 96, 13241-13246.
Kado, T. & Innan, H. (2018) Horizontal gene transfer in five parasite plant species in Orobanchaceae. Genome. Biol. Evol. 10, 3196-3210.
Kalendar, R., Tanskanen, J., Chang, W., Antonius, K., Sela, H., Peleg, O. et al. (2008) Cassandra retrotransposons carry independently transcribed 5S RNA. Proceedings of the National Academy of Sciences of the United States of America, 105, 5833-5838.
Kapitonov, V.V. & Jurka, J. (2007) Helitrons on a roll: eukaryotic rolling-circle transposons. Trends in Genetics, 23, 521-529.
Keeling, P.J. & Palmer, J.D. (2008) Horizontal gene transfer in eukaryotic evolution. Nature Reviews Genetics, 9, 605-618.
Keller, B. & Feuillet, C. (2000) Colinearity and gene density in grass genomes. Trends in Plant Science, 5, 246-251.
Kim, G., LeBlanc, M.L., Wafula, E.K., dePamphilis, C.W. & Westwood, J.H. (2014) Genomic-scale exchange of mRNA between a parasitic plant and its hosts. Science, 345, 808-811.
Kohany, O., Gentles, A.J., Hankus, L. & Jurka, J. (2006) Annotation, submission and screening of repetitive elements in Repbase: RepbaseSubmitter and Censor. BMC Bioinformatics, 7, 474.
Koonin, E.V., Makarova, A.S. & Aravind, L. (2001) Horizontal gene transfer in prokaryotes: quantification and classification. Annual Review of Microbiology 55, 709-742.
Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution, 35, 1547-1549.
Kumar, S., Stecher, G., Suleski, M. & Hedges, S.B. (2017) TimeTree: a resource for timelines, timetrees, and divergence times. Molecular Biology and Evolution, 34, 1812-1819.
Kunii, M., Kandra, M., Nagano, H., Ulyeda, I., Kishima, Y. & Sano, Y. (2004) Reconstruction of putative DNA virus from endogenous rice tungro bacilliform virus-like sequences in the rice genome: implications for integration and evolution. BMC Genomics, 5, 80.
Li, F.W., Villarreal, J.C., Kelly, S. et al. (2014) Horizontal gene transfer of a chimeric photoreceptor, neochrome, from bryophytes to ferns. Proceedings of the National Academy of Sciences of the United States of America, 111, 6672-6677.
Lovell, J.T., Jenkins, J., Lowry, D.B. et al. (2018) The genomic landscape of molecular responses to natural drought stress in Panicum hallii. Nature Comm, 9, 5213.
Mahelka, V. & Kopecký, D. (2010) Gene capture from across the grass family in the allohexaploid Elymus repens (L.) Gould (Poaceae, Triticeae) as evidenced by ITS, GBSSI, and molecular cytogenetics. Molecular Biology and Evolution, 27, 1370-1390.
Mahelka, V., Krak, K., Kopecký, D., Fehrer, J., Šafář, J., Bartoš, J. et al. (2017) Multiple horizontal transfers of nuclear ribosomal genes between phylogenetically distinct grass lineages. Proceedings of the National Academy of Sciences of the United States of America, 114, 1726-1731.
Mascher, M., Gundlach, H., Himmelbach, A. et al. (2017) A chromosome conformation capture ordered sequence of the barley genome. Nature, 544(7651), 427-433.
Monat, C., Padmarasu, S., Lux, T. et al. (2019) TRITEX: chromosome-scale sequence assembly of Triticeae genomes with open-source tools. Genome Biology, 20, 284.
Moore, G., Devos, K.M., Wang, Z. & Gale, M.D. (1995) Cereal genome evolution - Grasses, line up and form a circle. Current Biology, 5, 737-739.
Neumann, P., Novák, P., Hoštáková, N. & Macas, J. (2019) Systematic survey of plant LTR-retrotransposons elucidates phylogenetic relationships of their polyprotein domains and provides a reference for element classification. Mobile DNA, 10, 1.
Olofsson, J.K., Dunning, L.T., Lundgren, M.R. et al. (2019) Population-specific selection on standing variation generated by lateral gene transfers in a grass. Current Biology, 29, 3921-3927.
Paterson, A.H., Bowers, J.E., Bruggmann, R. et al. (2009) The Sorghum bicolor genome and the diversification of grasses. Nature, 457, 551-556.
Phansopa, C., Dunning, L.T., Reid, J.D. & Christin, P.A. (2020) Lateral gene transfer acts as an evolutionary shortcut to efficient C4 biochemistry. Molecular Biology and Evolution, 37, 3094-3104.
Posada, D. & Crandall, K.A. (1998) Modeltest: testing the model of DNA substitution. Bioinformatics, 14, 817-818.
R Core Team (2020) R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing https://www.R-project.org/.
Rastogi, S. & Liberles, D.A. (2005) Subfunctionalization of duplicated genes as a transition state to neofunctionalization. BMC Evolutionary Biology, 5, 28.
Rice, D.W., Alverson, A.J., Richardson, A.O. et al. (2013) Horizontal transfer of entire genomes via mitochondrial fusion in the angiosperm Amborella. Science, 342, 1468-1473.
Riera-Lizarazu, O., Rines, H.W. & Phillips, R.L. (1996) Cytological and molecular characterization of oat x maize partial hybrids. TAG. Theoretical and Applied Genetics. 93, 123-135.
Ronquist, F. & Huelsenbeck, J.P. (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics, 19, 1572-1574.
Roulin, A., Piégu, B., Wing, R. & Panaud, O. (2008) Evidence of multiple horizontal transfers of the long terminal repeat retrotransposon RIRE1 within the genus Oryza. The Plant Journal, 53, 950-959.
Šafář, J., Šimková, H., Kubaláková, M., Číhalíková, J., Suchánková, P., Bartoš, J. et al. (2010) Development of chromosome-specific BAC resources for genomics of bread wheat. Cytogenet Genome Res, 129, 211-223.
SanMiguel, P., Gaut, B.S., Tikhonov, A., Nakajima, Y. & Bennetzen, J.L. (1998) The paleontology of intergene retrotransposons of maize. Nature Genetics, 20, 43-45.
Sharma, M.K., Sharma, R., Cao, P., Jenkins, J., Bartley, L.E., Qualls, M. et al. (2012) A genome-wide survey of switchgrass genome structure and organization. PLoS One, 7(4), e33892.
Soucy, S.M., Huang, J. & Gogarten, J.P. (2015) Horizontal gene transfer: building the web of life. Nature Reviews Genetics, 16, 472-482.
Sun, T., Renner, S.R., Xu, Y., Qin, Y., Wu, J. & Sun, G. (2016) Two hAT transposon genes were transferred from Brassicaceae to broomrapes and are actively expressed in some recipients. Scientific Reports, 6, 30192.
Sundd, M., Kundu, S., Pal, G.P. & Medicherla, J.V. (1998) Purification and characterization of a highly stable cysteine protease from the latex of Ervatamia coronaria. Bioscience, Biotechnology, and Biochemistry, 62, 1947-1955.
Swofford, D. (2002) PAUP*: Phylogenetic analysis using parsimony (*and other methods), version 4. Sinauer, Sunderland, Mass.
Tamura, K., Stecher, G., Peterson, D., Filipski, A. & Kumar, S. (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution, 30, 2725-2729.
Todesco, M., Owend, G.L., Bercovich, N. et al. (2020) Massive haplotypes underlie ecotypic differentiation in sunflowers. Nature, https://doi.org/10.1038/s41586-020-2467-6.
Vallenback, P., Jaarola, M., Ghatnekar, L. & Bengtsson, B.O. (2008) Origin and timing of the horizontal transfer of a PgiC gene from Poa to Festuca ovina. Molecular Phylogenetics and Evolution, 46, 890-896.
von Bothmer, R., Jacobsen, N., Baden, C., Jørgensen, R.B. & Linde-Laursen, I. (1995) An Ecogeographical Study of the Genus Hordeum, 2nd edition. Rome: IPGRI.
Wang, J., Qin, J., Sun, P. et al. (2019) Polyploidy index and its implications for the evolution of polyploids. Front. Genet. 10, 807.
Wickell, D.A. & Li, F. (2020) On the evolutionary significance of horizontal gene transfers in plants. New Phytologist, 225, 113-117.
Wicker, T., Buchmann, J.P. & Keller, B. (2010) Patching gaps in plant genomes results in gene movement and erosion of colinearity. Genome Research, 20, 1229-1237.
Wicker, T., Matthews, D.E. & Keller, B. (2002) TREP: a database for Triticeae repetitive elements. Trends in Plant Science, 7, 561-562.
Wicker, T., Zimmermann, W., Perovic, D., Paterson, A.H., Ganal, M., Graner, A. and et al. (2005) A detailed look at 7 million years of genome evolution in a 439-kb contiguous sequence at the barley Hv-eIF4E locus: recombination, rearrangements and repeats. The Plant Journal, 41, 184-194.
Xi, Z., Bradley, R.K., Wurdack, K.J., Wong, K., Sugumaran, M., Bomblies, K. et al. (2012) Horizontal transfer of expressed genes in a parasitic flowering plant. BMC Genomics, 13, 227.
Xu, Z. & Wang, H. (2007) LTR_FINDER: an efficient tool for the prediction of full-length LTR retrotransposons. Nucl. Acids Res. 35, W265-W268.
Yang, Z., Wafula, E.K., Gunjune, K. et al. (2019) Convergent horizontal gene transfer and crosstalk of mobile nucleic acids in parasitic plants. Nat. Plants, 5, 991-1001.
Yang, Z., Zhang, Y., Wafula, E.K. et al. (2016) Horizontal gene transfer is more frequent with increased heterotrophy and contributes to parasite adaptation. Proceedings of the National Academy of Sciences of the United States of America, 113, E7010-E7019.
Yoshida, S., Maruyama, S., Nozaki, H. & Shirasu, K. (2010) Horizontal gene transfer by the parasitic plant Striga hermonthica. Science, 328, 1128.
Zhang, D., Qi, J., Yue, J. et al. (2014) Root parasitic plant Orobanche aegyptiaca and shoot parasitic plant Cuscuta australis obtained Brassicaceae-specific strictosidine synthase-like genes by horizontal gene transfer. BMC Plant Biology 14, 19.
Zhou, Y. & Gaut, B. (2020) Large chromosomal variants drive adaptation in sunflowers. Nature Plants, 6, 734-735. https://doi.org/10.1038/s41477-020-0705-4.