Uniparental expression of ribosomal RNA in ×Festulolium grasses: a link between the genome and nucleolar dominance
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
37790792
PubMed Central
PMC10544908
DOI
10.3389/fpls.2023.1276252
Knihovny.cz E-zdroje
- Klíčová slova
- Festuca, Lolium, fluorescent in situ hybridization, genome dominance, genomic in situ hybridization, internal transcribed spacer, nucleolar dominance, ribosomal DNA,
- Publikační typ
- časopisecké články MeSH
Genome or genomic dominance (GD) is a phenomenon observed in hybrids when one parental genome becomes dominant over the other. It is manifested by the replacement of chromatin of the submissive genome by that of the dominant genome and by biased gene expression. Nucleolar dominance (ND) - the functional expression of only one parental set of ribosomal genes in hybrids - is another example of an intragenomic competitive process which, however, concerns ribosomal DNA only. Although GD and ND are relatively well understood, the nature and extent of their potential interdependence is mostly unknown. Here, we ask whether hybrids showing GD also exhibit ND and, if so, whether the dominant genome is the same. To test this, we used hybrids between Festuca and Lolium grasses (Festulolium), and between two Festuca species in which GD has been observed (with Lolium as the dominant genome in Festulolium and F. pratensis in interspecific Festuca hybrids). Using amplicon sequencing of ITS1 and ITS2 of the 45S ribosomal DNA (rDNA) cluster and molecular cytogenetics, we studied the organization and expression of rDNA in leaf tissue in five hybrid combinations, four generations and 31 genotypes [F. pratensis × L. multiflorum (F1, F2, F3, BC1), L. multiflorum × F. pratensis (F1), L. multiflorum × F. glaucescens (F2), L. perenne × F. pratensis (F1), F. glaucescens × F. pratensis (F1)]. We have found that instant ND occurs in Festulolium, where expression of Lolium-type rDNA reached nearly 100% in all F1 hybrids and was maintained through subsequent generations. Therefore, ND and GD in Festulolium are manifested by the same dominant genome (Lolium). We also confirmed the concordance between GD and ND in an interspecific cross between two Festuca species.
Czech Academy of Sciences Institute of Botany Průhonice Czechia
Faculty of Environmental Sciences Czech University of Life Sciences Prague Prague Czechia
Zobrazit více v PubMed
Alger E. I., Edger P. P. (2020). One subgenome to rule them all: underlying mechanisms of subgenome dominance. Curr. Opin. Plant Biol. 54, 108–113. doi: 10.1016/j.pbi.2020.03.004 PubMed DOI
Báez M., Souza G., Guerra M. (2020). Does the chromosomal position of 35S rDNA sites influence their transcription? A survey on Nothoscordum species (Amaryllidaceae). Genet. Mol. Biol. 43, e20180194. doi: 10.1590/1678-4685-GMB-2018-0194 PubMed DOI PMC
Belyayev A., Josefiová J., Jandová M., Kalendar R., Krak K., Mandák B. (2019). Natural history of a satellite DNA family: from the ancestral genome component to species-specific sequences, concerted and non-concerted evolution. Int. J. Mol. Sci. 20, 1201. doi: 10.3390/ijms20051201 PubMed DOI PMC
Bird K. A., Van Buren R., Puzey J. R., Edger P. (2018). The causes and consequences of subgenome dominance in hybrids and recent polyploids. New Phytol. 220, 87–93. doi: 10.1111/nph.15256 PubMed DOI
Boller B., Harper J., Willner E., Fuchs J., Glombik M., Majka J., et al. . (2020). Spontaneous natural formation of interspecific hybrids within the Festuca-Lolium complex. Biol. Plantarum. 64, 679–691. doi: 10.32615/bp.2020.111 DOI
Borowska-Zuchowska N., Hasterok R. (2017). Epigenetics of the preferential silencing of Brachypodium stacei-originated 35S rDNA loci in the allotetraploid grass Brachypodium hybridum . Sci. Rep. 7, 5260. doi: 10.1038/s41598-017-05413-x PubMed DOI PMC
Borowska-Zuchowska N., Kovařík A., Robaszkiewicz E., Tuna M., Tuna G. S., Gordon S., et al. . (2020). The fate of 35S rRNA genes in the allotetraploid grass Brachypodium hybridum . Plant J. 103, 1810–1825. doi: 10.1111/tpj.14869 PubMed DOI PMC
Borowska-Zuchowska N., Mykhailyk S., Robaszkiewicz E., Matysiak N., Mielanczyk L., Wojnicz R., et al. . (2023). Switch them off or not: selective rRNA gene repression in grasses. Trends Plant Sci. 28, 661–672. doi: 10.1016/j.tplants.2023.01.002 PubMed DOI
Borowska-Zuchowska N., Robaszkiewicz E., Mykhailyk S., Wartini J., Pinski A., Kovařík A., et al. . (2021). To be or not to be expressed: the first evidence of a nucleolar dominance tissue-specificity in Brachypodium hybridum . Front. Plant Sci. 12. doi: 10.3389/fpls.2021.768347 PubMed DOI PMC
Borowska-Zuchowska N., Robaszkiewicz E., Wolny E., Betekhtin A., Hasterok R. (2019). Ribosomal DNA loci derived from Brachypodium stacei are switched off for major parts of the life cycle of Brachypodium hybridum . J. Exp. Bot. 70, 805–815. doi: 10.1093/jxb/ery425 PubMed DOI PMC
Catalán P., Torrecilla P., López Rodríguez J. Á., Olmstead R. G. (2004). Phylogeny of the festucoid grasses of subtribe Loliinae and allies (Poeae, Pooideae) inferred from ITS and trnL-F sequences. Mol. Phylogenet. Evol. 31, 517–541. doi: 10.1016/j.ympev.2003.08.025 PubMed DOI
Chalhoub B., Denoeud F., Liu S., Parkin I. A. P., Tang H., Wang X., et al. . (2014). Plant genetics. Early allopolyploid evolution in the post-neolithic Brassica napus oilseed genome. Science 345, 950–953. doi: 10.1126/science.1253435 PubMed DOI
Chandrasekhara C., Mohannath G., Blevins T., Pontvianne F., Pikaard C. S. (2016). Chromosome-specific NOR inactivation explains selective rRNA gene silencing and dosage control in Arabidopsis . Genes Dev. 30, 177–190. doi: 10.1101/gad.273755.115 PubMed DOI PMC
Chen Z. J., Comai L., Pikaard C. S. (1998). Gene dosage and stochastic effects determine the severity and direction of uniparental ribosomal RNA gene silencing (nucleolar dominance) in Arabidopsis allopolyploids . Proc. Natl. Acad. Sci. U.S.A. 95, 14891–14896. doi: 10.1073/pnas.95.25.14891 PubMed DOI PMC
Dobešová E., Malinská H., Matyášek R., Leitch A. R., Soltis D. E., Soltis P. S., et al. . (2015). Silenced rRNA genes are activated and substitute for partially eliminated active homeologs in the recently formed allotetraploid, Tragopogon mirus (Asteraceae). Heredity 114, 356–365. doi: 10.1038/hdy.2014.111 PubMed DOI PMC
Eickbush T. H., Eickbush D. G. (2007). Finely orchestrated movements: evolution of the ribosomal RNA genes. Genetics 175, 477–485. doi: 10.1534/genetics.107.071399 PubMed DOI PMC
Fuertes Aguilar J., Rosselló J. A., Feliner G. N. (1999). Nuclear ribosomal DNA (nrDNA) concerted evolution in natural and artificial hybrids of Armeria (Plumbaginaceae). Mol. Ecol. 8, 1341–1346. doi: 10.1046/j.1365-294X.1999.00690.x PubMed DOI
Gerlach W. L., Bedbrook J. R. (1979). Cloning and characterization of ribosomal RNA genes from wheat and barley. Nucleic Acids Res. 8, 4851–4855. doi: 10.1093/nar/8.21.4851 PubMed DOI PMC
Glombik M., Bačovský V., Hobza R., Kopecký D. (2020). Competition of parental genomes in plant hybrids. Front. Plant Sci. 11. doi: 10.3389/fpls.2020.00200 PubMed DOI PMC
Glombik M., Copetti D., Bartoš J., Stočes Š., Zwierzykowski Z., Ruttink T., et al. . (2021). Reciprocal allopolyploid grasses (Festuca × Lolium) display stable patterns of genome dominance. Plant J. 107, 1166–1182. doi: 10.1111/tpj.15375 PubMed DOI PMC
Gross B. L., Rieseberg L. H. (2005). The ecological genetics of homoploid hybrid speciation. J. Heredity. 96, 241–252. doi: 10.1093/jhered/esi026 PubMed DOI PMC
Grummt I., Pikaard C. S. (2003). Epigenetic silencing of RNA polymerase I transcription. Nat. Rev. Mol. Cell Biol. 4, 641–649. doi: 10.1038/nrm1171 PubMed DOI
Handa H., Kanamori H., Tanaka T., Murata K., Kobayashi F., Robinson S. J., et al. . (2018). Structural features of two major nucleolar organizer regions (NORs), Nor-B1 and Nor-B2, and chromosome-specific rRNA gene expression in wheat. Plant J. 96, 1148–1159. doi: 10.1111/tpj.14094 PubMed DOI
Hasterok R., Maluszynska J. (2000. a). Nucleolar dominance does not occur in root tip cells of allotetraploid Brassica species. Genome 43, 574–579. doi: 10.1139/g00-005 PubMed DOI
Hasterok R., Maluszynska J. (2000. b). Different rRNA gene expression in primary and adventitious roots of Allium cepa L. Folia Histochem. Cytobiol. 38, 181–184. PubMed
Joly S., Rauscher J. T., Sherman-Broyles S. L., Brown A. H., Doyle J. J. (2004). Evolutionary dynamics and preferential expression of homeologous 18S-5.8S-26S nuclear ribosomal genes in natural and artificial glycine allopolyploids. Mol. Biol. Evol. 21, 1409–1421. doi: 10.1093/molbev/msh140 PubMed DOI
Komarova N. Y., Grabe T., Huigen D. J., Hemleben V., Volkov R. A. (2004). Organization, differential expression and methylation of rDNA in artificial Solanum allopolyploids . Plant Mol. Biol. 56, 439–463. doi: 10.1007/s11103-004-4678-x PubMed DOI
Kopecký D., Bartoš J., Zwierzykowski Z., Doležel J. (2009). Chromosome pairing of individual genomes in tall fescue (Festuca arundinacea Schreb.), its progenitors, and hybrids with Italian ryegrass (Lolium multiflorum Lam.). Cytogenet. Genome Res. 124, 170–178. doi: 10.1159/000207525 PubMed DOI
Kopecký D., Havránková M., Loureiro J., Castro S., Lukaszewski A. J., Bartoš J., et al. . (2010). Physical distribution of homoeologous recombination in individual chromosomes of Festuca pratensis in Lolium multiflorum . Cytogenet. Genome Res. 129, 162–172. doi: 10.1159/000313379 PubMed DOI
Kopecký D., Loureiro J., Zwierzykowski Z., Ghesquiere M., Doležel J. (2006). Genome constitution and evolution in Lolium × Festuca hybrid cultivars (Festulolium). Theor. Appl. Genet. 113, 731–742. doi: 10.1007/s00122-006-0341-z PubMed DOI
Kopecký D., Lukaszewski A. J., Gibeault V. (2005). Reduction of ploidy level by androgenesis in intergeneric Lolium-Festuca hybrids for turf grass breeding. Crop Sci. 45, 274–281. doi: 10.2135/cropsci2005.0274a DOI
Kovařík A., Dadejová M., Lim Y. K., Chase M. W., Clarkson J. J., Knapp S., et al. . (2008). Evolution of rDNA in Nicotiana allopolyploids: A potential link between rDNA homogenization and epigenetics. Ann. Bot. 101, 815–823. doi: 10.1093/aob/mcn019 PubMed DOI PMC
Krak K., Caklová P., Kopecký D., Blattner F. R., Mahelka V. (2021). Horizontally acquired nrDNAs persist in low amounts in host Hordeum genomes and evolve independently of native nrDNA. Front. Plant Sci. 12. doi: 10.3389/fpls.2021.672879 PubMed DOI PMC
Křivánková A., Kopecký D., Stočes Š., Doležel J., Hřibová E. (2017). Repetitive DNA: a versatile tool for karyotyping in Festuca pratensis Huds. Cytogenet. Genome Res. 151, 96–105. doi: 10.1159/000462915 PubMed DOI
Książczyk T., Kovařík A., Eber F., Khaitová V., Tesaříková Z., Coriton O., et al. . (2011). Immediate unidirectional epigenetic reprogramming of NORs occurs independently of rDNA rearrangements in synthetic and natural forms of a polyploid species Brassica napus . Chromosoma 120, 557–571. doi: 10.1007/s00412-011-0331-z PubMed DOI
Lewis M. S., Pikaard C. S. (2001). Restricted chromosomal silencing in nucleolar dominance. Proc. Natl. Acad. Sci. U.S.A. 98, 14536–14540. doi: 10.1073/pnas.251424098 PubMed DOI PMC
Mahelka V., Fehrer J., Krahulec F., Jarolímová V. (2007). Recent natural hybridization between two allopolyploid wheatgrasses (Elytrigia, Poaceae): ecological and evolutionary implications. Ann. Bot. 100, 249–260. doi: 10.1093/aob/mcm093 PubMed DOI PMC
Majka J., Glombik M., Doležalová A., Kneřová J., Ferreira M. T. M., Zwierzykowski Z., et al. . (2023). Both male and female meiosis contribute to non-Mendelian inheritance of parental chromosomes in interspecific plant hybrids (Lolium × Festuca). New Phytol. 238, 624–636. doi: 10.1111/nph.18753 PubMed DOI
Majka J., Majka M., Kopecký D., Doležel J. (2020). Cytogenetic insights into Festulolium. Biologia Plantarum 64, 598–603. doi: 10.32615/bp.2020.095Q14 DOI
Masoudi-Nejad A., Nasuda S., McIntosh R. A., Endo T. R. (2002). Transfer of rye chromosome segments to wheat by gametocidal system. Chromosome Res. 10, 349–357. doi: 10.1023/A:1016845200960 PubMed DOI
Matyášek R., Tate J. A., Lim Y. K., Šrubařová H., Koh J., Leitch A. R., et al. . (2007). Concerted evolution of rDNA in recently formed Tragopogon allotetraploids is typically associated with an inverse correlation between gene copy number and expression. Genetics 176, 2509–2519. doi: 10.1534/genetics.107.072751 PubMed DOI PMC
McClintock B. (1984). The significance of responses of the genome to challenge. Science 226, 792–801. doi: 10.1126/science.15739260 PubMed DOI
Michalak K., Maciak S., Kim Y. B., Santopietro G., Oh J. H., Kang L., et al. . (2015). Nucleolar dominance and maternal control of 45S rDNA expression. Proc. R. Soc. B. 282, 20152201. doi: 10.1098/rspb.2015.2201 PubMed DOI PMC
Mohannath G., Pontvianne F., Pikaard C. S. (2016). Selective nucleolus organizer inactivation in Arabidopsis is a chromosome position-effect phenomenon. Proc. Natl. Acad. Sci. U.S.A. 113, 13426–13431. doi: 10.1073/pnas.1608140113 PubMed DOI PMC
Navashin M. (1934). Chromosomal alterations caused by hybridization and their bearing upon certain general genetic problems. Cytologia 5, 169–203. doi: 10.1508/cytologia.5.169 DOI
Pikaard C. S. (2000). Nucleolar dominance: uniparental gene silencing on a multi-megabase scale in genetic hybrids. Plant Mol. Biol. 43, 163–177. doi: 10.1023/A:1006471009225 PubMed DOI
Pikaard C. S. (2018). “Nucleolar dominance,” in eLS (Chichester: John Wiley & Sons Ltd; ). doi: 10.1002/9780470015902.a0005976.pub3 DOI
Pontes O., Lawrence R. J., Silva M., Preuss S., Costa-Nunes P., Earley K., et al. . (2007). Postembryonic establishment of megabase-scale gene silencing in nucleolar dominance. PloS One 2, e1157. doi: 10.1371/journal.pone.0001157 PubMed DOI PMC
Pontvianne F., Blevins T., Chandrasekhara C., Feng W., Stroud H., Jacobsen S. E., et al. . (2012). Histone methyltransferases regulating rRNA gene dose and dosage control in Arabidopsis . Genes Dev. 26, 945–957. doi: 10.1101/GAD.182865.111 PubMed DOI PMC
Santos Y. D., Pereira W. A., de Paula C. M. P., de Campos Rume G., Lima A. A., Chalfun-Junior A., et al. . (2020). Epigenetic marks associated to the study of nucleolar dominance in Urochloa P. Beauv. Plant Mol. Biol. Rep. 38, 380–393, 38. doi: 10.1007/s11105-020-01203-4 DOI
Saradadevi G. P., Priyadarshini N., Bera A., Mohannath G. (2020). Together we are on together we are off – a conserved rule for ribosomal RNA (rRNA) gene regulation? Journal of. Plant Biochem. Biotechnol. 29, 743–753. doi: 10.1002/9780470015902.a0005976.pub3 DOI
Schloss P. D., Westcott S. L., Ryabin T., Hall J. R., Hartmann M., Hollister B. J., et al. . (2009). Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75, 7537–7541. doi: 10.1128/AEM.01541-09 PubMed DOI PMC
Sochorová J., Coriton O., Kuderová A., Lunerová J., Chèvre A.-M., Kovařík A. (2017). Gene conversion events and variable degree of homogenization of rDNA loci in cultivars of Brassica napus . Ann. Bot. 119, 13–26. doi: 10.1093/aob/mcw187 PubMed DOI PMC
Stočes S., Ruttink T., Bartoš J., Studer B., Yates S., Zwierzykowski Z., et al. . (2016). Orthology guided transcriptome assembly of Italian ryegrass and meadow fescue for single-nucleotide polymorphism discovery. Plant Genome 9, 1–14. doi: 10.3835/plantgenome2016.02.0017 PubMed DOI
Tamura K., Stecher G., Kumar S. (2021). MEGA 11: molecular evolutionary genetics analysis version 11. Mol. Biol. Evol. 38, 3022–3027. doi: 10.1093/molbev/msab120 PubMed DOI PMC
Tucker S., Vitins A., Pikaard C. S. (2010). Nucleolar dominance and ribosomal RNA gene silencing. Curr. Opin. Cell Biol. 22, 351–356. doi: 10.1016/j.ceb.2010.03.009 PubMed DOI PMC
Tulpová Z., Kovařík A., Toegelová H., Navrátilová P., Kapustová V., Hřibová E., et al. . (2022). Fine structure and transcription dynamics of bread wheat ribosomal DNA loci deciphered by a multi-omics approach. Plant Genome 15, e20191. doi: 10.1002/tpg2.20191 PubMed DOI
Volkov R. A., Komarova N. Y., Hemleben V. (2007). Ribosomal DNA in plant hybrids: Inheritance, rearrangement, expression. Syst. Biodivers. 5, 261–276. doi: 10.1017/S1477200007002447 DOI
Zhu W. S., Hu B., Becker C., Dogan E. S., Berendzen K. W., Weigel D., et al. . (2017). Altered chromatin compaction and histone methylation drive nonadditive gene expression in an interspecific Arabidopsis hybrid. Genome Biol. 18, 157. doi: 10.1186/s13059-017-1281-4 PubMed DOI PMC
Zwierzykowski Z., Kosmala A., Zwierzykowska E., Jones N., Joks W., Bocianowski J. (2006). Genome balance in six successive generations of the allotetraploid Festuca pratensis × Lolium perenne . Theor. Appl. Genet. 113, 539–547. doi: 10.1007/s00122-006-0322-2 PubMed DOI