Gene conversion events and variable degree of homogenization of rDNA loci in cultivars of Brassica napus
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
27707747
PubMed Central
PMC5218374
DOI
10.1093/aob/mcw187
PII: mcw187
Knihovny.cz E-zdroje
- Klíčová slova
- Brassica napus, allopolyploidy, chromosome evolution, gene conversion, rDNA,
- MeSH
- Brassica napus genetika MeSH
- genetická variace genetika MeSH
- genetické lokusy genetika MeSH
- genová konverze genetika MeSH
- hybridizace in situ fluorescenční MeSH
- ribozomální DNA genetika MeSH
- Southernův blotting MeSH
- stanovení celkové genové exprese MeSH
- vysoce účinné nukleotidové sekvenování MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- ribozomální DNA MeSH
BACKGROUND AND AIMS: Brassica napus (AACC, 2n = 38, oilseed rape) is a relatively recent allotetraploid species derived from the putative progenitor diploid species Brassica rapa (AA, 2n = 20) and Brassica oleracea (CC, 2n = 18). To determine the influence of intensive breeding conditions on the evolution of its genome, we analysed structure and copy number of rDNA in 21 cultivars of B. napus, representative of genetic diversity. METHODS: We used next-generation sequencing genomic approaches, Southern blot hybridization, expression analysis and fluorescence in situ hybridization (FISH). Subgenome-specific sequences derived from rDNA intergenic spacers (IGS) were used as probes for identification of loci composition on chromosomes. KEY RESULTS: Most B. napus cultivars (18/21, 86 %) had more A-genome than C-genome rDNA copies. Three cultivars analysed by FISH ('Darmor', 'Yudal' and 'Asparagus kale') harboured the same number (12 per diploid set) of loci. In B. napus 'Darmor', the A-genome-specific rDNA probe hybridized to all 12 rDNA loci (eight on the A-genome and four on the C-genome) while the C-genome-specific probe showed weak signals on the C-genome loci only. Deep sequencing revealed high homogeneity of arrays suggesting that the C-genome genes were largely overwritten by the A-genome variants in B. napus 'Darmor'. In contrast, B. napus 'Yudal' showed a lack of gene conversion evidenced by additive inheritance of progenitor rDNA variants and highly localized hybridization signals of subgenome-specific probes on chromosomes. Brassica napus 'Asparagus kale' showed an intermediate pattern to 'Darmor' and 'Yudal'. At the expression level, most cultivars (95 %) exhibited stable A-genome nucleolar dominance while one cultivar ('Norin 9') showed co-dominance. CONCLUSIONS: The B. napus cultivars differ in the degree and direction of rDNA homogenization. The prevalent direction of gene conversion (towards the A-genome) correlates with the direction of expression dominance indicating that gene activity may be needed for interlocus gene conversion.
Zobrazit více v PubMed
Ali HBM, Lysak MA, Schubert I. 2005. Chromosomal localization of rDNA in the Brassicaceae. Genome 48: 341–346. PubMed
Alix K, Joets J, Ryder CD, et al. 2008. The CACTA transposon Bot1 played a major role in Brassica genome divergence and gene proliferation. The Plant Journal 56: 1030–1044. PubMed
Allender CJ, King GJ. 2010. Origins of the amphiploid species Brassica napus L. investigated by chloroplast and nuclear molecular markers. BMC Plant Biology 10: 54. PubMed PMC
Alvarez I, Wendel JW. 2003. Ribosomal ITS sequences and plant phylogenetic inference. Molecular Phylogenetics and Evolution 29: 417–434. PubMed
Amosova AV, Zemtsova LV, Grushetskaya ZE, et al. 2014. Intraspecific chromosomal and genetic polymorphism in Brassica napus L. detected by cytogenetic and molecular markers. Journal of Genetics 93: 133–143. PubMed
Baranyk P, Fábry A. 1999. History of the rapeseed (Brassica napus l.) growing and breeding from middle age Europe to Canberra. The regional institute for on-line publishing 4: http://www.regional.org.au/au/gcirc/4/374.htm.
Bennett MD, Leitch I. 2012. Angiosperm DNA C-values database (release 8.0, Dec. 2012). http://data.kew.org/cvalues/.
Bennett RI, Smith AG. 1991. Use of a genomic clone for ribosomal RNA from Brassica oleracea in RFLP analysis of Brassica species. Plant Molecular Biology 16: 685–688. PubMed
Benson G. 1999. Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Research 27: 573–580. PubMed PMC
Bhatia S, Negi MS, Lakshmikumaran M. 1996. Structural analysis of the rDNA intergenic spacer of Brassica nigra: evolutionary divergence of the spacers of the three diploid Brassica species. Journal of Molecular Evolution 43: 460–468. PubMed
Borisjuk NV, Davidjuk YM, Kostishin SS, et al. 1997. Structural analysis of rDNA in the genus Nicotiana. Plant Molecular Biology 35: 655–660. PubMed
Braszewska-Zalewska A, Bernas T, Maluszynska J. 2010. Epigenetic chromatin modifications in Brassica genomes. Genome 53: 203–210. PubMed
Buggs RJ, Chamala S, Wu W, et al. 2012. Rapid, repeated, and clustered loss of duplicate genes in allopolyploid plant populations of independent origin. Current Biology 22: 248–252. PubMed
Carvalho A, Guedes-Pinto H, Lima-Brito J. 2011. Intergenic spacer length variants in Old Portuguese bread wheat cultivars. Journal of Genetics 90: 203–208. PubMed
Chalhoub B., Denoeud F, Liu S, et al. 2014. Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome. Science 345: 1255–1255. PubMed
Chen ZJ, Pikaard CS. 1997. Transcriptional analysis of nucleolar dominance in polyploid plants: biased expression/silencing of progenitor rRNA genes is developmentally regulated in Brassica. Proceedings of National Academy of Science USA 94: 3442–3447. PubMed PMC
Cheung F, Trick M, Drou N, et al. 2009. Comparative analysis between homoeologous genome segments of Brassica napus and its progenitor species reveals extensive sequence-level divergence. The Plant Cell 21: 1912–1928. PubMed PMC
Cifuentes M, Eber F, Lucas MO, Lode M, Chevre AM, Jenczewski E. 2010. Repeated polyploidy drove different levels of crossover suppression between homoeologous chromosomes in Brassica napus allohaploids. The Plant Cell 22: 2265–2276. PubMed PMC
Coutinho JP, Carvalho A, Martin A, Ribeiro T, Morais-Cecilio L, Lima-Brito J. 2016. Oak ribosomal DNA: characterization by FISH and polymorphism assessed by IGS PCR–RFLP. Plant Systematics and Evolution 302: 527–544.
Darocha PSCF, Bertrand H. 1995. Structure and comparative-analysis of the rDNA intergenic spacer of Brassica rapa – Implications for the function and evolution of the Cruciferae spacer. European Journal of Biochemistry 229: 550–557. PubMed
Delseny M, Mcgrath JM, This P, Chevre AM, Quiros CF. 1990. Ribosomal-RNA genes in diploid and amphidiploid Brassica and related species – organization, polymorphism, and evolution. Genome 33: 733–744.
Dover GA. 1982. Molecular drive: a cohesive mode of species evolution. Nature 299: 111–117. PubMed
Doyle JJ, Flagel LE, Paterson AH, et al. 2008. Evolutionary genetics of genome merger and doubling in plants. Annual Review of Genetics 42: 443–461. PubMed
Dubcovsky J, Dvorak J. 1995. Ribosomal RNA multigene loci – nomads of the Triticeae genomes. Genetics 140: 1367–1377. PubMed PMC
Eickbush TH, Eickbush DG. 2007. Finely orchestrated movements: evolution of the ribosomal RNA genes. Genetics 175: 477–485. PubMed PMC
Erickson LR, Straus NA, Beversdorf WD. 1983. Restriction patterns reveal origins of chloroplast genomes in Brassica amphiploids. Theoretical and Applied Genetics 65: 201–206. PubMed
Escobar JS, Glemin S, Galtier N. 2011. GC-biased gene conversion impacts ribosomal DNA evolution in vertebrates, angiosperms, and other eukaryotes. Molecular Biology and Evolution 28: 2561–2575. PubMed
Fukui K, Nakayama S, Ohmido N, Yoshiaki H, Yamabe M. 1998. Quantitative karyotyping of three diploid Brassica species by imaging methods and localization of 45s rDNA loci on the identified chromosomes. Theoretical and Applied Genetics 96: 325–330. PubMed
Gaeta RT, Pires JC. 2010. Homoeologous recombination in allopolyploids: the polyploid ratchet. New Phytologist 186: 18–28. PubMed
Garcia S, Kovarik A. 2013. Dancing together and separate again: gymnosperms exhibit frequent changes of fundamental 5S and 35S rRNA gene (rDNA) organisation. Heredity (Edinb) 111: 23–33. PubMed PMC
Garcia S, Garnatje T, Kovarik A. 2012. Plant rDNA database: ribosomal DNA loci data including other karyological and cytogenetic information in plants. Chromosoma 121: 389–394. PubMed
Gerlach WL, Bedbrook JR. 1979. Cloning and characterization of ribosomal RNA genes in wheat. Nucleic Acids Research 7: 1869–1885. PubMed PMC
Goecks J, Nekrutenko A, Taylor J, Team G. 2010. Galaxy: a comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences. Genome Biology 11. PubMed PMC
Gouy M, Guindon S, Gascuel O. 2010. SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Molecular Biology and Evolution 27: 221–224. PubMed
Guo X, Han F. 2014. Asymmetric epigenetic modification and elimination of rDNA sequences by polyploidization in wheat. The Plant Cell 26: 4311–4327. PubMed PMC
Hasterok R, Maluszynska J. 2000. Nucleolar dominance does not occur in root tip cells of allotetraploid Brassica species. Genome 43: 574–579. PubMed
Hasterok R, Jenkins G, Langdon T, Jones RN, Maluszynska J. 2001. Ribosomal DNA is an effective marker of Brassica chromosomes. Theoretical and Applied Genetics 103: 486–490.
Hasterok R, Wolny E, Hosiawa M, et al. 2006. Comparative analysis of rDNA distribution in chromosomes of various species of Brassicaceae. Annals of Botany 97: 205–216. PubMed PMC
Howell EC, Barker GC, Jones GH, et al. 2002. Integration of the cytogenetic and genetic linkage maps of Brassica oleracea. Genetics 161: 1225–1234. PubMed PMC
Howell EC, Kearsey MJ, Jones GH, King GJ, Armstrong SJ. 2008. A and C genome distinction and chromosome identification in Brassica napus by sequential fluorescence in situ hybridization and genomic in situ hybridization. Genetics 180: 1849–1857. PubMed PMC
Inaba R, Nishio T. 2002. Phylogenetic analysis of Brassiceae based on the nucleotide sequences of the S-locus related gene, SLR1. Theoretical and Applied Genetics 105: 1159–1165. PubMed
Kim H, Choi SR, Bae J, et al. 2009. Sequenced BAC anchored reference genetic map that reconciles the ten individual chromosomes of Brassica rapa. BMC Genomics 10: 432. PubMed PMC
Koukalova B, Moraes AP, Renny-Byfield S, Matyasek R, Leitch AR, Kovarik A. 2010. Fall and rise of satellite repeats in allopolyploids of Nicotiana over c. 5 million years. New Phytologist 186: 148–160. PubMed
Kovarik A, Matyasek R, Lim KY, et al. 2004. Concerted evolution of 18–5.8–26S rDNA repeats in Nicotiana allotetraploids. Biological Journal of the Linnean Society 82: 615–625.
Kovarik A, Pires JC, Leitch AR, et al. 2005. Rapid concerted evolution of nuclear ribosomal DNA in two Tragopogon allopolyploids of recent and recurrent origin. Genetics 169: 931–944. PubMed PMC
Kovarik A, Dadejova M, Lim YK, et al. 2008. Evolution of rDNA in Nicotiana allopolyploids: a potential link between rDNA homogenization and epigenetics. Annals of Botany 101: 815–823. PubMed PMC
Ksiazczyk T, Kovarik A, Eber F, et al. 2011. Immediate unidirectional epigenetic reprogramming of NORs occurs independently of rDNA rearrangements in synthetic and natural forms of a polyploid species Brassica napus. Chromosoma 120: 557–571. PubMed
Kulak S, Hasterok R, Maluszynska J. 2002. Karyotyping of Brassica amphidiploids using 5S and 25S rDNA as chromosome markers. Hereditas 136: 144–150. PubMed
Leflon M, Eber F, Letanneur JC, et al. 2006. Pairing and recombination at meiosis of Brassica rapa (AA) x Brassica napus (AACC) hybrids. Theoretical and Applied Genetics 113: 1467–1480. PubMed
Lim KY, Skalicka K, Koukalova B, et al. 2004. Dynamic changes in the distribution of a satellite homologous to intergenic 26–18S rDNA spacer in the evolution of Nicotiana. Genetics 166: 1935–1946. PubMed PMC
Lowe AJ, Abbott RJ. 1996. Origins of the new allopolyploid species Senecio cambrensis (Asteraceae) and its relationship to the Canary Islands endemic Senecio teneriffae. American Journal of Botany 83: 1365–1372.
Mahelka V, Kopecky D, Baum BR. 2013. Contrasting patterns of evolution of 45S and 5S rDNA families uncover new aspects in the genome constitution of the agronomically important grass Thinopyrum intermedium (Triticeae). Molecular Biology and Evolution 30: 2065–2086. PubMed
Maluszynska J, Heslop-Harrison JS. 1993. Physical mapping of rDNA loci in Brassica species. Genome 36: 774–781. PubMed
Matyasek R, Renny-Byfield S, Fulnecek J, et al. 2012. Next generation sequencing analysis reveals a relationship between rDNA unit diversity and locus number in Nicotiana diploids. BMC Genomics 13: 722. PubMed PMC
Navratilova A, Koblizkova A, Macas J. 2008. Survey of extrachromosomal circular DNA derived from plant satellite repeats. BMC Plant Biology 8: 90. PubMed PMC
Nicolas SD, Le Mignon G, Eber F, et al. 2007. Homeologous recombination plays a major role in chromosome rearrangements that occur during meiosis of Brassica napus haploids. Genetics 175: 487–503. PubMed PMC
Nieto Feliner G, Rosselló JA. 2007. Better the devil you know? Guidelines for insightful utilization of nrDNA ITS in species-level evolutionary studies in plants. Molecular Phylogenetics and Evolution 44: 911–919. PubMed
Nieto Feliner G, Rosselló JA. 2012. Concerted evolution of multigene families and homeologous recombination In: JF Wendel, ed. Plant genome diversity. Vienna: Springer-Verlag, 171–193.
Noe L, Kucherov G. 2005. YASS: enhancing the sensitivity of DNA similarity search. Nucleic Acids Research 33: W540–543. PubMed PMC
Osborn TC, Butrulle DV, Sharpe AG, et al. 2003. Detection and effects of a homeologous reciprocal transposition in Brassica napus. Genetics 165: 1569–1577. PubMed PMC
Palmer JD, Shields CR, Cohen DB, Orton TJ. 1983. An unusual mitochondrial-DNA plasmid in the genus Brassica. Nature 301: 725–728.
Parkin IA, Sharpe AG, Keith DJ, Lydiate DJ. 1995. Identification of the A and C genomes of amphidiploid Brassica napus (oilseed rape). Genome 38: 1122–1131. PubMed
Parkin IA, Koh C, Tang HB. et al. 2014. Transcriptome and methylome profiling reveals relics of genome dominance in the mesopolyploid Brassica oleracea. Genome Biology 15: R77. PubMed PMC
Pecinka A, Schubert V, Meister A, et al. 2004. Chromosome territory arrangement and homologous pairing in nuclei of Arabidopsis thaliana are predominantly random except for NOR-bearing chromosomes. Chromosoma 113: 258–269. PubMed
Piquemal J, Cinquin E, Couton F, et al. 2005. Construction of an oilseed rape (Brassica napus L.) genetic map with SSR markers. Theoretical and Applied Genetics 111: 1514–1523. PubMed
Poczai P, Hyvonen J. 2010. Nuclear ribosomal spacer regions in plant phylogenetics: problems and prospects. Molecular Biology Reports 37: 1897–1912. PubMed
Saghai-Maroof MA, Soliman KM, Jorgensen RA, Allard RW. 1984. Ribosomal DNA spacer-length polymorphisms in barley: mendelian inheritance, chromosomal location, and population dynamics. Proceedings of National Academy of Sciences USA 81: 8014–8018. PubMed PMC
Sarilar V, Palacios PM, Rousselet A, et al. 2013. Allopolyploidy has a moderate impact on restructuring at three contrasting transposable element insertion sites in resynthesized Brassica napus allotetraploids. New Phytologist 198: 593–604. PubMed
Schlotterer C, Tautz D. 1994. Chromosomal homogeneity of Drosophila ribosomal DNA arrays suggests intrachromosomal exchanges drive concerted evolution. Current Biology 4: 777–783. PubMed
Snowdon RJ, Kohler W, Kohler A. 1997. Chromosomal localization and characterization of rDNA loci in the Brassica A and C genomes. Genome 40: 582–587. PubMed
Stupar RM, Song J, Tek AL, Cheng Z, Dong F, Jiang J. 2002. Highly condensed potato pericentromeric heterochromatin contains rDNA-related tandem repeats. Genetics 162: 1435–1444. PubMed PMC
Suay L, Zhang DS, Eber F, et al. 2014. Crossover rate between homologous chromosomes and interference are regulated by the addition of specific unpaired chromosomes in Brassica. New Phytologist 201: 645–656. PubMed
Szadkowski E, Eber F, Huteau V, et al. 2010. The first meiosis of resynthesized Brassica napus, a genome blender. New Phytologist 186: 102–112. PubMed
Szadkowski E, Eber F, Huteau V, et al. 2011. Polyploid formation pathways have an impact on genetic rearrangements in resynthesized Brassica napus. New Phytologist 191: 884–894. PubMed
Tayalé A, Parisod C. 2013. Natural pathways to polyploidy in plants and consequences for genome reorganization. Cytogenetic and Genome Research 140: 79–96. PubMed
Udall JA, Quijada PA, Osborn TC. 2005. Detection of chromosomal rearrangements derived from homeologous recombination in four mapping populations of Brassica napus L. Genetics 169: 967–979. PubMed PMC
Volkov RA, Borisjuk NV, Panchuk II, Schweizer D, Hemleben V. 1999. Elimination and rearrangement of parental rDNA in the allotetraploid Nicotiana tabacum. Molecular Biology and Evolution 16: 311–320. PubMed
Volkov RA, Komarova NY, Hemleben V. 2007. Ribosomal DNA in plant hybrids: inheritance, rearrangement, expression. Systematics & Biodiversity (NHM London) 5: 261–276.
Waters ER, Schaal BA. 1996. Biased gene conversion is not occurring among rDNA repeats in the Brassica triangle. Genome 39: 150–154. PubMed
Weiss-Schneeweiss H, Bloch C, Turner B, Villasenor JL, Stuessy TF, Schneeweiss GM. 2012. The promiscuous and the chaste: frequent allopolyploid speciation and its genomic consequences in American daisies (Melampodium Sect. Melampodium; Asteraceae). Evolution 66: 211–228. PubMed
Weiss-Schneeweiss H, Emadzade K, Jang TS, Schneeweiss GM. 2013. Evolutionary consequences, constraints and potential of polyploidy in plants. Cytogenetic and Genome Research 140: 137–150. PubMed PMC
Wendel JF, Schnabel A, Seelanan T. 1995. Bidirectional interlocus concerted evolution following allopolyploid speciation in cotton (Gossypium). Proceedings of National Academy of Sciences USA 92: 280–284. PubMed PMC
Xiong ZY, Pires JC. 2011. Karyotype and identification of all homoeologous chromosomes of allopolyploid Brassica napus and its diploid progenitors. Genetics 187: 37–49. PubMed PMC
Xiong ZY, Gaeta RT, Pires JC. 2011. Homoeologous shuffling and chromosome compensation maintain genome balance in resynthesized allopolyploid Brassica napus. Proceedings of the National Academy USA 108: 7908–7913. PubMed PMC
Zimmer EA, Martin SL, Beverley SM, Kan YW, Wilson AC. 1980. Rapid duplication and loss of genes-coding for the alpha-chains of hemoglobin. Proceedings of the National Academy of Sciences USA 77: 2158–2162. PubMed PMC
Zozomova-Lihova J, Mandakova T, Kovarikova A, et al. 2014. When fathers are instant losers: homogenization of rDNA loci in recently formed Cardamine x schulzii trigenomic allopolyploid. New Phytologist 203: 1096–108. PubMed
Intragenomic rDNA variation - the product of concerted evolution, mutation, or something in between?
The fate of 35S rRNA genes in the allotetraploid grass Brachypodium hybridum