Survey of extrachromosomal circular DNA derived from plant satellite repeats

. 2008 Aug 22 ; 8 () : 90. [epub] 20080822

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid18721471

BACKGROUND: Satellite repeats represent one of the most dynamic components of higher plant genomes, undergoing rapid evolutionary changes of their nucleotide sequences and abundance in a genome. However, the exact molecular mechanisms driving these changes and their eventual regulation are mostly unknown. It has been proposed that amplification and homogenization of satellite DNA could be facilitated by extrachromosomal circular DNA (eccDNA) molecules originated by recombination-based excision from satellite repeat arrays. While the models including eccDNA are attractive for their potential to explain rapid turnover of satellite DNA, the existence of satellite repeat-derived eccDNA has not yet been systematically studied in a wider range of plant genomes. RESULTS: We performed a survey of eccDNA corresponding to nine different families and three subfamilies of satellite repeats in ten species from various genera of higher plants (Arabidopsis, Oryza, Pisum, Secale, Triticum and Vicia). The repeats selected for this study differed in their monomer length, abundance, and chromosomal localization in individual species. Using two-dimensional agarose gel electrophoresis followed by Southern blotting, eccDNA molecules corresponding to all examined satellites were detected. EccDNA occurred in the form of nicked circles ranging from hundreds to over eight thousand nucleotides in size. Within this range the circular molecules occurred preferentially in discrete size intervals corresponding to multiples of monomer or higher-order repeat lengths. CONCLUSION: This work demonstrated that satellite repeat-derived eccDNA is common in plant genomes and thus it can be seriously considered as a potential intermediate in processes driving satellite repeat evolution. The observed size distribution of circular molecules suggests that they are most likely generated by molecular mechanisms based on homologous recombination requiring long stretches of sequence similarity.

Zobrazit více v PubMed

Ingham LD, Hanna WW, Baier JW, Hannah LC. Origin of the main class of repetitive DNA within selected Pennisetum species. Mol Gen Genet. 1993;238:350–356. doi: 10.1007/BF00291993. PubMed DOI

Dechyeva D, Gindullis F, Schmidt T. Divergence of satellite DNA and interspersion of dispersed repeats in the genome of the wild beet Beta procumbens. Chromosome Res. 2003;11:3–21. doi: 10.1023/A:1022005514470. PubMed DOI

Macas J, Požárková D, Navrátilová A, Nouzová M, Neumann P. Two new families of tandem repeats isolated from genus Vicia using genomic self-priming PCR. Mol Gen Genet. 2000;263:741–751. doi: 10.1007/s004380000245. PubMed DOI

Nouzová M, Kubaláková M, Doleželová M, Koblížková A, Neumann P, Doležel J, Macas J. Cloning and characterization of new repetitive sequences in field bean (Vicia faba L.) Ann Bot. 1999;83:535–541. doi: 10.1006/anbo.1999.0853. DOI

Tek AL, Song JQ, Macas J, Jiang JM. Sobo, a recently amplified satellite repeat of potato, and its implications for the origin of tandemly repeated sequences. Genetics. 2005;170:1231–1238. doi: 10.1534/genetics.105.041087. PubMed DOI PMC

Dover G. Molecular drive. Trends in Genetics. 2002;18:587–589. doi: 10.1016/S0168-9525(02)02789-0. PubMed DOI

Stephan W. Recombination and the evolution of satellite DNA. Genet Res. 1986;47:167–174. PubMed

Charlesworth B, Sniegowski P, Stephan W. The evolutionary dynamics of repetitive DNA in eukaryotes. Nature. 1994;371:215–220. doi: 10.1038/371215a0. PubMed DOI

Stephan W, Cho S. Possible role of natural selection in the formation of tandem repetitive noncoding DNA. Genetics. 1994;136:333–341. PubMed PMC

Walsh JB. Persistence of tandem arrays: implications for satellite and simple-sequence DNAs. Genetics. 1987;115:553–567. PubMed PMC

Gaubatz JW. Extrachromosomal circular DNAs and genomic sequence plasticity in eukaryotic cells. Mutat Res. 1990;237:271–292. PubMed

Cohen S, Regev A, Lavi S. Small polydispersed circular DNA (spcDNA) in human cells: association with genomic instability. Oncogene. 1997;14:977–985. doi: 10.1038/sj.onc.1200917. PubMed DOI

Cohen S, Menut S, Méchali M. Regulated formation of extrachromosomal circular DNA molecules during development in Xenopus laevis. Mol Cell Biol. 1999;19:6682–6689. PubMed PMC

Cohen S, Yacobi K, Segal D. Extrachromosomal circular DNA of tandemly repeated genomic sequences in Drosophila. Genome Res. 2003;13:1133–1145. doi: 10.1101/gr.907603. PubMed DOI PMC

Cohen Z, Bacharach E, Lavi S. Mouse major satellite DNA is prone to eccDNA formation via DNA Ligase IV-dependent pathway. Oncogene. 2006;25:4515–4524. doi: 10.1038/sj.onc.1209485. PubMed DOI

Zellinger B, Akimcheva S, Puizina J, Schirato M, Riha K. Ku suppresses formation of telomeric circles and alternative telomere lengthening in Arabidopsis. Mol Cell. 2007;27:163–169. doi: 10.1016/j.molcel.2007.05.025. PubMed DOI

Cohen S, Houben A, Segal D. Extrachromosomal circular DNA derived from tandemly repeated genomic sequences in plants. Plant J. 2008;53:1027–34. doi: 10.1111/j.1365-313X.2007.03394.x. PubMed DOI

Macas J, Meszárosz T, Nouzová M. PlantSat: a specialized database for plant satellite repeats. Bioinformatics. 2002;18:28–35. doi: 10.1093/bioinformatics/18.1.28. PubMed DOI

Schmidt T, Heslop-Harrison JS. Genomes, genes and junk: the large-scale organization of plant chromosomes. Trends Plant Sci. 1998;3:195–199. doi: 10.1016/S1360-1385(98)01223-0. DOI

Henikoff S, Ahmad K, Malik HS. The centromere paradox: stable inheritance with rapidly evolving DNA. Science. 2001;293:1098–1102. doi: 10.1126/science.1062939. PubMed DOI

Luger K. Dynamic nucleosomes. Chromosome Res. 2006;14:5–16. doi: 10.1007/s10577-005-1026-1. PubMed DOI

Cohen S, Lavi S. Induction of circles of heterogeneous sizes in carcinogen-treated cells: two-dimensional gel analysis of circular DNA molecules. Mol Cell Biol. 1996;16:2002–2014. PubMed PMC

Kato A, Yakura K, Tanifuji S. Sequence analysis of Vicia faba repeated DNA, the FokI repeat element. Nucleic Acids Res. 1984;12:6415–6426. doi: 10.1093/nar/12.16.6415. PubMed DOI PMC

Maggini F, D'Ovidio R, Gelati MT, Frediani M, Cremonini R, Ceccarelli M, Minelli S, Cionini PG. FokI DNA repeats in the genome of Vicia faba: species specificity, structure, redundancy modulation, and nuclear organization. Genome. 1995;38:1255–1261. PubMed

Lee HR, Neumann P, Macas J, Jiang JM. Transcription and evolutionary dynamics of the centromeric satellite repeat CentO in rice. Mol Biol Evol. 2006;23:2505–2520. doi: 10.1093/molbev/msl127. PubMed DOI

Macas J, Navrátilová A, Koblížková A. Sequence homogenization and chromosomal localization of VicTR-B satellites differ between closely related Vicia species. Chromosoma. 2006;115:437–447. doi: 10.1007/s00412-006-0070-8. PubMed DOI

Herzel H, Weiss O, Trifonov EN. 10–11 bp periodicities in complete genomes reflect protein structure and DNA folding. Bioinformatics. 1999;15:187–193. doi: 10.1093/bioinformatics/15.3.187. PubMed DOI

Appels R, Moran LB, Gustafson JP. Rye heterochromatin. I: Studies on clusters of the major repeating sequence and the identification of a new dispersed repetitive sequence element. Can J Genet Cytol. 1986;28:645–657.

Katsiotis A, Hagidimitriou M, Douka A, Hatzopoulos P. Genomic organization, sequence interrelationship, and physical localization using in situ hybridization of two tandemly repeated DNA sequences in the genus Olea. Genome. 1998;41:527–534. doi: 10.1139/gen-41-4-527. PubMed DOI

Ohki R, Oishi M, Kiyama R. Preference of the recombination sites involved in the formation of extrachromosomal copies of the human alphoid Sau3A repeat family. Nucleic Acids Res. 1995;23:4971–4977. doi: 10.1093/nar/23.24.4971. PubMed DOI PMC

Takeuchi Y, Horiuchi T, Kobayashi T. Transcription-dependent recombination and the role of fork collision in yeast rDNA. Genes Dev. 2003;17:1497–1506. doi: 10.1101/gad.1085403. PubMed DOI PMC

Cohen S, Méchali M. A novel cell-free system reveals a mechanism of circular DNA formation from tandem repeats. Nucleic Acids Res. 2001;29:2542–2548. doi: 10.1093/nar/29.12.2542. PubMed DOI PMC

Smith CA, Vinograd J. Small polydisperse circular DNA of HeLa cells. J Mol Biol. 1972;69:163–178. doi: 10.1016/0022-2836(72)90222-7. PubMed DOI

Kawasaki I, Bae YS, Eki T, Kim Y, Ikeda H. Homologous recombination of monkey alpha-satellite repeats in an in vitro simian virus 40 replication system: possible association of recombination with DNA-replication. Mol Cell Biol. 1994;14:4173–4182. PubMed PMC

Modrich P, Lahue R. Mismatch repair in replication fidelity, genetic recombination, and cancer biology. Annu Rev Biochem. 1996;65:101–133. doi: 10.1146/annurev.bi.65.070196.000533. PubMed DOI

Opperman R, Emmanuel E, Levy AA. The effect of sequence divergence on recombination between direct repeats in Arabidopsis. Genetics. 2004;168:2207–2215. doi: 10.1534/genetics.104.032896. PubMed DOI PMC

Rubnitz J, Subramani S. The minimum amount of homology required for homologous recombination in mammalian cells. Mol Cell Biol. 1984;4:2253–2258. PubMed PMC

Chen W, Jinks-Robertson S. The role of the mismatch repair machinery in regulating mitotic and meiotic recombination between diverged sequences in yeast. Genetics. 1999;151:1299–1313. PubMed PMC

Li L, Santerre-Ayotte S, Boivin EB, Jean M, Belzile F. A novel reporter for intrachromosomal homoeologous recombination in Arabidopsis thaliana. Plant J. 2004;40:1007–1015. doi: 10.1111/j.1365-313X.2004.02270.x. PubMed DOI

Li L, Jean M, Belzile F. The impact of sequence divergence and DNA mismatch repair on homeologous recombination in Arabidopsis. Plant J. 2006;45:908–916. PubMed

Park PU, Defossez PA, Guarente L. Effects of mutations in DNA repair genes on formation of ribosomal DNA circles and life span in Saccharomyces cerevisiae. Mol Cell Biol. 1999;19:3848–3856. PubMed PMC

Cohen S, Agmon N, Yacobi K, Mislovati M, Segal D. Evidence for rolling circle replication of tandem genes in Drosophila. Nucleic Acids Res. 2005;33:4519–4526. doi: 10.1093/nar/gki764. PubMed DOI PMC

Backert S. R-loop-dependent rolling-circle replication and a new model for DNA concatemer resolution by mitochondrial plasmid mp1. EMBO J. 2002;21:3128–3136. doi: 10.1093/emboj/cdf311. PubMed DOI PMC

Hourcade D, Dressler D, Wolfson J. Amplification of ribosomal-RNA genes involves a rolling circle intermediate. Proc Natl Acad Sci USAmerica. 1973;70:2926–2930. doi: 10.1073/pnas.70.10.2926. PubMed DOI PMC

Dellaporta SL, Wood J, Hicks JB. A plant DNA minipreparation: Version II. Plant Mol Biol Rep. 1983;1:19–21. doi: 10.1007/BF02712670. DOI

Buchholz F, Bishop M. LoxP-directed cloning: use of Cre recombinase as a universal restriction enzyme. BioTechniques. 2001;31:906–908. PubMed

Nouzová M, Neumann P, Navrátilová A, Galbraith DW, Macas J. Microarray-based survey of repetitive genomic sequences in Vicia spp. Plant Mol Biol. 2001;45:229–244. doi: 10.1023/A:1006408119740. PubMed DOI

Sonnhammer EL, Durbin R. A dot-matrix program with dynamic threshold control suited for genomic DNA and protein sequence analysis. Gene. 1995;167:GC1–10. doi: 10.1016/0378-1119(95)00714-8. PubMed DOI

Anamthawat-Jansson K, Heslop-Harrison JS. Isolation and characterization of genome-specific DNA sequences in Triticeae species. Mol Gen Genet. 1993;240:151–158. doi: 10.1007/BF00277052. PubMed DOI

Vershinin A, Svitashev S, Gummesson PO, Salomon B, von Bothmer R, Bryngelsson T. Characterization of a family of tandemly repeated DNA sequences in Triticeae. Theor Appl Genet. 1994;89:217–225. doi: 10.1007/BF00225145. PubMed DOI

Heslop-Harrison JS. Comparative genome organization in plants: from sequence and markers to chromatin and chromosomes. Plant Cell. 2000;12:617–636. doi: 10.1105/tpc.12.5.617. PubMed DOI PMC

Murata M, Ogura Y, Motoyoshi F. Centromeric repetitive sequences in Arabidopsis thaliana. Jpn J Genet. 1994;69:361–370. doi: 10.1266/jjg.69.361. PubMed DOI

Kumekawa N, Hosouchi T, Tsuruoka H, Kotani H. The size and sequence organization of the centromeric region of Arabidopsis thaliana chromosome 4. DNA Res. 2001;8:285–290. doi: 10.1093/dnares/8.6.285. PubMed DOI

Dong F, Miller JT, Jackson SA, Wang GL, Ronald PC, Jiang J. Rice (Oryza sativa) centromeric regions consist of complex DNA. Proc Natl Acad Sci USA. 1998;95:8135–8140. doi: 10.1073/pnas.95.14.8135. PubMed DOI PMC

Cheng Z, Dong F, Langdon T, Ouyang S, Buell CR, Gu M, Blattner FR, Jiang J. Functional rice centromeres are marked by a satellite repeat and a centromere-specific retrotransposon. Plant Cell. 2002;14:1691–1704. doi: 10.1105/tpc.003079. PubMed DOI PMC

Bedbrook JR, Jones J, O'Dell M, Thompson RD, Flavell RB. A molecular description of telometic heterochromatin in Secale species. Cell. 1980;19:545–560. doi: 10.1016/0092-8674(80)90529-2. PubMed DOI

Navrátilová A, Neumann P, Macas J. Karyotype analysis of four Vicia species using in situ hybridization with repetitive sequences. Ann Bot. 2003;91:921–926. doi: 10.1093/aob/mcg099. PubMed DOI PMC

Neumann P, Nouzová M, Macas J. Molecular and cytogenetic analysis of repetitive DNA in pea (Pisum sativum L.) Genome. 2001;44:716–728. doi: 10.1139/gen-44-4-716. PubMed DOI

Macas J, Neumann P, Navrátilová A. Repetitive DNA in the pea (Pisum sativum L.) genome: comprehensive characterization using 454 sequencing and comparison to soybean and Medicago truncatula. BMC Genomics. 2007;8:427. doi: 10.1186/1471-2164-8-427. PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Holocentromeres can consist of merely a few megabase-sized satellite arrays

. 2023 Jun 13 ; 14 (1) : 3502. [epub] 20230613

The Role of Satellite DNAs in Genome Architecture and Sex Chromosome Evolution in Crambidae Moths

. 2021 ; 12 () : 661417. [epub] 20210330

Characterization of repeat arrays in ultra-long nanopore reads reveals frequent origin of satellite DNA from retrotransposon-derived tandem repeats

. 2020 Jan ; 101 (2) : 484-500. [epub] 20191103

Satellite DNA in Vicia faba is characterized by remarkable diversity in its sequence composition, association with centromeres, and replication timing

. 2018 Apr 11 ; 8 (1) : 5838. [epub] 20180411

Higher-order organisation of extremely amplified, potentially functional and massively methylated 5S rDNA in European pikes (Esox sp.)

. 2017 May 18 ; 18 (1) : 391. [epub] 20170518

Gene conversion events and variable degree of homogenization of rDNA loci in cultivars of Brassica napus

. 2017 Jan ; 119 (1) : 13-26. [epub] 20161005

Differential amplification of satellite PaB6 in chromosomally hypervariable Prospero autumnale complex (Hyacinthaceae)

. 2014 Dec ; 114 (8) : 1597-608. [epub] 20140828

Molecular analysis and genomic organization of major DNA satellites in banana (Musa spp.)

. 2013 ; 8 (1) : e54808. [epub] 20130123

Dysfunction of chromatin assembly factor 1 induces shortening of telomeres and loss of 45S rDNA in Arabidopsis thaliana

. 2010 Aug ; 22 (8) : 2768-80. [epub] 20100810

Zobrazit více v PubMed

GENBANK
EU568802, EU568803, EU568804, EU568805, EU568806, EU568807, EU568808, EU568809, EU568810, EU568811, EU568812, EU568813, EU568814, EU568815, EU568816, EU568817, EU568818, EU568819, EU568820, EU568821, EU568822, EU568823, EU568824, EU568825, EU568826, EU568827, EU568828, EU568829, EU568830, EU568831, EU568832, EU568833, EU568834, EU568835, EU568836, EU568837, EU568838, EU568839, EU568840, EU568841, EU568842, EU568843, EU568844, EU568845, EU568846, EU568847, EU568848, EU568849, EU568850, EU568851, EU568852, EU568853, EU568854, EU568855, EU568856, EU568857, EU568858, EU568859, EU568860, EU568861, EU568862, EU568863, EU568864, EU568865, EU568866, EU568867, EU568868

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace