Survey of extrachromosomal circular DNA derived from plant satellite repeats
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
18721471
PubMed Central
PMC2543021
DOI
10.1186/1471-2229-8-90
PII: 1471-2229-8-90
Knihovny.cz E-zdroje
- MeSH
- 2D gelová elektroforéza MeSH
- DNA rostlinná genetika MeSH
- genetické markery MeSH
- genom rostlinný MeSH
- klonování DNA MeSH
- kruhová DNA genetika MeSH
- molekulární sekvence - údaje MeSH
- rostliny genetika MeSH
- satelitní DNA genetika MeSH
- sekvence nukleotidů MeSH
- sekvenční seřazení MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DNA rostlinná MeSH
- genetické markery MeSH
- kruhová DNA MeSH
- satelitní DNA MeSH
BACKGROUND: Satellite repeats represent one of the most dynamic components of higher plant genomes, undergoing rapid evolutionary changes of their nucleotide sequences and abundance in a genome. However, the exact molecular mechanisms driving these changes and their eventual regulation are mostly unknown. It has been proposed that amplification and homogenization of satellite DNA could be facilitated by extrachromosomal circular DNA (eccDNA) molecules originated by recombination-based excision from satellite repeat arrays. While the models including eccDNA are attractive for their potential to explain rapid turnover of satellite DNA, the existence of satellite repeat-derived eccDNA has not yet been systematically studied in a wider range of plant genomes. RESULTS: We performed a survey of eccDNA corresponding to nine different families and three subfamilies of satellite repeats in ten species from various genera of higher plants (Arabidopsis, Oryza, Pisum, Secale, Triticum and Vicia). The repeats selected for this study differed in their monomer length, abundance, and chromosomal localization in individual species. Using two-dimensional agarose gel electrophoresis followed by Southern blotting, eccDNA molecules corresponding to all examined satellites were detected. EccDNA occurred in the form of nicked circles ranging from hundreds to over eight thousand nucleotides in size. Within this range the circular molecules occurred preferentially in discrete size intervals corresponding to multiples of monomer or higher-order repeat lengths. CONCLUSION: This work demonstrated that satellite repeat-derived eccDNA is common in plant genomes and thus it can be seriously considered as a potential intermediate in processes driving satellite repeat evolution. The observed size distribution of circular molecules suggests that they are most likely generated by molecular mechanisms based on homologous recombination requiring long stretches of sequence similarity.
Zobrazit více v PubMed
Ingham LD, Hanna WW, Baier JW, Hannah LC. Origin of the main class of repetitive DNA within selected Pennisetum species. Mol Gen Genet. 1993;238:350–356. doi: 10.1007/BF00291993. PubMed DOI
Dechyeva D, Gindullis F, Schmidt T. Divergence of satellite DNA and interspersion of dispersed repeats in the genome of the wild beet Beta procumbens. Chromosome Res. 2003;11:3–21. doi: 10.1023/A:1022005514470. PubMed DOI
Macas J, Požárková D, Navrátilová A, Nouzová M, Neumann P. Two new families of tandem repeats isolated from genus Vicia using genomic self-priming PCR. Mol Gen Genet. 2000;263:741–751. doi: 10.1007/s004380000245. PubMed DOI
Nouzová M, Kubaláková M, Doleželová M, Koblížková A, Neumann P, Doležel J, Macas J. Cloning and characterization of new repetitive sequences in field bean (Vicia faba L.) Ann Bot. 1999;83:535–541. doi: 10.1006/anbo.1999.0853. DOI
Tek AL, Song JQ, Macas J, Jiang JM. Sobo, a recently amplified satellite repeat of potato, and its implications for the origin of tandemly repeated sequences. Genetics. 2005;170:1231–1238. doi: 10.1534/genetics.105.041087. PubMed DOI PMC
Dover G. Molecular drive. Trends in Genetics. 2002;18:587–589. doi: 10.1016/S0168-9525(02)02789-0. PubMed DOI
Stephan W. Recombination and the evolution of satellite DNA. Genet Res. 1986;47:167–174. PubMed
Charlesworth B, Sniegowski P, Stephan W. The evolutionary dynamics of repetitive DNA in eukaryotes. Nature. 1994;371:215–220. doi: 10.1038/371215a0. PubMed DOI
Stephan W, Cho S. Possible role of natural selection in the formation of tandem repetitive noncoding DNA. Genetics. 1994;136:333–341. PubMed PMC
Walsh JB. Persistence of tandem arrays: implications for satellite and simple-sequence DNAs. Genetics. 1987;115:553–567. PubMed PMC
Gaubatz JW. Extrachromosomal circular DNAs and genomic sequence plasticity in eukaryotic cells. Mutat Res. 1990;237:271–292. PubMed
Cohen S, Regev A, Lavi S. Small polydispersed circular DNA (spcDNA) in human cells: association with genomic instability. Oncogene. 1997;14:977–985. doi: 10.1038/sj.onc.1200917. PubMed DOI
Cohen S, Menut S, Méchali M. Regulated formation of extrachromosomal circular DNA molecules during development in Xenopus laevis. Mol Cell Biol. 1999;19:6682–6689. PubMed PMC
Cohen S, Yacobi K, Segal D. Extrachromosomal circular DNA of tandemly repeated genomic sequences in Drosophila. Genome Res. 2003;13:1133–1145. doi: 10.1101/gr.907603. PubMed DOI PMC
Cohen Z, Bacharach E, Lavi S. Mouse major satellite DNA is prone to eccDNA formation via DNA Ligase IV-dependent pathway. Oncogene. 2006;25:4515–4524. doi: 10.1038/sj.onc.1209485. PubMed DOI
Zellinger B, Akimcheva S, Puizina J, Schirato M, Riha K. Ku suppresses formation of telomeric circles and alternative telomere lengthening in Arabidopsis. Mol Cell. 2007;27:163–169. doi: 10.1016/j.molcel.2007.05.025. PubMed DOI
Cohen S, Houben A, Segal D. Extrachromosomal circular DNA derived from tandemly repeated genomic sequences in plants. Plant J. 2008;53:1027–34. doi: 10.1111/j.1365-313X.2007.03394.x. PubMed DOI
Macas J, Meszárosz T, Nouzová M. PlantSat: a specialized database for plant satellite repeats. Bioinformatics. 2002;18:28–35. doi: 10.1093/bioinformatics/18.1.28. PubMed DOI
Schmidt T, Heslop-Harrison JS. Genomes, genes and junk: the large-scale organization of plant chromosomes. Trends Plant Sci. 1998;3:195–199. doi: 10.1016/S1360-1385(98)01223-0. DOI
Henikoff S, Ahmad K, Malik HS. The centromere paradox: stable inheritance with rapidly evolving DNA. Science. 2001;293:1098–1102. doi: 10.1126/science.1062939. PubMed DOI
Luger K. Dynamic nucleosomes. Chromosome Res. 2006;14:5–16. doi: 10.1007/s10577-005-1026-1. PubMed DOI
Cohen S, Lavi S. Induction of circles of heterogeneous sizes in carcinogen-treated cells: two-dimensional gel analysis of circular DNA molecules. Mol Cell Biol. 1996;16:2002–2014. PubMed PMC
Kato A, Yakura K, Tanifuji S. Sequence analysis of Vicia faba repeated DNA, the FokI repeat element. Nucleic Acids Res. 1984;12:6415–6426. doi: 10.1093/nar/12.16.6415. PubMed DOI PMC
Maggini F, D'Ovidio R, Gelati MT, Frediani M, Cremonini R, Ceccarelli M, Minelli S, Cionini PG. FokI DNA repeats in the genome of Vicia faba: species specificity, structure, redundancy modulation, and nuclear organization. Genome. 1995;38:1255–1261. PubMed
Lee HR, Neumann P, Macas J, Jiang JM. Transcription and evolutionary dynamics of the centromeric satellite repeat CentO in rice. Mol Biol Evol. 2006;23:2505–2520. doi: 10.1093/molbev/msl127. PubMed DOI
Macas J, Navrátilová A, Koblížková A. Sequence homogenization and chromosomal localization of VicTR-B satellites differ between closely related Vicia species. Chromosoma. 2006;115:437–447. doi: 10.1007/s00412-006-0070-8. PubMed DOI
Herzel H, Weiss O, Trifonov EN. 10–11 bp periodicities in complete genomes reflect protein structure and DNA folding. Bioinformatics. 1999;15:187–193. doi: 10.1093/bioinformatics/15.3.187. PubMed DOI
Appels R, Moran LB, Gustafson JP. Rye heterochromatin. I: Studies on clusters of the major repeating sequence and the identification of a new dispersed repetitive sequence element. Can J Genet Cytol. 1986;28:645–657.
Katsiotis A, Hagidimitriou M, Douka A, Hatzopoulos P. Genomic organization, sequence interrelationship, and physical localization using in situ hybridization of two tandemly repeated DNA sequences in the genus Olea. Genome. 1998;41:527–534. doi: 10.1139/gen-41-4-527. PubMed DOI
Ohki R, Oishi M, Kiyama R. Preference of the recombination sites involved in the formation of extrachromosomal copies of the human alphoid Sau3A repeat family. Nucleic Acids Res. 1995;23:4971–4977. doi: 10.1093/nar/23.24.4971. PubMed DOI PMC
Takeuchi Y, Horiuchi T, Kobayashi T. Transcription-dependent recombination and the role of fork collision in yeast rDNA. Genes Dev. 2003;17:1497–1506. doi: 10.1101/gad.1085403. PubMed DOI PMC
Cohen S, Méchali M. A novel cell-free system reveals a mechanism of circular DNA formation from tandem repeats. Nucleic Acids Res. 2001;29:2542–2548. doi: 10.1093/nar/29.12.2542. PubMed DOI PMC
Smith CA, Vinograd J. Small polydisperse circular DNA of HeLa cells. J Mol Biol. 1972;69:163–178. doi: 10.1016/0022-2836(72)90222-7. PubMed DOI
Kawasaki I, Bae YS, Eki T, Kim Y, Ikeda H. Homologous recombination of monkey alpha-satellite repeats in an in vitro simian virus 40 replication system: possible association of recombination with DNA-replication. Mol Cell Biol. 1994;14:4173–4182. PubMed PMC
Modrich P, Lahue R. Mismatch repair in replication fidelity, genetic recombination, and cancer biology. Annu Rev Biochem. 1996;65:101–133. doi: 10.1146/annurev.bi.65.070196.000533. PubMed DOI
Opperman R, Emmanuel E, Levy AA. The effect of sequence divergence on recombination between direct repeats in Arabidopsis. Genetics. 2004;168:2207–2215. doi: 10.1534/genetics.104.032896. PubMed DOI PMC
Rubnitz J, Subramani S. The minimum amount of homology required for homologous recombination in mammalian cells. Mol Cell Biol. 1984;4:2253–2258. PubMed PMC
Chen W, Jinks-Robertson S. The role of the mismatch repair machinery in regulating mitotic and meiotic recombination between diverged sequences in yeast. Genetics. 1999;151:1299–1313. PubMed PMC
Li L, Santerre-Ayotte S, Boivin EB, Jean M, Belzile F. A novel reporter for intrachromosomal homoeologous recombination in Arabidopsis thaliana. Plant J. 2004;40:1007–1015. doi: 10.1111/j.1365-313X.2004.02270.x. PubMed DOI
Li L, Jean M, Belzile F. The impact of sequence divergence and DNA mismatch repair on homeologous recombination in Arabidopsis. Plant J. 2006;45:908–916. PubMed
Park PU, Defossez PA, Guarente L. Effects of mutations in DNA repair genes on formation of ribosomal DNA circles and life span in Saccharomyces cerevisiae. Mol Cell Biol. 1999;19:3848–3856. PubMed PMC
Cohen S, Agmon N, Yacobi K, Mislovati M, Segal D. Evidence for rolling circle replication of tandem genes in Drosophila. Nucleic Acids Res. 2005;33:4519–4526. doi: 10.1093/nar/gki764. PubMed DOI PMC
Backert S. R-loop-dependent rolling-circle replication and a new model for DNA concatemer resolution by mitochondrial plasmid mp1. EMBO J. 2002;21:3128–3136. doi: 10.1093/emboj/cdf311. PubMed DOI PMC
Hourcade D, Dressler D, Wolfson J. Amplification of ribosomal-RNA genes involves a rolling circle intermediate. Proc Natl Acad Sci USAmerica. 1973;70:2926–2930. doi: 10.1073/pnas.70.10.2926. PubMed DOI PMC
Dellaporta SL, Wood J, Hicks JB. A plant DNA minipreparation: Version II. Plant Mol Biol Rep. 1983;1:19–21. doi: 10.1007/BF02712670. DOI
Buchholz F, Bishop M. LoxP-directed cloning: use of Cre recombinase as a universal restriction enzyme. BioTechniques. 2001;31:906–908. PubMed
Nouzová M, Neumann P, Navrátilová A, Galbraith DW, Macas J. Microarray-based survey of repetitive genomic sequences in Vicia spp. Plant Mol Biol. 2001;45:229–244. doi: 10.1023/A:1006408119740. PubMed DOI
Sonnhammer EL, Durbin R. A dot-matrix program with dynamic threshold control suited for genomic DNA and protein sequence analysis. Gene. 1995;167:GC1–10. doi: 10.1016/0378-1119(95)00714-8. PubMed DOI
Anamthawat-Jansson K, Heslop-Harrison JS. Isolation and characterization of genome-specific DNA sequences in Triticeae species. Mol Gen Genet. 1993;240:151–158. doi: 10.1007/BF00277052. PubMed DOI
Vershinin A, Svitashev S, Gummesson PO, Salomon B, von Bothmer R, Bryngelsson T. Characterization of a family of tandemly repeated DNA sequences in Triticeae. Theor Appl Genet. 1994;89:217–225. doi: 10.1007/BF00225145. PubMed DOI
Heslop-Harrison JS. Comparative genome organization in plants: from sequence and markers to chromatin and chromosomes. Plant Cell. 2000;12:617–636. doi: 10.1105/tpc.12.5.617. PubMed DOI PMC
Murata M, Ogura Y, Motoyoshi F. Centromeric repetitive sequences in Arabidopsis thaliana. Jpn J Genet. 1994;69:361–370. doi: 10.1266/jjg.69.361. PubMed DOI
Kumekawa N, Hosouchi T, Tsuruoka H, Kotani H. The size and sequence organization of the centromeric region of Arabidopsis thaliana chromosome 4. DNA Res. 2001;8:285–290. doi: 10.1093/dnares/8.6.285. PubMed DOI
Dong F, Miller JT, Jackson SA, Wang GL, Ronald PC, Jiang J. Rice (Oryza sativa) centromeric regions consist of complex DNA. Proc Natl Acad Sci USA. 1998;95:8135–8140. doi: 10.1073/pnas.95.14.8135. PubMed DOI PMC
Cheng Z, Dong F, Langdon T, Ouyang S, Buell CR, Gu M, Blattner FR, Jiang J. Functional rice centromeres are marked by a satellite repeat and a centromere-specific retrotransposon. Plant Cell. 2002;14:1691–1704. doi: 10.1105/tpc.003079. PubMed DOI PMC
Bedbrook JR, Jones J, O'Dell M, Thompson RD, Flavell RB. A molecular description of telometic heterochromatin in Secale species. Cell. 1980;19:545–560. doi: 10.1016/0092-8674(80)90529-2. PubMed DOI
Navrátilová A, Neumann P, Macas J. Karyotype analysis of four Vicia species using in situ hybridization with repetitive sequences. Ann Bot. 2003;91:921–926. doi: 10.1093/aob/mcg099. PubMed DOI PMC
Neumann P, Nouzová M, Macas J. Molecular and cytogenetic analysis of repetitive DNA in pea (Pisum sativum L.) Genome. 2001;44:716–728. doi: 10.1139/gen-44-4-716. PubMed DOI
Macas J, Neumann P, Navrátilová A. Repetitive DNA in the pea (Pisum sativum L.) genome: comprehensive characterization using 454 sequencing and comparison to soybean and Medicago truncatula. BMC Genomics. 2007;8:427. doi: 10.1186/1471-2164-8-427. PubMed DOI PMC
Holocentromeres can consist of merely a few megabase-sized satellite arrays
The Role of Satellite DNAs in Genome Architecture and Sex Chromosome Evolution in Crambidae Moths
Molecular analysis and genomic organization of major DNA satellites in banana (Musa spp.)
GENBANK
EU568802, EU568803, EU568804, EU568805, EU568806, EU568807, EU568808, EU568809, EU568810, EU568811, EU568812, EU568813, EU568814, EU568815, EU568816, EU568817, EU568818, EU568819, EU568820, EU568821, EU568822, EU568823, EU568824, EU568825, EU568826, EU568827, EU568828, EU568829, EU568830, EU568831, EU568832, EU568833, EU568834, EU568835, EU568836, EU568837, EU568838, EU568839, EU568840, EU568841, EU568842, EU568843, EU568844, EU568845, EU568846, EU568847, EU568848, EU568849, EU568850, EU568851, EU568852, EU568853, EU568854, EU568855, EU568856, EU568857, EU568858, EU568859, EU568860, EU568861, EU568862, EU568863, EU568864, EU568865, EU568866, EU568867, EU568868