Higher-order organisation of extremely amplified, potentially functional and massively methylated 5S rDNA in European pikes (Esox sp.)
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
28521734
PubMed Central
PMC5437419
DOI
10.1186/s12864-017-3774-7
PII: 10.1186/s12864-017-3774-7
Knihovny.cz E-zdroje
- Klíčová slova
- Chromosome, Esox, Evolution, Fish, Single cell PacBio sequencing, rDNA,
- MeSH
- Esocidae genetika MeSH
- fylogeneze MeSH
- genetické lokusy genetika MeSH
- genomika * MeSH
- genová dávka MeSH
- heterochromatin metabolismus MeSH
- konzervovaná sekvence MeSH
- metylace DNA * MeSH
- ribozomální DNA genetika MeSH
- sekvence nukleotidů MeSH
- sekvenční analýza hybridizací s uspořádaným souborem oligonukleotidů MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- heterochromatin MeSH
- ribozomální DNA MeSH
BACKGROUND: Pikes represent an important genus (Esox) harbouring a pre-duplication karyotype (2n = 2x = 50) of economically important salmonid pseudopolyploids. Here, we have characterized the 5S ribosomal RNA genes (rDNA) in Esox lucius and its closely related E. cisalpinus using cytogenetic, molecular and genomic approaches. Intragenomic homogeneity and copy number estimation was carried out using Illumina reads. The higher-order structure of rDNA arrays was investigated by the analysis of long PacBio reads. Position of loci on chromosomes was determined by FISH. DNA methylation was analysed by methylation-sensitive restriction enzymes. RESULTS: The 5S rDNA loci occupy exclusively (peri)centromeric regions on 30-38 acrocentric chromosomes in both E. lucius and E. cisalpinus. The large number of loci is accompanied by extreme amplification of genes (>20,000 copies), which is to the best of our knowledge one of the highest copy number of rRNA genes in animals ever reported. Conserved secondary structures of predicted 5S rRNAs indicate that most of the amplified genes are potentially functional. Only few SNPs were found in genic regions indicating their high homogeneity while intergenic spacers were more heterogeneous and several families were identified. Analysis of 10-30 kb-long molecules sequenced by the PacBio technology (containing about 40% of total 5S rDNA) revealed that the vast majority (96%) of genes are organised in large several kilobase-long blocks. Dispersed genes or short tandems were less common (4%). The adjacent 5S blocks were directly linked, separated by intervening DNA and even inverted. The 5S units differing in the intergenic spacers formed both homogeneous and heterogeneous (mixed) blocks indicating variable degree of homogenisation between the loci. Both E. lucius and E. cisalpinus 5S rDNA was heavily methylated at CG dinucleotides. CONCLUSIONS: Extreme amplification of 5S rRNA genes in the Esox genome occurred in the absence of significant pseudogenisation suggesting its recent origin and/or intensive homogenisation processes. The dense methylation of units indicates that powerful epigenetic mechanisms have evolved in this group of fish to silence amplified genes. We discuss how the higher-order repeat structures impact on homogenisation of 5S rDNA in the genome.
Institut Botànic de Barcelona Passeig del Migdia s n 08038 Barcelona Catalonia Spain
Museum of Natural History Cascina Vigna Via S Francesco di Sales 188 Carmagnola Italy
Research Institute for Limnology University of Innsbruck Mondseestrasse 9 A 5310 Mondsee Austria
Zobrazit více v PubMed
Nelson JS, Grande TC, Wilson MVH. Fishes of the World, 5th Ed. Hoboken, New Jersey, USA, Wiley; 2016.
FishBase, a global information on fishes. http://www.fishbase.org. Accessed 31 Mar 2017.
Lucentini L, Palomba A, Gigliarelli L, Sgaravizzi G, Lancioni H, Lanfaloni L, et al. Temporal changes and effective population size of an Italian isolated and supportive-breeding managed northern pike (Esox lucius) population. Fish Res. 2009;96:139–147. doi: 10.1016/j.fishres.2008.10.007. DOI
Maes GE, VAN Houdt JKJ, De Charleroy D, Volckaert FAM. Indications for a recent holarctic expansion of pike based on a preliminary study of mtDNA variation. J Fish Biol. 2003;63:254–259. doi: 10.1046/j.1095-8649.2003.00140.x. DOI
Jacobsen BH, Hansen MM, Loeschcke V. Microsatellite DNA analysis of northern pike (Esox lucius L.) populations: insights into the genetic structure and demographic history of a genetically depauperate species. Biol J Linn Soc. 2005;84:91–101. doi: 10.1111/j.1095-8312.2005.00416.x. DOI
Ishiguro NB, Miya M, Nishida M. Basal euteleostean relationships: a mitogenomic perspective on the phylogenetic reality of the “Protacanthopterygii”. Mol Phylogenet Evol. 2003;27:476–488. doi: 10.1016/S1055-7903(02)00418-9. PubMed DOI
Rab P, Flajshans M, Ludwig A, Lieckfeldt D, Ene C, Rabova M, et al. The second highest chromosome count among vertebrates is associated with extreme ploidy diversity in hybrid sturgeons. Cytogenet Genome Res. 2004;106:24.
Animal genome size database. http://www.genomesize.com. Accessed 4 Jan 2017.
Rondeau EB, Minkley DR, Leong JS, Messmer AM, Jantzen JR, von Schalburg KR, et al. The genome and linkage map of the northern pike (Esox lucius): conserved synteny revealed between the salmonid sister group and the Neoteleostei. PLoS One. 2014;9:e102089. doi: 10.1371/journal.pone.0102089. PubMed DOI PMC
Sutherland B, Gosselin T, Normandeau E, Lamothe M, Isabel N, Audet C, et al. Novel method for comparing RADseq linkage maps reveals chromosome evolution in Salmonids. Genome Biol Evol. 2016;8:3600–3617. PubMed PMC
Rab P, Crossman EJ. Chromosomal NOR phenotypes in north-American pikes and pickerels, genus Esox, with notes on the Umbridae (Euteleostei, Esocae) Can J Zool. 1994;72:1951–1956. doi: 10.1139/z94-265. DOI
Phillips R, Rab P. Chromosome evolution in the Salmonidae (Pisces): an update. Biol Rev Camb Philos Soc. 2001;76:1–25. doi: 10.1017/S1464793100005613. PubMed DOI
Ocalewicz K, Woznicki P, Jankun M. Mapping of rRNA genes and telomeric sequences in Danube salmon (Hucho hucho) chromosomes using primed in situ labeling technique (PRINS) Genetica. 2008;134:199–203. doi: 10.1007/s10709-007-9225-7. PubMed DOI
Symonova R, Majtanova Z, Sember A, Staaks GB, Bohlen J, Freyhof J, et al. Genome differentiation in a species pair of coregonine fishes: an extremely rapid speciation driven by stress-activated retrotransposons mediating extensive ribosomal DNA multiplications. BMC Evol Biol. 2013;13:42. doi: 10.1186/1471-2148-13-42. PubMed DOI PMC
Fujiwara A, Abe S, Yamaha E, Yamazaki F, Yoshida MC. Chromosomal localization and heterochromatin association of ribosomal RNA gene loci and silver-stained nucleolar organizer regions in salmonid fishes. Chromosom Res. 1998;6:463–471. doi: 10.1023/A:1009200428369. PubMed DOI
Pieler T, Hamm J, Roeder RG. The 5S gene internal control region is composed of three distinct sequence elements, organized as two functional domains with variable spacing. Cell. 1987;48:91–100. doi: 10.1016/0092-8674(87)90359-X. PubMed DOI
Wicke S, Costa A, Munoz J, Quandt D. Restless 5S: the re-arrangement(s) and evolution of the nuclear ribosomal DNA in land plants. Mol Phylogenet Evol. 2011;61:321–332. doi: 10.1016/j.ympev.2011.06.023. PubMed DOI
Vierna J, Gonzalez-Tizon AM, Martinez-Lage A. Long-term evolution of 5S ribosomal DNA seems to be driven by birth-and-death processes and selection in Ensis razor shells (Mollusca: Bivalvia) Biochem Genet. 2009;47:635–644. doi: 10.1007/s10528-009-9255-1. PubMed DOI
Cioffi MB, Martins C, Bertollo LA. Chromosome spreading of associated transposable elements and ribosomal DNA in the fish Erythrinus erythrinus. Implications for genome change and karyoevolution in fish. BMC Evol Biol. 2010;10:271. doi: 10.1186/1471-2148-10-271. PubMed DOI PMC
Symonova R, Matjanova Z, Korinkova T, Jankun M, Dion-Coté A-M, Bernatchez L, et al. Chromosomal characteristics of rDNA genes in salmonid fishes: trends in their patterns and evolution. In: 20th International colloquium on animal cytogenetics and gene mapping, Cordoba, Spain 2012. Cordoba: Chromosom Res; 2012. p. 810.
Sember A, Bohlen J, Slechtova V, Altmanova M, Symonova R, Rab P. Karyotype differentiation in 19 species of river loach fishes (Nemacheilidae, Teleostei): extensive variability associated with rDNA and heterochromatin distribution and its phylogenetic and ecological interpretation. BMC Evol Biol. 2015;15:251. doi: 10.1186/s12862-015-0532-9. PubMed DOI PMC
Maneechot N, Yano CF, Bertollo LA, Getlekha N, Molina WF, Ditcharoen S, et al. Genomic organization of repetitive DNAs highlights chromosomal evolution in the genus Clarias (Clariidae, Siluriformes) Mol Cytogenet. 2016;9:4. doi: 10.1186/s13039-016-0215-2. PubMed DOI PMC
Rebordinos L, Cross I, Merlo A. High evolutionary dynamism in 5S rDNA of fish: state of the art. Cytogenet Genome Res. 2013;141:103–113. doi: 10.1159/000354871. PubMed DOI
Nieto Feliner G, Rossello JA, et al. Plant Genome Diversity. Wien: Springer; 2012. Concerted evolution of multigene families and homeologous recombination; pp. 171–194.
Dover GA. Molecular drive: a cohesive mode of species evolution. Nature. 1982;299:111–117. doi: 10.1038/299111a0. PubMed DOI
Eickbush TH, Eickbush DG. Finely orchestrated movements: evolution of the ribosomal RNA genes. Genetics. 2007;175:477–485. doi: 10.1534/genetics.107.071399. PubMed DOI PMC
Nei M, Rooney AP. Concerted and birth-and-death evolution of multigene families. Annu Rev Genet. 2005;39:121–152. doi: 10.1146/annurev.genet.39.073003.112240. PubMed DOI PMC
Pinhal D, Yoshimura TS, Araki CS, Martins C. The 5S rDNA family evolves through concerted and birth-and-death evolution in fish genomes: an example from freshwater stingrays. BMC Evol Biol. 2011;11:151. doi: 10.1186/1471-2148-11-151. PubMed DOI PMC
Matyasek R, Renny-Byfield S, Fulnecek J, Macas J, Grandbastien MA, Nichols R, et al. Next generation sequencing analysis reveals a relationship between rDNA unit diversity and locus number in Nicotiana diploids. BMC Genomics. 2012;13:722. doi: 10.1186/1471-2164-13-722. PubMed DOI PMC
Dubcovsky J, Dvorak J. Ribosomal RNA multigene loci–nomads of the Triticeae genomes. Genetics. 1995;140:1367–1377. PubMed PMC
Britton-Davidian J, Cazaux B, Catalan J. Chromosomal dynamics of nucleolar organizer regions (NORs) in the house mouse: micro-evolutionary insights. Heredity. 2012;108:68–74. doi: 10.1038/hdy.2011.105. PubMed DOI PMC
Raskina O, Belyayev A, Nevo E. Activity of the En/Spm-like transposons in meiosis as a base for chromosome repatterning in a small, isolated, peripheral population of Aegilops speltoides Tausch. Chromosom Res. 2004;12:153–161. doi: 10.1023/B:CHRO.0000013168.61359.43. PubMed DOI
West C, James SA, Davey RP, Dicks J, Roberts IN. Ribosomal DNA sequence heterogeneity reflects intraspecies phylogenies and predicts genome structure in two contrasting yeast species. Syst Biol. 2014;63:543–554. doi: 10.1093/sysbio/syu019. PubMed DOI PMC
Wasko AP, Martins C, Wright JM, Galetti PM., Jr Molecular organization of 5S rDNA in fishes of the genus Brycon. Genome. 2001;44:893–902. doi: 10.1139/gen-44-5-893. PubMed DOI
Kirtiklis L, Ocalewicz K, Wiechowska M, Boron A, Hliwa P. Molecular cytogenetic study of the European bitterling Rhodeus amarus (Teleostei: Cyprinidae: Acheilognathinae) Genetica. 2014;142:141–148. doi: 10.1007/s10709-014-9761-x. PubMed DOI PMC
Jankun M, Woznicki P, Dajnowicz G, Demska-Zakes K, Luczynski MJ, Luczynski M. Heterochromatin and NOR location in Northern Pike (Esox lucius) Aquat Sci. 1998;60:17–21.
Komiya H, Takemura S. Nucleotide sequence of 5S ribosomal RNA from rainbow trout (Salmo gairdnerii) liver. J Biochem. 1979;86:1067–1080. doi: 10.1093/oxfordjournals.jbchem.a132601. PubMed DOI
Koukalova B, Moraes AP, Renny-Byfield S, Matyasek R, Leitch AR, Kovarik A. Fall and rise of satellite repeats in allopolyploids of Nicotiana over c. 5 million years. New Phytol. 2010;186:148–160. doi: 10.1111/j.1469-8137.2009.03101.x. PubMed DOI
Goecks J, Nekrutenko A, Taylor J, Team G. Galaxy: a comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences. Genome Biol. 2010;11:R86. doi: 10.1186/gb-2010-11-8-r86. PubMed DOI PMC
Noe L, Kucherov G. YASS: enhancing the sensitivity of DNA similarity search. Nucleic Acids Res. 2005;33:W540–W543. doi: 10.1093/nar/gki478. PubMed DOI PMC
Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser. 1999;41:95–98.
Guo X, Han F. Asymmetric epigenetic modification and elimination of rDNA sequences by polyploidization in wheat. Plant Cell. 2014;26:4311–4327. doi: 10.1105/tpc.114.129841. PubMed DOI PMC
Rozas J, Sanchez-DelBarrio JC, Messeguer X, Rozas R. DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics. 2003;19:2496–2497. doi: 10.1093/bioinformatics/btg359. PubMed DOI
Gruber AR, Lorenz R, Bernhart SH, Neubock R, Hofacker IL. The Vienna RNA websuite. Nucleic Acids Res. 2008;36:W70–W74. doi: 10.1093/nar/gkn188. PubMed DOI PMC
Miya M, Takeshima H, Endo H, Ishiguro NB, Inoue JG, Mukai T, et al. Major patterns of higher teleostean phylogenies: a new perspective based on 100 complete mitochondrial DNA sequences. Mol Phylogenet Evol. 2003;26:121–138. doi: 10.1016/S1055-7903(02)00332-9. PubMed DOI
Smirnov AV, Entelis NS, Krasheninnikov IA, Martin R, Tarassov IA. Specific features of 5S rRNA structure–its interactions with macromolecules and possible functions. Biochemistry (Mosc) 2008;73:1418–1437. doi: 10.1134/S000629790813004X. PubMed DOI
Vierna J, Wehner S, Honer zu Siederdissen C, Martinez-Lage A, Marz M. Systematic analysis and evolution of 5S ribosomal DNA in metazoans. Heredity. 2013;111:410–421. doi: 10.1038/hdy.2013.63. PubMed DOI PMC
Prokopowich CD, Gregory TR, Crease TJ. The correlation between rDNA copy number and genome size in eukaryotes. Genome. 2003;46:48–50. doi: 10.1139/g02-103. PubMed DOI
Stankova H, Hastie AR, Chan S, Vrana J, Tulpova Z, Kubalakova M, et al. BioNano genome mapping of individual chromosomes supports physical mapping and sequence assembly in complex plant genomes. Plant Biotechnol J. 2016;14:1523–1531. doi: 10.1111/pbi.12513. PubMed DOI PMC
Emadzade K, Jang TS, Macas J, Kovarik A, Novak P, Parker J, et al. Differential amplification of satellite PaB6 in chromosomally hypervariable Prospero autumnale complex (Hyacinthaceae) Ann Bot. 2014;114:1597–1608. doi: 10.1093/aob/mcu178. PubMed DOI PMC
Gibbons JG, Branco AT, Godinho SA, Yu S, Lemos B. Concerted copy number variation balances ribosomal DNA dosage in human and mouse genomes. Proc Natl Acad Sci U S A. 2015;112:2485–2490. doi: 10.1073/pnas.1416878112. PubMed DOI PMC
Hilder VA, Dawson GA, Vlad MT. Ribosomal 5S genes in relation to C-value in amphibians. Nucleic Acids Res. 1983;11:2381–2390. doi: 10.1093/nar/11.8.2381. PubMed DOI PMC
Grummt I, Pikaard CS. Epigenetic silencing of RNA polymerase I transcription. Nat Rev Mol Cell Biol. 2003;4:641–649. doi: 10.1038/nrm1171. PubMed DOI
Locati MD, Pagano JF, Ensink WA, van Olst M, van Leeuwen S, Nehrdich U, et al. Linking maternal and somatic 5S rRNA types with different sequence-specific non-LTR retrotransposons. RNA. 2016;4:446–456. PubMed PMC
Venney CJ, Johansson ML, Heath DD. Inbreeding effects on gene-specific DNA methylation among tissues of Chinook salmon. Mol Ecol. 2016;25:4521–4533. doi: 10.1111/mec.13777. PubMed DOI
Plohl M, Mestrovic N, Mravinac B. Satellite DNA evolution. Genome Dyn. 2012;7:126–152. doi: 10.1159/000337122. PubMed DOI
Heslop-Harrison JS, Schwarzacher T. Organisation of the plant genome in chromosomes. Plant J. 2011;66:18–33. doi: 10.1111/j.1365-313X.2011.04544.x. PubMed DOI
Arnheim N, Treco D, Taylor B, Eicher EM. Distribution of ribosomal gene length variants among mouse chromosomes. Proc Natl Acad Sci U S A. 1982;79:4677–4680. doi: 10.1073/pnas.79.15.4677. PubMed DOI PMC
Roberts RJ, Carneiro MO, Schatz MC. The advantages of SMRT sequencing. Genome Biol. 2013;14:405. doi: 10.1186/gb-2013-14-6-405. PubMed DOI PMC
Cloix C, Tutois S, Mathieu O, Cuvillier C, Espagnol MC, Picard G, et al. Analysis of 5S rDNA arrays in Arabidopsis thaliana: physical mapping and chromosome-specific polymorphisms. Genome Res. 2000;10:679–690. doi: 10.1101/gr.10.5.679. PubMed DOI PMC
Havlova K, Dvorackova M, Peiro R, Abia D, Mozgova I, Vansacova L, et al. Variation of 45S rDNA intergenic spacers in Arabidopsis thaliana. Plant Mol Biol. 2016;92:457–471. doi: 10.1007/s11103-016-0524-1. PubMed DOI
Cazaux B, Catalan J, Veyrunes F, Douzery EJ, Britton-Davidian J. Are ribosomal DNA clusters rearrangement hotspots?: a case study in the genus Mus (Rodentia, Muridae) BMC Evol Biol. 2011;11:124. doi: 10.1186/1471-2148-11-124. PubMed DOI PMC
Paule MR, White RJ. Survey and summary: transcription by RNA polymerases I and III. Nucleic Acids Res. 2000;28:1283–1298. doi: 10.1093/nar/28.6.1283. PubMed DOI PMC
Kapitonov VV, Jurka J. A novel class of SINE elements derived from 5S rRNA. Mol Biol Evol. 2003;20:694–702. doi: 10.1093/molbev/msg075. PubMed DOI
Kalendar R, Tanskanen J, Chang W, Antonius K, Sela H, Peleg O, et al. Cassandra retrotransposons carry independently transcribed 5S RNA. Proc Natl Acad Sci U S A. 2008;105:5833–5838. doi: 10.1073/pnas.0709698105. PubMed DOI PMC
da Silva M, Barbosa P, Artoni RF, Feldberg E. Evolutionary dynamics of 5S rDNA and recurrent association of transposable elements in electric fish of the family Gymnotidae (Gymnotiformes): The case of Gymnotus mamiraua. Cytogenet Genome Res. 2016;149:297–303. doi: 10.1159/000449431. PubMed DOI
Cohen S, Agmon N, Sobol O, Segal D. Extrachromosomal circles of satellite repeats and 5S ribosomal DNA in human cells. Mob DNA. 2010;1:11. doi: 10.1186/1759-8753-1-11. PubMed DOI PMC
Navratilova A, Koblizkova A, Macas J. Survey of extrachromosomal circular DNA derived from plant satellite repeats. BMC Plant Biol. 2008;8:90. doi: 10.1186/1471-2229-8-90. PubMed DOI PMC
Hourcade D, Dressler D, Wolfson J. The amplification of ribosomal RNA genes involves a rolling circle intermediate. Proc Natl Acad Sci U S A. 1973;70:2926–2930. doi: 10.1073/pnas.70.10.2926. PubMed DOI PMC
Jack CV, Cruz C, Hull RM, Keller MA, Ralser M, Houseley J. Regulation of ribosomal DNA amplification by the TOR pathway. Proc Natl Acad Sci U S A. 2015;112:9674–9679. doi: 10.1073/pnas.1505015112. PubMed DOI PMC
Sevim V, Bashir A, Chin CS, Miga KH. Alpha-CENTAURI: assessing novel centromeric repeat sequence variation with long read sequencing. Bioinformatics. 2016;32:1921–1924. doi: 10.1093/bioinformatics/btw101. PubMed DOI PMC
Kovarik A, Matyasek R, Lim KY, Skalicka K, Koukalova B, Knapp S, et al. Concerted evolution of 18-5.8-26S rDNA repeats in Nicotiana allotetraploids. Biol J Linn Soc. 2004;82:615–625. doi: 10.1111/j.1095-8312.2004.00345.x. DOI
Vinson C, Chatterjee R. CG methylation. Epigenomics. 2012;4:655–663. doi: 10.2217/epi.12.55. PubMed DOI PMC
Wang W, Ma L, Becher H, Garcia S, Kovarikova A, Leitch IJ, et al. Astonishing 35S rDNA diversity in the gymnosperm species Cycas revoluta Thunb. Chromosoma. 2016;125:683–699. doi: 10.1007/s00412-015-0556-3. PubMed DOI PMC
Iwasaki O, Tanaka A, Tanizawa H, Grewal SI, Noma K. Centromeric localization of dispersed Pol III genes in fission yeast. Mol Biol Cell. 2010;21:254–265. doi: 10.1091/mbc.E09-09-0790. PubMed DOI PMC
Martins C, Ferreira IA, Oliveira C, Foresti F, Galetti PM., Jr A tandemly repetitive centromeric DNA sequence of the fish Hoplias malabaricus (Characiformes: Erythrinidae) is derived from 5S rDNA. Genetica. 2006;127:133–141. doi: 10.1007/s10709-005-2674-y. PubMed DOI
Vittorazzi SE, Lourenco LB, Del-Grande ML, Recco-Pimentel SM. Satellite DNA Derived from 5S rDNA in Physalaemus cuvieri (Anura, Leiuperidae) Cytogenet Genome Res. 2011;134:101–107. doi: 10.1159/000325540. PubMed DOI
Kumke K, Macas J, Fuchs J, Altschmied L, Kour J, Dhar MK, et al. Plantago lagopus B Chromosome is enriched in 5S rDNA-derived satellite DNA. Cytogenet Genome Res. 2016;148:68–73. doi: 10.1159/000444873. PubMed DOI
Intragenomic rDNA variation - the product of concerted evolution, mutation, or something in between?
DNA Transposon Expansion is Associated with Genome Size Increase in Mudminnows
GC and Repeats Profiling along Chromosomes-The Future of Fish Compositional Cytogenomics
Present and Future Salmonid Cytogenetics
The Dark Matter of Large Cereal Genomes: Long Tandem Repeats
Integrative rDNAomics-Importance of the Oldest Repetitive Fraction of the Eukaryote Genome
Evolutionary trends in animal ribosomal DNA loci: introduction to a new online database
Vertebrate Genome Evolution in the Light of Fish Cytogenomics and rDNAomics