The Dark Matter of Large Cereal Genomes: Long Tandem Repeats

. 2019 May 20 ; 20 (10) : . [epub] 20190520

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31137466

Grantová podpora
17-17564S Grantová Agentura České Republiky
CZ.02.1.01/0.0/0.0/16_019/0000827 European Regional Development Fund

Reference genomes of important cereals, including barley, emmer wheat and bread wheat, were released recently. Their comparison with genome size estimates obtained by flow cytometry indicated that the assemblies represent not more than 88-98% of the complete genome. This work is aimed at identifying the missing parts in two cereal genomes and proposing techniques to make the assemblies more complete. We focused on tandemly organised repetitive sequences, known to be underrepresented in genome assemblies generated from short-read sequence data. Our study found arrays of three tandem repeats with unit sizes of 1242 to 2726 bp present in the bread wheat reference genome generated from short reads. However, this and another wheat genome assembly employing long PacBio reads failed in integrating correctly the 2726-bp repeat in the pseudomolecule context. This suggests that tandem repeats of this size, frequently incorporated in unassigned scaffolds, may contribute to shrinking of pseudomolecules without reducing size of the entire assembly. We demonstrate how this missing information may be added to the pseudomolecules with the aid of nanopore sequencing of individual BAC clones and optical mapping. Using the latter technique, we identified and localised a 470-kb long array of 45S ribosomal DNA absent from the reference genome of barley.

Zobrazit více v PubMed

Avni R., Nave M., Barad O., Baruch K., Twardziok S.O., Gundlach H., Hale I., Mascher M., Spannagl M., Wiebe K., et al. Wild emmer genome architecture and diversity elucidate wheat evolution and domestication. Science. 2017;357:93–97. doi: 10.1126/science.aan0032. PubMed DOI

Mascher M., Gundlach H., Himmelbach A., Beier S., Twardziok S.O., Wicker T., Radchuk V., Dockter C., Hedley P.E., Russell J., et al. A chromosome conformation capture ordered sequence of the barley genome. Nature. 2017;544:427–433. doi: 10.1038/nature22043. PubMed DOI

The International Wheat Genome Sequencing Consortium (IWGSC) Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science. 2018;361 doi: 10.1126/science.aar7191. PubMed DOI

Maccaferri M., Harris N.S., Twardziok S.O., Pasam R.K., Gundlach H., Spannagl M., Ormanbekova D., Lux T., Prade V.M., Milner S.G., et al. Durum wheat genome highlights past domestication signatures and future improvement targets. Nat Genet. 2019;51:885–895. doi: 10.1038/s41588-019-0381-3. PubMed DOI

Stein N. ((IPK, Gatersleben, Germany)). Personal communication. 2018.

Doležel J., Čížková J., Šimková H., Bartoš J. One major challenge of sequencing large plant genomes is to know how big they really are. Int. J. Mol. Sci. 2018;19:3554. doi: 10.3390/ijms19113554. PubMed DOI PMC

Brenchley R., Spannagl M., Pfeifer M., Barker G.L., D’Amore R., Allen A.M., McKenzie N., Kramer M., Kerhornou A., Bolser D., et al. Analysis of the bread wheat genome using whole-genome shotgun sequencing. Nature. 2012;491:705–710. doi: 10.1038/nature11650. PubMed DOI PMC

Martis M.M., Zhou R., Haseneyer G., Schmutzer T., Vrána J., Kubaláková M., König S., Kugler K.G., Scholz U., Hackauf B., et al. Reticulate evolution of the rye genome. Plant Cell. 2013;25:3685–3698. doi: 10.1105/tpc.113.114553. PubMed DOI PMC

Mayer K.F.X., Martis M., Hedley P.E., Šimková H., Liu H., Morris J.A., Steuernagel B., Taudien S., Roessner S., Gundlach H., et al. Unlocking the barley genome by chromosomal and comparative genomics. Plant Cell. 2011;23:1249–1263. doi: 10.1105/tpc.110.082537. PubMed DOI PMC

Mayer K.F.X., Rogers J., Doležel J., Pozniak C., Eversole K., Feuillet C., Gill B., Friebe B., Lukaszewski A.J., Sourdille P., et al. A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome. Science. 2014;345:1251788. doi: 10.1126/science.1251788. PubMed DOI

Chaisson M.J., Wilson R.K., Eichler E.E. Genetic variation and the de novo assembly of human genomes. Nat. Rev. Genet. 2015;16:627–640. doi: 10.1038/nrg3933. PubMed DOI PMC

Zimin A.V., Puiu D., Hall R., Kingan S., Clavijo B.J., Salzberg S.L. The first near-complete assembly of the hexaploid bread wheat genome, Triticum aestivum. Gigascience. 2017;6:1–7. doi: 10.1093/gigascience/gix097. PubMed DOI PMC

Handa H., Kanamori H., Tanaka T., Murata K., Kobayashi F., Robinson S.J., Koh C.S., Pozniak C.J., Sharpe A.G., Paux E., et al. Structural features of two major nucleolar organizer regions (NORs), Nor-B1 and Nor-B2, and chromosome-specific rRNA gene expression in wheat. Plant J. 2018;96:1148–1159. doi: 10.1111/tpj.14094. PubMed DOI

Symonová R., Ocalewicz K., Kirtiklis L., Delmastro G.B., Pelikánová Š., Garcia S., Kovařík A. Higher-order organisation of extremely amplified, potentially functional and massively methylated 5S rDNA in European pikes (Esox sp.) BMC Genom. 2017;18:391. doi: 10.1186/s12864-017-3774-7. PubMed DOI PMC

Appels R., Gerlach W.L., Dennis E.S., Swift H., Peacock W.J. Molecular and Chromosomal Organization of DNA Sequences Coding for the Ribosomal RNAs in Cereals. Chromosoma. 1980;78:293–311. doi: 10.1007/BF00327389. DOI

Rayburn A.L., Gill B.S. Use of biotin-labeled probes to map specific DNA sequences on wheat chromosomes. Heredity. 1985;76:78–81. doi: 10.1093/oxfordjournals.jhered.a110049. DOI

Mukai Y., Endo T.R., Gill B.S. Physical mapping of the 18S.26S rRNA multigene family in common wheat: Identification of a new locus. Chromosoma. 1991;100:71–78. doi: 10.1007/BF00418239. DOI

Leitch I.J., Leitch A.R., Heslop-Harrison J.S. Physical mapping of plant DNA sequences by simultaneous in situ hybridization of two differently labelled fluorescent probes. Genome. 1991;34:329–333. doi: 10.1139/g91-054. DOI

Mukai Y., Nakahara Y., Yamamoto M. Simultaneous discrimination of the three genomes in hexaploid wheat by multicolor fluorescence in situ hybridization using total genomic and highly repeated DNA probes. Genome. 1993;36:489–494. doi: 10.1139/g93-067. PubMed DOI

Jiang J., Gill B.S. New 18S. 26S ribosomal RNA gene loci: Chromosomal landmarks for the evolution of polyploid wheats. Chromosoma. 1994;103:179–185. doi: 10.1007/BF00368010. PubMed DOI

Brandes A., Röder M.S., Ganal M.W. Barley telomeres are associated with two different types of satellite DNA sequences. Chromosome Res. 1995;3:315–320. doi: 10.1007/BF00713070. PubMed DOI

Novák P., Neumann P., Macas J. Graph-based clustering and characterization of repetitive sequences in next-generation sequencing data. BMC Bioinform. 2010;11:378. doi: 10.1186/1471-2105-11-378. PubMed DOI PMC

Novák P., Neumann P., Pech J., Steinhaisl J., Macas J. RepeatExplorer: A Galaxy-based web server for genome-wide characterization of eukaryotic repetitive elements from next-generation sequence reads. Bioinformatics. 2013;29:792–793. doi: 10.1093/bioinformatics/btt054. PubMed DOI

Martis M.M., Klemme S., Banaei-Moghaddam A.M., Blattner F.R., Macas J., Schmutzer T., Scholz U., Gundlach H., Wicker T., Šimková H., et al. Selfish supernumerary chromosome reveals its origin as a mosaic of host genome and organellar sequences. Proc. Natl. Acad. Sci. USA. 2012;109:13343–13346. doi: 10.1073/pnas.1204237109. PubMed DOI PMC

Lam E.T., Hastie A., Lin C., Ehrlich D., Das A.K., Austin M.D., Deshpande P., Cao H., Nagarajan N., Xiao M., et al. Genome mapping on nanochannel arrays for structural variation analysis and sequence assembly. Nat. Biotechnol. 2012;30:771–777. doi: 10.1038/nbt.2303. PubMed DOI PMC

Staňková H., Hastie A.R., Chan S., Vrána J., Tulpová Z., Kubaláková M., Visendi P., Hayashi S., Luo M.C., Batley J., et al. BioNano genome mapping of individual chromosomes supports physical mapping and sequence assembly in complex plant genomes. Plant Biotechnol. J. 2016;14:1523–1531. doi: 10.1111/pbi.12513. PubMed DOI PMC

Luo MC., Gu Y.Q., Puiu D., Wang H., Twardziok S.O., Deal K.R., Huo N., Zhu T., Wang L., Wang Y., et al. Genome sequence of the progenitor of the wheat D genome Aegilops tauschii. Nature. 2017;551:498–502. doi: 10.1038/nature24486. PubMed DOI PMC

Zhu T., Wang L., Rodriguez J.C., Deal K.R., Avni R., Distelfeld A., McGuire P.E., Dvorak J., Luo MC. Improved genome sequence of wild emmer wheat Zavitan with the aid of optical maps. G3 (Bethesda) 2019;9:619–624. doi: 10.1534/g3.118.200902. PubMed DOI PMC

Tulpová Z., Toegelová H., Lapitan N.L.V., Peairs F.B., Macas J., Novák P., Lukaszewski A.J., Kopecký D., Mazáčová M., Vrána J., et al. Accessing a Russian wheat aphid resistance gene in bread wheat by long-read technologies. Plant Genome. 2019;12:1–11. doi: 10.3835/plantgenome2018.09.0065. PubMed DOI

Tulpová Z., Luo M.C., Toegelová H., Visendi P., Hayashi S., Vojta P., Paux E., Kilian A., Abrouk M., Bartoš J., et al. Integrated physical map of bread wheat chromosome arm 7DS to facilitate gene cloning and comparative studies. N. Biotechnol. 2019;48:12–19. doi: 10.1016/j.nbt.2018.03.003. PubMed DOI

Beier S., Himmelbach A., Colmsee C., Zhang X.Q., Barrero R.A., Zhang Q., Li L., Bayer M., Bolser D., Taudien S., et al. Construction of a map-based reference genome sequence for barley, Hordeum vulgare L. Sci. Data. 2017;4:170044. doi: 10.1038/sdata.2017.44. PubMed DOI PMC

Leitch I.J., Heslop-Harrison J.S. Physical mapping of the 18S-5.8S-26S rRNA genes in barley by in situ hybridization. Genome. 1992;35:1013–1018. doi: 10.1139/g92-155. DOI

Szakács É., Kruppa K., Molnár-Láng M. Analysis of chromosomal polymorphism in barley (Hordeum vulgare L. ssp. vulgare) and between H. vulgare and H. chilense using three-color fluorescence in situ hybridization (FISH) J. Appl. Genet. 2013;54:427–433. doi: 10.1007/s13353-013-0167-8. PubMed DOI

Shoaib M., Baconnais S., Mechold U., Le Cam E., Lipinski M., Ogryzko V. Multiple displacement amplification for complex mixtures of DNA fragments. BMC Genom. 2008;9:415. doi: 10.1186/1471-2164-9-415. PubMed DOI PMC

Zhang D., Chan S., Sugerman K., Lee J., Lam E.T., Bocklandt S., Cao H., Hastie A.R. CRISPR-bind: A simple, custom CRISPR/dCas9-mediated labeling of genomic DNA for mapping in nanochannel arrays. bioRxiv. 2018 doi: 10.1101/371518. preprint. DOI

Gerlach W.L., Bedbrook J.R. Cloning and characterization of ribosomal RNA genes from wheat and barley. Nucleic Acid Res. 1979;7:1869–1886. doi: 10.1093/nar/7.7.1869. PubMed DOI PMC

Berkman P.J., Skarshewski A., Lorenc M.T., Lai K., Duran C., Ling E.Y., Stiller J., Smits L., Imelfort M., Manoli S., et al. Sequencing and assembly of low copy and genic regions of isolated Triticum aestivum chromosome arm 7DS. Plant Biotechnol. J. 2011;9:768–775. doi: 10.1111/j.1467-7652.2010.00587.x. PubMed DOI

Karafiátová M., Bartoš J., Doležel J. Localization of low-copy DNA sequences on mitotic chromosomes by FISH. In: Kianian S.F., Kianian P.M.A., editors. Plant cytogenetics. Methods and Protocols. Volume 1429. Humana Press; New York, NY, USA: 2016. pp. 49–64. PubMed

Muñoz-Amatriaín M., Lonardi S., Luo MC., Madishetty K., Svensson J.T., Moscou M.J., Wanamaker S., Jiang T., Kleinhofs A., Muehlbauer G.J., et al. Sequencing of 15 622 gene-bearing BACs clarifies the gene-dense regions of the barley genome. Plant J. 2015;84:216–227. doi: 10.1111/tpj.12959. PubMed DOI PMC

Šimková H., Šafář J., Kubaláková M., Suchánková P., Číhalíková J., Robert-Quatre H., Azhaguvel P., Weng Y., Peng J., Lapitan N.L.V., et al. BAC Libraries from wheat chromosome 7D: Efficient tool for positional cloning of aphid resistance genes. J. Biomed. Biotechnol. 2011;2011:302543. doi: 10.1155/2011/302543. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...