The Dark Matter of Large Cereal Genomes: Long Tandem Repeats
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
17-17564S
Grantová Agentura České Republiky
CZ.02.1.01/0.0/0.0/16_019/0000827
European Regional Development Fund
PubMed
31137466
PubMed Central
PMC6567227
DOI
10.3390/ijms20102483
PII: ijms20102483
Knihovny.cz E-zdroje
- Klíčová slova
- BAC, barley, bread wheat, genome assembly, optical mapping, ribosomal DNA,
- MeSH
- chromozomy rostlin genetika MeSH
- genom rostlinný * MeSH
- ječmen (rod) genetika MeSH
- pšenice genetika MeSH
- tandemové repetitivní sekvence * MeSH
- Publikační typ
- časopisecké články MeSH
Reference genomes of important cereals, including barley, emmer wheat and bread wheat, were released recently. Their comparison with genome size estimates obtained by flow cytometry indicated that the assemblies represent not more than 88-98% of the complete genome. This work is aimed at identifying the missing parts in two cereal genomes and proposing techniques to make the assemblies more complete. We focused on tandemly organised repetitive sequences, known to be underrepresented in genome assemblies generated from short-read sequence data. Our study found arrays of three tandem repeats with unit sizes of 1242 to 2726 bp present in the bread wheat reference genome generated from short reads. However, this and another wheat genome assembly employing long PacBio reads failed in integrating correctly the 2726-bp repeat in the pseudomolecule context. This suggests that tandem repeats of this size, frequently incorporated in unassigned scaffolds, may contribute to shrinking of pseudomolecules without reducing size of the entire assembly. We demonstrate how this missing information may be added to the pseudomolecules with the aid of nanopore sequencing of individual BAC clones and optical mapping. Using the latter technique, we identified and localised a 470-kb long array of 45S ribosomal DNA absent from the reference genome of barley.
Zobrazit více v PubMed
Avni R., Nave M., Barad O., Baruch K., Twardziok S.O., Gundlach H., Hale I., Mascher M., Spannagl M., Wiebe K., et al. Wild emmer genome architecture and diversity elucidate wheat evolution and domestication. Science. 2017;357:93–97. doi: 10.1126/science.aan0032. PubMed DOI
Mascher M., Gundlach H., Himmelbach A., Beier S., Twardziok S.O., Wicker T., Radchuk V., Dockter C., Hedley P.E., Russell J., et al. A chromosome conformation capture ordered sequence of the barley genome. Nature. 2017;544:427–433. doi: 10.1038/nature22043. PubMed DOI
The International Wheat Genome Sequencing Consortium (IWGSC) Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science. 2018;361 doi: 10.1126/science.aar7191. PubMed DOI
Maccaferri M., Harris N.S., Twardziok S.O., Pasam R.K., Gundlach H., Spannagl M., Ormanbekova D., Lux T., Prade V.M., Milner S.G., et al. Durum wheat genome highlights past domestication signatures and future improvement targets. Nat Genet. 2019;51:885–895. doi: 10.1038/s41588-019-0381-3. PubMed DOI
Stein N. ((IPK, Gatersleben, Germany)). Personal communication. 2018.
Doležel J., Čížková J., Šimková H., Bartoš J. One major challenge of sequencing large plant genomes is to know how big they really are. Int. J. Mol. Sci. 2018;19:3554. doi: 10.3390/ijms19113554. PubMed DOI PMC
Brenchley R., Spannagl M., Pfeifer M., Barker G.L., D’Amore R., Allen A.M., McKenzie N., Kramer M., Kerhornou A., Bolser D., et al. Analysis of the bread wheat genome using whole-genome shotgun sequencing. Nature. 2012;491:705–710. doi: 10.1038/nature11650. PubMed DOI PMC
Martis M.M., Zhou R., Haseneyer G., Schmutzer T., Vrána J., Kubaláková M., König S., Kugler K.G., Scholz U., Hackauf B., et al. Reticulate evolution of the rye genome. Plant Cell. 2013;25:3685–3698. doi: 10.1105/tpc.113.114553. PubMed DOI PMC
Mayer K.F.X., Martis M., Hedley P.E., Šimková H., Liu H., Morris J.A., Steuernagel B., Taudien S., Roessner S., Gundlach H., et al. Unlocking the barley genome by chromosomal and comparative genomics. Plant Cell. 2011;23:1249–1263. doi: 10.1105/tpc.110.082537. PubMed DOI PMC
Mayer K.F.X., Rogers J., Doležel J., Pozniak C., Eversole K., Feuillet C., Gill B., Friebe B., Lukaszewski A.J., Sourdille P., et al. A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome. Science. 2014;345:1251788. doi: 10.1126/science.1251788. PubMed DOI
Chaisson M.J., Wilson R.K., Eichler E.E. Genetic variation and the de novo assembly of human genomes. Nat. Rev. Genet. 2015;16:627–640. doi: 10.1038/nrg3933. PubMed DOI PMC
Zimin A.V., Puiu D., Hall R., Kingan S., Clavijo B.J., Salzberg S.L. The first near-complete assembly of the hexaploid bread wheat genome, Triticum aestivum. Gigascience. 2017;6:1–7. doi: 10.1093/gigascience/gix097. PubMed DOI PMC
Handa H., Kanamori H., Tanaka T., Murata K., Kobayashi F., Robinson S.J., Koh C.S., Pozniak C.J., Sharpe A.G., Paux E., et al. Structural features of two major nucleolar organizer regions (NORs), Nor-B1 and Nor-B2, and chromosome-specific rRNA gene expression in wheat. Plant J. 2018;96:1148–1159. doi: 10.1111/tpj.14094. PubMed DOI
Symonová R., Ocalewicz K., Kirtiklis L., Delmastro G.B., Pelikánová Š., Garcia S., Kovařík A. Higher-order organisation of extremely amplified, potentially functional and massively methylated 5S rDNA in European pikes (Esox sp.) BMC Genom. 2017;18:391. doi: 10.1186/s12864-017-3774-7. PubMed DOI PMC
Appels R., Gerlach W.L., Dennis E.S., Swift H., Peacock W.J. Molecular and Chromosomal Organization of DNA Sequences Coding for the Ribosomal RNAs in Cereals. Chromosoma. 1980;78:293–311. doi: 10.1007/BF00327389. DOI
Rayburn A.L., Gill B.S. Use of biotin-labeled probes to map specific DNA sequences on wheat chromosomes. Heredity. 1985;76:78–81. doi: 10.1093/oxfordjournals.jhered.a110049. DOI
Mukai Y., Endo T.R., Gill B.S. Physical mapping of the 18S.26S rRNA multigene family in common wheat: Identification of a new locus. Chromosoma. 1991;100:71–78. doi: 10.1007/BF00418239. DOI
Leitch I.J., Leitch A.R., Heslop-Harrison J.S. Physical mapping of plant DNA sequences by simultaneous in situ hybridization of two differently labelled fluorescent probes. Genome. 1991;34:329–333. doi: 10.1139/g91-054. DOI
Mukai Y., Nakahara Y., Yamamoto M. Simultaneous discrimination of the three genomes in hexaploid wheat by multicolor fluorescence in situ hybridization using total genomic and highly repeated DNA probes. Genome. 1993;36:489–494. doi: 10.1139/g93-067. PubMed DOI
Jiang J., Gill B.S. New 18S. 26S ribosomal RNA gene loci: Chromosomal landmarks for the evolution of polyploid wheats. Chromosoma. 1994;103:179–185. doi: 10.1007/BF00368010. PubMed DOI
Brandes A., Röder M.S., Ganal M.W. Barley telomeres are associated with two different types of satellite DNA sequences. Chromosome Res. 1995;3:315–320. doi: 10.1007/BF00713070. PubMed DOI
Novák P., Neumann P., Macas J. Graph-based clustering and characterization of repetitive sequences in next-generation sequencing data. BMC Bioinform. 2010;11:378. doi: 10.1186/1471-2105-11-378. PubMed DOI PMC
Novák P., Neumann P., Pech J., Steinhaisl J., Macas J. RepeatExplorer: A Galaxy-based web server for genome-wide characterization of eukaryotic repetitive elements from next-generation sequence reads. Bioinformatics. 2013;29:792–793. doi: 10.1093/bioinformatics/btt054. PubMed DOI
Martis M.M., Klemme S., Banaei-Moghaddam A.M., Blattner F.R., Macas J., Schmutzer T., Scholz U., Gundlach H., Wicker T., Šimková H., et al. Selfish supernumerary chromosome reveals its origin as a mosaic of host genome and organellar sequences. Proc. Natl. Acad. Sci. USA. 2012;109:13343–13346. doi: 10.1073/pnas.1204237109. PubMed DOI PMC
Lam E.T., Hastie A., Lin C., Ehrlich D., Das A.K., Austin M.D., Deshpande P., Cao H., Nagarajan N., Xiao M., et al. Genome mapping on nanochannel arrays for structural variation analysis and sequence assembly. Nat. Biotechnol. 2012;30:771–777. doi: 10.1038/nbt.2303. PubMed DOI PMC
Staňková H., Hastie A.R., Chan S., Vrána J., Tulpová Z., Kubaláková M., Visendi P., Hayashi S., Luo M.C., Batley J., et al. BioNano genome mapping of individual chromosomes supports physical mapping and sequence assembly in complex plant genomes. Plant Biotechnol. J. 2016;14:1523–1531. doi: 10.1111/pbi.12513. PubMed DOI PMC
Luo MC., Gu Y.Q., Puiu D., Wang H., Twardziok S.O., Deal K.R., Huo N., Zhu T., Wang L., Wang Y., et al. Genome sequence of the progenitor of the wheat D genome Aegilops tauschii. Nature. 2017;551:498–502. doi: 10.1038/nature24486. PubMed DOI PMC
Zhu T., Wang L., Rodriguez J.C., Deal K.R., Avni R., Distelfeld A., McGuire P.E., Dvorak J., Luo MC. Improved genome sequence of wild emmer wheat Zavitan with the aid of optical maps. G3 (Bethesda) 2019;9:619–624. doi: 10.1534/g3.118.200902. PubMed DOI PMC
Tulpová Z., Toegelová H., Lapitan N.L.V., Peairs F.B., Macas J., Novák P., Lukaszewski A.J., Kopecký D., Mazáčová M., Vrána J., et al. Accessing a Russian wheat aphid resistance gene in bread wheat by long-read technologies. Plant Genome. 2019;12:1–11. doi: 10.3835/plantgenome2018.09.0065. PubMed DOI
Tulpová Z., Luo M.C., Toegelová H., Visendi P., Hayashi S., Vojta P., Paux E., Kilian A., Abrouk M., Bartoš J., et al. Integrated physical map of bread wheat chromosome arm 7DS to facilitate gene cloning and comparative studies. N. Biotechnol. 2019;48:12–19. doi: 10.1016/j.nbt.2018.03.003. PubMed DOI
Beier S., Himmelbach A., Colmsee C., Zhang X.Q., Barrero R.A., Zhang Q., Li L., Bayer M., Bolser D., Taudien S., et al. Construction of a map-based reference genome sequence for barley, Hordeum vulgare L. Sci. Data. 2017;4:170044. doi: 10.1038/sdata.2017.44. PubMed DOI PMC
Leitch I.J., Heslop-Harrison J.S. Physical mapping of the 18S-5.8S-26S rRNA genes in barley by in situ hybridization. Genome. 1992;35:1013–1018. doi: 10.1139/g92-155. DOI
Szakács É., Kruppa K., Molnár-Láng M. Analysis of chromosomal polymorphism in barley (Hordeum vulgare L. ssp. vulgare) and between H. vulgare and H. chilense using three-color fluorescence in situ hybridization (FISH) J. Appl. Genet. 2013;54:427–433. doi: 10.1007/s13353-013-0167-8. PubMed DOI
Shoaib M., Baconnais S., Mechold U., Le Cam E., Lipinski M., Ogryzko V. Multiple displacement amplification for complex mixtures of DNA fragments. BMC Genom. 2008;9:415. doi: 10.1186/1471-2164-9-415. PubMed DOI PMC
Zhang D., Chan S., Sugerman K., Lee J., Lam E.T., Bocklandt S., Cao H., Hastie A.R. CRISPR-bind: A simple, custom CRISPR/dCas9-mediated labeling of genomic DNA for mapping in nanochannel arrays. bioRxiv. 2018 doi: 10.1101/371518. preprint. DOI
Gerlach W.L., Bedbrook J.R. Cloning and characterization of ribosomal RNA genes from wheat and barley. Nucleic Acid Res. 1979;7:1869–1886. doi: 10.1093/nar/7.7.1869. PubMed DOI PMC
Berkman P.J., Skarshewski A., Lorenc M.T., Lai K., Duran C., Ling E.Y., Stiller J., Smits L., Imelfort M., Manoli S., et al. Sequencing and assembly of low copy and genic regions of isolated Triticum aestivum chromosome arm 7DS. Plant Biotechnol. J. 2011;9:768–775. doi: 10.1111/j.1467-7652.2010.00587.x. PubMed DOI
Karafiátová M., Bartoš J., Doležel J. Localization of low-copy DNA sequences on mitotic chromosomes by FISH. In: Kianian S.F., Kianian P.M.A., editors. Plant cytogenetics. Methods and Protocols. Volume 1429. Humana Press; New York, NY, USA: 2016. pp. 49–64. PubMed
Muñoz-Amatriaín M., Lonardi S., Luo MC., Madishetty K., Svensson J.T., Moscou M.J., Wanamaker S., Jiang T., Kleinhofs A., Muehlbauer G.J., et al. Sequencing of 15 622 gene-bearing BACs clarifies the gene-dense regions of the barley genome. Plant J. 2015;84:216–227. doi: 10.1111/tpj.12959. PubMed DOI PMC
Šimková H., Šafář J., Kubaláková M., Suchánková P., Číhalíková J., Robert-Quatre H., Azhaguvel P., Weng Y., Peng J., Lapitan N.L.V., et al. BAC Libraries from wheat chromosome 7D: Efficient tool for positional cloning of aphid resistance genes. J. Biomed. Biotechnol. 2011;2011:302543. doi: 10.1155/2011/302543. PubMed DOI PMC