Sequencing of 15 622 gene-bearing BACs clarifies the gene-dense regions of the barley genome
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.
PubMed
26252423
PubMed Central
PMC5014227
DOI
10.1111/tpj.12959
Knihovny.cz E-zdroje
- Klíčová slova
- Aegilops tauschii, BAC sequencing, Barley, HarvEST:Barley, Hordeum vulgare L., centromere BACs, gene distribution, recombination frequency, synteny,
- MeSH
- genom rostlinný genetika MeSH
- ječmen (rod) genetika MeSH
- molekulární sekvence - údaje MeSH
- umělé bakteriální chromozomy genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
Barley (Hordeum vulgare L.) possesses a large and highly repetitive genome of 5.1 Gb that has hindered the development of a complete sequence. In 2012, the International Barley Sequencing Consortium released a resource integrating whole-genome shotgun sequences with a physical and genetic framework. However, because only 6278 bacterial artificial chromosome (BACs) in the physical map were sequenced, fine structure was limited. To gain access to the gene-containing portion of the barley genome at high resolution, we identified and sequenced 15 622 BACs representing the minimal tiling path of 72 052 physical-mapped gene-bearing BACs. This generated ~1.7 Gb of genomic sequence containing an estimated 2/3 of all Morex barley genes. Exploration of these sequenced BACs revealed that although distal ends of chromosomes contain most of the gene-enriched BACs and are characterized by high recombination rates, there are also gene-dense regions with suppressed recombination. We made use of published map-anchored sequence data from Aegilops tauschii to develop a synteny viewer between barley and the ancestor of the wheat D-genome. Except for some notable inversions, there is a high level of collinearity between the two species. The software HarvEST:Barley provides facile access to BAC sequences and their annotations, along with the barley-Ae. tauschii synteny viewer. These BAC sequences constitute a resource to improve the efficiency of marker development, map-based cloning, and comparative genomics in barley and related crops. Additional knowledge about regions of the barley genome that are gene-dense but low recombination is particularly relevant.
Agriculture and Agri Food Canada Morden MB R6M 1Y5 Canada
Arizona Genomics Institute University of Arizona Tucson AZ 85721 USA
Baylor College of Medicine Jan and Dan Duncan Neurological Research Institute Houston TX 77030 USA
Department of Botany and Plant Pathology Oregon State University Corvallis OR 97331 USA
Department of Botany and Plant Sciences University of California Riverside CA 92521 USA
Department of Computer Science University of California Riverside CA 92521 USA
Department of Computer Science University of Turin Corso Svizzera 185 10149 Turin Italy
Department of Crop and Soil Environmental Sciences Virginia Tech Blacksburg VA 24061 USA
Department of Crop and Soil Science Oregon State University Corvallis OR 97331 USA
Department of Crop and Soil Sciences Washington State University Pullman WA 99164 USA
Department of Plant and Microbial Biology University of California Berkeley CA 94720 USA
Department of Plant Sciences and Plant Pathology Montana State University Bozeman MT 59717 3150 USA
Department of Plant Sciences University of California Davis CA 95616 USA
Dow AgroSciences LLC Indianapolis IN 46268 1054 USA
Google Inc Mountain View CA 94043 USA
Hudson Alpha Genome Sequencing Center DOE Joint Genome Institute Huntsville AL 35806 USA
Keck School of Medicine University of Southern California Los Angeles CA 90033 USA
Leibniz Institute of Plant Genetics and Crop Plant Research D 06466 Gatersleben Germany
Molefarming Laboratory USA Davis CA 95616 USA
Monsanto Research Center Bangalore 560092 India
Nordic Genetic Resource Center SE 23053 Alnarp Sweden
Ronald Reagan UCLA Medical Center Los Angeles CA 90095 USA
Swedish University of Agricultural Sciences SE 750 07 Uppsala Sweden
The Sainsbury Laboratory Norwich Research Park Norwich NR4 7UH UK
Turtle Rock Studios Lake Forest CA 92630 USA
US Department of Energy Joint Genome Institute Walnut Creek CA 94598 USA
USDA ARS Aberdeen ID 83210 USA
Zobrazit více v PubMed
Ariyadasa, R. , Mascher, M. , Nussbaumer, T. et al. (2014) A sequence‐ready physical map of barley anchored genetically by two million single‐nucleotide polymorphisms. Plant Physiol. 164, 412–423. PubMed PMC
Bankevich, A. , Nurk, S. , Antipov, D. et al. (2012) SPAdes: a new genome assembly algorithm and its applications to single‐cell sequencing. J. Comp. Biol. 19, 455–477. PubMed PMC
Barakat, A. , Carels, N. and Bernardi, G. (1997) The distribution of genes in the genomes of Gramineae. Proc. Natl Acad. Sci. USA, 94, 6857–6861. PubMed PMC
Bartoš, J. , Paux, E. , Kofler, R. et al. (2008) A first survey of the rye (Secale cereale) genome composition through BAC end sequencing of the short arm of chromosome 1R. BMC Plant Biol. 8, 95. PubMed PMC
Bozdag, S. , Close, T. and Lonardi, S. (2009) A compartmentalized approach to the assembly of physical maps. BMC Bioinformatics, 10, 217. PubMed PMC
Bozdag, S. , Close, T. and Lonardi, S. (2013) A graph‐theoretical approach to the selection of the minimum tiling path from a physical map. IEEE/ACM Trans. Comput. Biol. Bioinform. 10, 352–360. PubMed
Breiteneder, H. , Pettenburger, K. , Bito, A. , Valenta, R. , Kraft, D. , Rumpold, H. , Scheiner, O. and Breitenbach, M. (1989) The gene coding for the major birch pollen allergen Betv1, is highly homologous to a pea disease resistance response gene. EMBO J. 8, 1935–1938. PubMed PMC
Choulet, F. , Alberti, A. , Theil, S. et al. (2014) Structural and functional partitioning of bread wheat chromosome 3B. Science, 345, 124972. PubMed
Choulet, F. , Wicker, T. , Rustenholz, C. et al. (2010) Megabase level sequencing reveals contrasted organization and evolution patterns of the wheat gene and transposable element spaces. Plant Cell, 22, 1686–1701. PubMed PMC
Close, T.J. , Bhat, P.R. , Lonardi, S. et al. (2009) Development and implementation of high‐throughput SNP genotyping in barley. BMC Genom. 10, 582. PubMed PMC
Comadran, J. , Kilian, B. , Russell, J. et al. (2012) Natural variation in a homolog of Antirrhinum CENTRORADIALIS contributed to spring growth habit and environmental adaptation in cultivated barley. Nat. Genet. 44, 1388–1392. PubMed
Doležel, J. , Vrána, J. , Safář, J. , Bartoš, J. , Kubaláková, M. and Simková, H. (2012) Chromosomes in the flow to simplify genome analysis. Funct. Integr. Genomics, 12, 397–416. PubMed PMC
Du, Z. , Zhou, X. , Ling, Y. , Zhang, Z. and Su, Z. (2010) AgriGO: a GO analysis toolkit for the agricultural community. Nucl. Acids Res. 38, W64–W70. PubMed PMC
Dubcovsky, J. , Ramakrishna, W. , SanMiguel, P.J. , Busso, C.S. , Yan, L. , Shiloff, B.A. and Bennetzen, J.L. (2001) Comparative sequence analysis of colinear barley and rice bacterial artificial chromosomes. Plant Physiol. 125, 1342–1353. PubMed PMC
Dvorák, J. (2009) Triticeae genome structure and evolution In Genetics and Genomics of the Triticeae (Muehlbauer G.J. and Feuillet C., eds). Heidelberg: Springer, pp. 685–711.
Feuillet, C. and Keller, B. (1999) High gene density is conserved at syntenic loci of small and large grass genomes. Proc. Natl Acad. Sci. USA, 96, 8265–8270. PubMed PMC
Gottlieb, A. , Müller, H.G. , Massa, A.N. et al. (2013) Insular organization of gene space in grass genomes. PLoS ONE, 8, e54101. PubMed PMC
Griffiths, S. , Dunford, R.P. , Coupland, G. and Laurie, D.A. (2003) The evolution of CONSTANS‐like gene families in barley, rice, and Arabidopsis. Plant Physiol. 131, 1855–1867. PubMed PMC
Gurevich, A. , Saveliev, V. , Vyahhi, N. and Tesler, G. (2013) QUAST: quality assessment tool for genome assemblies. Bioinformatics, 29, 1072–1075. PubMed PMC
Hudakova, S. , Michalek, W. , Presting, G.G. , ten Hoopen, R. , dos Santos, K. , Jasencakova, Z. and Schubert, I. (2001) Sequence organization of barley centromeres. Nucleic Acids Res. 29, 5029–5050. PubMed PMC
International Rice Genome Sequencing Project (2005) The map‐based sequence of the rice genome. Nature, 436, 793–800. PubMed
Komatsuda, T. , Pourkheirandish, M. , He, C. et al. (2007) Six‐rowed barley originated from a mutation in a homeodomain‐leucine zipper I‐class homeobox gene. Proc. Natl Acad. Sci. USA, 104, 1424–1429. PubMed PMC
Langdon, T. , Seago, C. , Mende, M. , Leggett, M. , Thomas, H. , Forster, J.W. , Thomas, H. , Jones, R.J. and Jenkins, G. (2000) Retrotransposon evolution in diverse plant genomes. Genetics, 156, 313–325. PubMed PMC
Lermontova, I. , Kuhlmann, M. , Friedel, S. , Rutten, T. , Heckmann, S. , Sandmann, M. , Demidov, D. , Schubert, V. and Schubert, I. (2013) Arabidopsis kinetochore null2 is an upstream component for centromeric histone H3 variant cenH3 deposition at centromeres. Plant Cell, 25, 3389–3404. PubMed PMC
Lonardi, S. , Duma, D. , Alpert, M. et al. (2013) Combinatorial pooling enables selective sequencing of the barley gene space. PLoS Comput. Biol. 9, e1003010. PubMed PMC
Lonardi, S. , Mirebrahim, H. , Wanamaker, S. , Alpert, M. , Ciardo, G. , Duma, D. and Close, T.J. (2015) When less is more: “slicing” sequencing data improves read decoding accuracy and De Novo assembly quality. Bioinformatics, doi: 10.1093/bioinformatics/btv311. PubMed DOI
Luo, M.C. , Gu, Y.Q. , You, F.M. et al. (2013) A 4‐gigabase physical map unlocks the structure and evolution of the complex genome of Aegilops tauschii, the wheat D‐genome progenitor. Proc. Natl Acad. Sci. USA, 110, 7940–7945. PubMed PMC
Luo, M.C. , Thomas, C. , You, F.M. , Hsiao, J. , Ouyang, S. , Buell, C.R. , Malandro, M. , McGuire, P.E. , Anderson, O.D. and Dvorak, J. (2003) High‐throughput fingerprinting of bacterial artificial chromosomes using the snapshot labeling kit and sizing of restriction fragments by capillary electrophoresis. Genomics, 82, 378–389. PubMed
Luo, R. , Liu, B. , Xie, Y. et al. (2012) SOAPdenovo2: an empirically improved memory‐efficient short‐read de novo assembler. GigaScience, 1, 18. PubMed PMC
Mascher, M. , Muehlbauer, G.J. , Rokhsar, D.S. et al. (2013) Anchoring and ordering NGS contig assemblies by population sequencing (POPSEQ). Plant J. 76, 718–727. PubMed PMC
Mayer, K.F.X. , Martis, M. , Hedley, P.E. et al. (2011) Unlocking the barley genome by chromosomal and comparative genomics. Plant Cell, 23, 1249–1263. PubMed PMC
Morrell, P.L. , Buckler, E.S. and Ross‐Ibarra, J. (2012) Crop genomics: advances and applications. Nat. Rev. Genet. 13, 85–96. PubMed
Muñoz‐Amatriaín, M. , Cuesta‐Marcos, A. , Endelman, J.B. et al. (2014) The USDA barley core collection: genetic diversity, population structure, and potential for genome‐wide association studies. PLoS ONE, 9, e94688. PubMed PMC
Muñoz‐Amatriaín, M. , Eichten, S.R. , Wicker, T. et al. (2013) Distribution, functional impact, and origin mechanisms of copy number variation in the barley genome. Genome Biol. 14, R58. PubMed PMC
Muñoz‐Amatriaín, M. , Moscou, M.J. , Bhat, P.R. et al. (2011) An improved consensus linkage map of barley based on flow‐sorted chromosomes and single nucleotide polymorphism markers. Plant Genome, 4, 238–249.
Nussbaumer, T. , Martis, M.M. , Roessner, S.K. , Pfeifer, M. , Bader, K.C. , Sharma, S. , Gundlach, H. and Spannagl, M. (2013) MIPS PlantsDB: a database framework for comparative plant genome research. Nucleic Acids Res. 41, D1144–D1151. PubMed PMC
Ounit, R. , Wanamaker, S. , Close, T.J. and Lonardi, S. (2015) CLARK: fast and accurate classification of metagenomic and genomic sequences using discriminative k‐mers. BMC Genom. 16, 236. PubMed PMC
Peng, Y. , Leung, H.C. , Yiu, S.M. and Chin, F.Y. (2012) IDBA‐UD: a de novo assembler for single‐cell and metagenomic sequencing data with highly uneven depth. Bioinformatics, 28, 1420–1428. PubMed
Raats, D. , Frenkel, Z. , Krugman, T. et al. (2013) The physical map of wheat chromosome 1BS provides insights into its gene space organization and evolution. Genome Biol. 14, R138. PubMed PMC
Sandhu, D. and Gill, K.S. (2002) Gene‐containing regions of wheat and the other grass genomes. Plant Physiol. 128, 803–811. PubMed PMC
Schulte, D. , Close, T.J. , Graner, A. et al. (2009) The International Barley Sequencing Consortium—at the threshold of efficient access to the barley genome. Plant Physiol. 149, 142–147. PubMed PMC
Šimková, H. , Svensson, J.T. , Condamine, P. , Hribová, E. , Suchánková, P. , Bhat, P.R. , Bartos, J. , Safár, J. , Close, T.J. and Dolezel, J. (2008) Coupling amplified DNA from flow‐sorted chromosomes to high‐density SNP mapping in barley. BMC Genom. 9, 294. PubMed PMC
Soderlund, C. , Humphrey, S. , Dunhum, A. and French, L. (2000) Contigs built with fingerprints, markers and FPC V4.7. Genome Res. 10, 1772–1787. PubMed PMC
Soderlund, C. , Longden, I. and Mott, R. (1997) FPC: a system for building contigs from restriction fingerprinted clones. CABIOS, 13, 523–535. PubMed
Stein, N. , Prasad, M. , Scholz, U. et al. (2007) A 1,000‐loci transcript map of the barley genome: new anchoring points for integrative grass genomics. Theor. Appl. Genet. 114, 823–839. PubMed
Stein, N. and Steuernagel, B. (2014) Advances in sequencing the barley genome In Genomics of Plant Genetic Resources (Tuberosa R., Graner A. and Frison E., eds.). Heidelberg: Springer, pp. 391–403.
Suchánková, P. , Kubaláková, M. , Kovárová, P. , Bartos, J. , Cíhalíková, J. , Molnár‐Láng, M. , Endo, T.R. and Doležel, J. (2006) Dissection of the nuclear genome of barley by chromosome flow sorting. Theor. Appl. Genet. 113, 651–659. PubMed
The International Barley Genome Sequencing Consortium (2012) A physical, genetic and functional sequence assembly of the barley genome. Nature, 491, 711–716. PubMed
Ullrich, S.E. (2010) Significance, adaptation, production, and trade of barley In Barley: Production, Improvement, and Uses (Ullrich S.E., ed.). Oxford: Wiley‐Blackwell, pp. 3–13.
Varshney, R.K. , Grosse, I. , Hähnel, U. , Siefken, R. , Prasad, M. , Stein, N. , Langridge, P. , Altschmied, L. and Graner, A. (2006) Genetic mapping and BAC assignment of EST‐derived SSR markers shows non‐uniform distribution of genes in the barley genome. Theor. Appl. Genet. 113, 239–250. PubMed
Wei, F. , Gobelman‐Werner, K. , Morroll, S.M. , Kurth, J. , Mao, L. , Wing, R. , Leister, D. , Schulze‐Lefert, P. and Wise, R.P. (1999) The Mla (powdery mildew) resistance cluster is associated with three NBS‐LRR gene families and suppressed recombination within a 240‐kb DNA interval on chromosome 5S (1HS) of barley. Genetics, 153, 1929–1948. PubMed PMC
Wei, F. , Wing, R. and Wise, R.P. (2002) Genome dynamics and evolution of the Mla (powdery mildew) resistance locus in barley. Plant Cell, 14, 1903–1917. PubMed PMC
Wicker, T. , Taudien, S. , Houben, A. , Keller, B. , Graner, A. , Platzer, M. and Stein, N. (2009) A whole‐genome snapshot of 454 sequences exposes the composition of the barley genome and provides evidence for parallel evolution of genome size in wheat and barley. Plant J. 59, 712–722. PubMed
Yan, H. , Ito, H. , Nobuta, K. et al. (2006a) Genomic and genetic characterization of rice Cen3 reveals extensive transcription and evolutionary implications of a complex centromere. Plant Cell, 18, 2123–2133. PubMed PMC
Yan, L. , Fu, D. , Li, C. , Blechl, A. , Tranquilli, G. , Bonafede, M. , Sanchez, A. , Valarik, M. , Yasuda, S. and Dubcovsky, J. (2006b) The wheat and barley vernalization gene VRN3 is an orthologue of FT . Proc. Natl Acad. Sci. USA, 103, 19581–19586. PubMed PMC
You, F.M. , Luo, M.C. , Gu, Y.Q. , Lazo, G.R. , Deal, K. , Dvorak, J. and Anderson, O.D. (2007) GenoProfiler: batch processing of high‐throughput capillary fingerprinting data. Bioinformatics, 23, 240–242. PubMed
Yu, Y. , Tomkins, J.P. , Waugh, R. , Frisch, D.A. , Kudrna, D. , Kleinhofs, A. , Brueggeman, R.S. , Muehlbauer, G.J. , Wise, R.P. and Wing, R.A. (2000) A bacterial artificial chromosome library for barley (Hordeum vulgare L.) and the identification of clones containing putative resistance genes. Theor. Appl. Genet. 101, 1093–1099.
Zeng, X. , Long, H. , Wang, Z. et al. (2015) The draft genome of Tibetan hulless barley reveals adaptive patterns to the high stressful Tibetan Plateau. Proc. Natl Acad. Sci. USA, 112, 1095–1100. PubMed PMC
Zerbino, D.R. and Birney, E. (2008) Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res. 18, 821–829. PubMed PMC
Zhong, C.X. , Marshall, J.B. , Topp, C. , Mroczek, R. , Kato, A. , Nagaki, K. , Birchler, J.A. , Jiang, J. and Dawe, R.K. (2002) Centromeric retroelements and satellites interact with maize kinetochore protein CENH3. Plant Cell, 14, 2825–2836. PubMed PMC
The Dark Matter of Large Cereal Genomes: Long Tandem Repeats
Construction of a map-based reference genome sequence for barley, Hordeum vulgare L
A chromosome conformation capture ordered sequence of the barley genome
GENBANK
AC250371, AC250421, AC250484, AC250784, AC251557, AC251639, AC251663, AC251805, AC251814, AC252228, AC252453, AC252497, AC252610, AC256237, AC256288, AC256303, AC269749