Sequencing of 15 622 gene-bearing BACs clarifies the gene-dense regions of the barley genome

. 2015 Oct ; 84 (1) : 216-27. [epub] 20150921

Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.

Perzistentní odkaz   https://www.medvik.cz/link/pmid26252423

Barley (Hordeum vulgare L.) possesses a large and highly repetitive genome of 5.1 Gb that has hindered the development of a complete sequence. In 2012, the International Barley Sequencing Consortium released a resource integrating whole-genome shotgun sequences with a physical and genetic framework. However, because only 6278 bacterial artificial chromosome (BACs) in the physical map were sequenced, fine structure was limited. To gain access to the gene-containing portion of the barley genome at high resolution, we identified and sequenced 15 622 BACs representing the minimal tiling path of 72 052 physical-mapped gene-bearing BACs. This generated ~1.7 Gb of genomic sequence containing an estimated 2/3 of all Morex barley genes. Exploration of these sequenced BACs revealed that although distal ends of chromosomes contain most of the gene-enriched BACs and are characterized by high recombination rates, there are also gene-dense regions with suppressed recombination. We made use of published map-anchored sequence data from Aegilops tauschii to develop a synteny viewer between barley and the ancestor of the wheat D-genome. Except for some notable inversions, there is a high level of collinearity between the two species. The software HarvEST:Barley provides facile access to BAC sequences and their annotations, along with the barley-Ae. tauschii synteny viewer. These BAC sequences constitute a resource to improve the efficiency of marker development, map-based cloning, and comparative genomics in barley and related crops. Additional knowledge about regions of the barley genome that are gene-dense but low recombination is particularly relevant.

Agriculture and Agri Food Canada Morden MB R6M 1Y5 Canada

Arizona Genomics Institute University of Arizona Tucson AZ 85721 USA

Baylor College of Medicine Jan and Dan Duncan Neurological Research Institute Houston TX 77030 USA

Boyce Thompson Institute for Plant Research Cornell University 533 Tower Road Ithaca NY 14853 1801 USA

Centre of the Region Hana for Biotechnological and Agricultural Research Institute of Experimental Botany Sokolovskį 6 CZ 77200 Olomouc Czech Republic

Corn Insects and Crop Genetics Research USDA Agricultural Research Service and Department of Plant Pathology and Microbiology Iowa State University Ames IA 50011 1020 USA

Departamento de Ciencias Basicas Universidad Autonoma Agraria Antonio Narro Narro 1923 Saltillo Coah 25315 México

Department of Botany and Plant Pathology Oregon State University Corvallis OR 97331 USA

Department of Botany and Plant Sciences University of California Riverside CA 92521 USA

Department of Computer Science University of California Riverside CA 92521 USA

Department of Computer Science University of Turin Corso Svizzera 185 10149 Turin Italy

Department of Crop and Soil Environmental Sciences Virginia Tech Blacksburg VA 24061 USA

Department of Crop and Soil Science Oregon State University Corvallis OR 97331 USA

Department of Crop and Soil Sciences Washington State University Pullman WA 99164 USA

Department of Plant and Microbial Biology University of California Berkeley CA 94720 USA

Department of Plant Biology Department of Agronomy and Plant Genetics University of Minnesota St Paul MN 55108 USA

Department of Plant Sciences and Plant Pathology Montana State University Bozeman MT 59717 3150 USA

Department of Plant Sciences University of California Davis CA 95616 USA

Deptartment of Mathematics Statistics and Computer Science Marquette University Milwaukee WI 53233 USA

Dow AgroSciences LLC Indianapolis IN 46268 1054 USA

Google Inc Mountain View CA 94043 USA

Hudson Alpha Genome Sequencing Center DOE Joint Genome Institute Huntsville AL 35806 USA

International Cooperation Department The Scientific and Technological Research Council of Turkey Tunus cad No 80 06100 Kavaklidere Ankara Turkey

Keck School of Medicine University of Southern California Los Angeles CA 90033 USA

Leibniz Institute of Plant Genetics and Crop Plant Research D 06466 Gatersleben Germany

Molefarming Laboratory USA Davis CA 95616 USA

Monsanto Research Center Bangalore 560092 India

Nordic Genetic Resource Center SE 23053 Alnarp Sweden

Ronald Reagan UCLA Medical Center Los Angeles CA 90095 USA

School of Computer Engineering Nanyang Technological University Nanyang Avenue Singapore 639798 Singapore

Swedish University of Agricultural Sciences SE 750 07 Uppsala Sweden

The Sainsbury Laboratory Norwich Research Park Norwich NR4 7UH UK

Turtle Rock Studios Lake Forest CA 92630 USA

US Department of Energy Joint Genome Institute Walnut Creek CA 94598 USA

USDA ARS Aberdeen ID 83210 USA

USDA ARS Albany CA 94710 USA

USDA ARS Biosciences Research Lab Fargo ND 58105 USA

USDA University of Missouri Columbia MO 65211 USA

Zobrazit více v PubMed

Ariyadasa, R. , Mascher, M. , Nussbaumer, T. et al. (2014) A sequence‐ready physical map of barley anchored genetically by two million single‐nucleotide polymorphisms. Plant Physiol. 164, 412–423. PubMed PMC

Bankevich, A. , Nurk, S. , Antipov, D. et al. (2012) SPAdes: a new genome assembly algorithm and its applications to single‐cell sequencing. J. Comp. Biol. 19, 455–477. PubMed PMC

Barakat, A. , Carels, N. and Bernardi, G. (1997) The distribution of genes in the genomes of Gramineae. Proc. Natl Acad. Sci. USA, 94, 6857–6861. PubMed PMC

Bartoš, J. , Paux, E. , Kofler, R. et al. (2008) A first survey of the rye (Secale cereale) genome composition through BAC end sequencing of the short arm of chromosome 1R. BMC Plant Biol. 8, 95. PubMed PMC

Bozdag, S. , Close, T. and Lonardi, S. (2009) A compartmentalized approach to the assembly of physical maps. BMC Bioinformatics, 10, 217. PubMed PMC

Bozdag, S. , Close, T. and Lonardi, S. (2013) A graph‐theoretical approach to the selection of the minimum tiling path from a physical map. IEEE/ACM Trans. Comput. Biol. Bioinform. 10, 352–360. PubMed

Breiteneder, H. , Pettenburger, K. , Bito, A. , Valenta, R. , Kraft, D. , Rumpold, H. , Scheiner, O. and Breitenbach, M. (1989) The gene coding for the major birch pollen allergen Betv1, is highly homologous to a pea disease resistance response gene. EMBO J. 8, 1935–1938. PubMed PMC

Choulet, F. , Alberti, A. , Theil, S. et al. (2014) Structural and functional partitioning of bread wheat chromosome 3B. Science, 345, 124972. PubMed

Choulet, F. , Wicker, T. , Rustenholz, C. et al. (2010) Megabase level sequencing reveals contrasted organization and evolution patterns of the wheat gene and transposable element spaces. Plant Cell, 22, 1686–1701. PubMed PMC

Close, T.J. , Bhat, P.R. , Lonardi, S. et al. (2009) Development and implementation of high‐throughput SNP genotyping in barley. BMC Genom. 10, 582. PubMed PMC

Comadran, J. , Kilian, B. , Russell, J. et al. (2012) Natural variation in a homolog of Antirrhinum CENTRORADIALIS contributed to spring growth habit and environmental adaptation in cultivated barley. Nat. Genet. 44, 1388–1392. PubMed

Doležel, J. , Vrána, J. , Safář, J. , Bartoš, J. , Kubaláková, M. and Simková, H. (2012) Chromosomes in the flow to simplify genome analysis. Funct. Integr. Genomics, 12, 397–416. PubMed PMC

Du, Z. , Zhou, X. , Ling, Y. , Zhang, Z. and Su, Z. (2010) AgriGO: a GO analysis toolkit for the agricultural community. Nucl. Acids Res. 38, W64–W70. PubMed PMC

Dubcovsky, J. , Ramakrishna, W. , SanMiguel, P.J. , Busso, C.S. , Yan, L. , Shiloff, B.A. and Bennetzen, J.L. (2001) Comparative sequence analysis of colinear barley and rice bacterial artificial chromosomes. Plant Physiol. 125, 1342–1353. PubMed PMC

Dvorák, J. (2009) Triticeae genome structure and evolution In Genetics and Genomics of the Triticeae (Muehlbauer G.J. and Feuillet C., eds). Heidelberg: Springer, pp. 685–711.

Feuillet, C. and Keller, B. (1999) High gene density is conserved at syntenic loci of small and large grass genomes. Proc. Natl Acad. Sci. USA, 96, 8265–8270. PubMed PMC

Gottlieb, A. , Müller, H.G. , Massa, A.N. et al. (2013) Insular organization of gene space in grass genomes. PLoS ONE, 8, e54101. PubMed PMC

Griffiths, S. , Dunford, R.P. , Coupland, G. and Laurie, D.A. (2003) The evolution of CONSTANS‐like gene families in barley, rice, and Arabidopsis. Plant Physiol. 131, 1855–1867. PubMed PMC

Gurevich, A. , Saveliev, V. , Vyahhi, N. and Tesler, G. (2013) QUAST: quality assessment tool for genome assemblies. Bioinformatics, 29, 1072–1075. PubMed PMC

Hudakova, S. , Michalek, W. , Presting, G.G. , ten Hoopen, R. , dos Santos, K. , Jasencakova, Z. and Schubert, I. (2001) Sequence organization of barley centromeres. Nucleic Acids Res. 29, 5029–5050. PubMed PMC

International Rice Genome Sequencing Project (2005) The map‐based sequence of the rice genome. Nature, 436, 793–800. PubMed

Komatsuda, T. , Pourkheirandish, M. , He, C. et al. (2007) Six‐rowed barley originated from a mutation in a homeodomain‐leucine zipper I‐class homeobox gene. Proc. Natl Acad. Sci. USA, 104, 1424–1429. PubMed PMC

Langdon, T. , Seago, C. , Mende, M. , Leggett, M. , Thomas, H. , Forster, J.W. , Thomas, H. , Jones, R.J. and Jenkins, G. (2000) Retrotransposon evolution in diverse plant genomes. Genetics, 156, 313–325. PubMed PMC

Lermontova, I. , Kuhlmann, M. , Friedel, S. , Rutten, T. , Heckmann, S. , Sandmann, M. , Demidov, D. , Schubert, V. and Schubert, I. (2013) Arabidopsis kinetochore null2 is an upstream component for centromeric histone H3 variant cenH3 deposition at centromeres. Plant Cell, 25, 3389–3404. PubMed PMC

Lonardi, S. , Duma, D. , Alpert, M. et al. (2013) Combinatorial pooling enables selective sequencing of the barley gene space. PLoS Comput. Biol. 9, e1003010. PubMed PMC

Lonardi, S. , Mirebrahim, H. , Wanamaker, S. , Alpert, M. , Ciardo, G. , Duma, D. and Close, T.J. (2015) When less is more: “slicing” sequencing data improves read decoding accuracy and De Novo assembly quality. Bioinformatics, doi: 10.1093/bioinformatics/btv311. PubMed DOI

Luo, M.C. , Gu, Y.Q. , You, F.M. et al. (2013) A 4‐gigabase physical map unlocks the structure and evolution of the complex genome of Aegilops tauschii, the wheat D‐genome progenitor. Proc. Natl Acad. Sci. USA, 110, 7940–7945. PubMed PMC

Luo, M.C. , Thomas, C. , You, F.M. , Hsiao, J. , Ouyang, S. , Buell, C.R. , Malandro, M. , McGuire, P.E. , Anderson, O.D. and Dvorak, J. (2003) High‐throughput fingerprinting of bacterial artificial chromosomes using the snapshot labeling kit and sizing of restriction fragments by capillary electrophoresis. Genomics, 82, 378–389. PubMed

Luo, R. , Liu, B. , Xie, Y. et al. (2012) SOAPdenovo2: an empirically improved memory‐efficient short‐read de novo assembler. GigaScience, 1, 18. PubMed PMC

Mascher, M. , Muehlbauer, G.J. , Rokhsar, D.S. et al. (2013) Anchoring and ordering NGS contig assemblies by population sequencing (POPSEQ). Plant J. 76, 718–727. PubMed PMC

Mayer, K.F.X. , Martis, M. , Hedley, P.E. et al. (2011) Unlocking the barley genome by chromosomal and comparative genomics. Plant Cell, 23, 1249–1263. PubMed PMC

Morrell, P.L. , Buckler, E.S. and Ross‐Ibarra, J. (2012) Crop genomics: advances and applications. Nat. Rev. Genet. 13, 85–96. PubMed

Muñoz‐Amatriaín, M. , Cuesta‐Marcos, A. , Endelman, J.B. et al. (2014) The USDA barley core collection: genetic diversity, population structure, and potential for genome‐wide association studies. PLoS ONE, 9, e94688. PubMed PMC

Muñoz‐Amatriaín, M. , Eichten, S.R. , Wicker, T. et al. (2013) Distribution, functional impact, and origin mechanisms of copy number variation in the barley genome. Genome Biol. 14, R58. PubMed PMC

Muñoz‐Amatriaín, M. , Moscou, M.J. , Bhat, P.R. et al. (2011) An improved consensus linkage map of barley based on flow‐sorted chromosomes and single nucleotide polymorphism markers. Plant Genome, 4, 238–249.

Nussbaumer, T. , Martis, M.M. , Roessner, S.K. , Pfeifer, M. , Bader, K.C. , Sharma, S. , Gundlach, H. and Spannagl, M. (2013) MIPS PlantsDB: a database framework for comparative plant genome research. Nucleic Acids Res. 41, D1144–D1151. PubMed PMC

Ounit, R. , Wanamaker, S. , Close, T.J. and Lonardi, S. (2015) CLARK: fast and accurate classification of metagenomic and genomic sequences using discriminative k‐mers. BMC Genom. 16, 236. PubMed PMC

Peng, Y. , Leung, H.C. , Yiu, S.M. and Chin, F.Y. (2012) IDBA‐UD: a de novo assembler for single‐cell and metagenomic sequencing data with highly uneven depth. Bioinformatics, 28, 1420–1428. PubMed

Raats, D. , Frenkel, Z. , Krugman, T. et al. (2013) The physical map of wheat chromosome 1BS provides insights into its gene space organization and evolution. Genome Biol. 14, R138. PubMed PMC

Sandhu, D. and Gill, K.S. (2002) Gene‐containing regions of wheat and the other grass genomes. Plant Physiol. 128, 803–811. PubMed PMC

Schulte, D. , Close, T.J. , Graner, A. et al. (2009) The International Barley Sequencing Consortium—at the threshold of efficient access to the barley genome. Plant Physiol. 149, 142–147. PubMed PMC

Šimková, H. , Svensson, J.T. , Condamine, P. , Hribová, E. , Suchánková, P. , Bhat, P.R. , Bartos, J. , Safár, J. , Close, T.J. and Dolezel, J. (2008) Coupling amplified DNA from flow‐sorted chromosomes to high‐density SNP mapping in barley. BMC Genom. 9, 294. PubMed PMC

Soderlund, C. , Humphrey, S. , Dunhum, A. and French, L. (2000) Contigs built with fingerprints, markers and FPC V4.7. Genome Res. 10, 1772–1787. PubMed PMC

Soderlund, C. , Longden, I. and Mott, R. (1997) FPC: a system for building contigs from restriction fingerprinted clones. CABIOS, 13, 523–535. PubMed

Stein, N. , Prasad, M. , Scholz, U. et al. (2007) A 1,000‐loci transcript map of the barley genome: new anchoring points for integrative grass genomics. Theor. Appl. Genet. 114, 823–839. PubMed

Stein, N. and Steuernagel, B. (2014) Advances in sequencing the barley genome In Genomics of Plant Genetic Resources (Tuberosa R., Graner A. and Frison E., eds.). Heidelberg: Springer, pp. 391–403.

Suchánková, P. , Kubaláková, M. , Kovárová, P. , Bartos, J. , Cíhalíková, J. , Molnár‐Láng, M. , Endo, T.R. and Doležel, J. (2006) Dissection of the nuclear genome of barley by chromosome flow sorting. Theor. Appl. Genet. 113, 651–659. PubMed

The International Barley Genome Sequencing Consortium (2012) A physical, genetic and functional sequence assembly of the barley genome. Nature, 491, 711–716. PubMed

Ullrich, S.E. (2010) Significance, adaptation, production, and trade of barley In Barley: Production, Improvement, and Uses (Ullrich S.E., ed.). Oxford: Wiley‐Blackwell, pp. 3–13.

Varshney, R.K. , Grosse, I. , Hähnel, U. , Siefken, R. , Prasad, M. , Stein, N. , Langridge, P. , Altschmied, L. and Graner, A. (2006) Genetic mapping and BAC assignment of EST‐derived SSR markers shows non‐uniform distribution of genes in the barley genome. Theor. Appl. Genet. 113, 239–250. PubMed

Wei, F. , Gobelman‐Werner, K. , Morroll, S.M. , Kurth, J. , Mao, L. , Wing, R. , Leister, D. , Schulze‐Lefert, P. and Wise, R.P. (1999) The Mla (powdery mildew) resistance cluster is associated with three NBS‐LRR gene families and suppressed recombination within a 240‐kb DNA interval on chromosome 5S (1HS) of barley. Genetics, 153, 1929–1948. PubMed PMC

Wei, F. , Wing, R. and Wise, R.P. (2002) Genome dynamics and evolution of the Mla (powdery mildew) resistance locus in barley. Plant Cell, 14, 1903–1917. PubMed PMC

Wicker, T. , Taudien, S. , Houben, A. , Keller, B. , Graner, A. , Platzer, M. and Stein, N. (2009) A whole‐genome snapshot of 454 sequences exposes the composition of the barley genome and provides evidence for parallel evolution of genome size in wheat and barley. Plant J. 59, 712–722. PubMed

Yan, H. , Ito, H. , Nobuta, K. et al. (2006a) Genomic and genetic characterization of rice Cen3 reveals extensive transcription and evolutionary implications of a complex centromere. Plant Cell, 18, 2123–2133. PubMed PMC

Yan, L. , Fu, D. , Li, C. , Blechl, A. , Tranquilli, G. , Bonafede, M. , Sanchez, A. , Valarik, M. , Yasuda, S. and Dubcovsky, J. (2006b) The wheat and barley vernalization gene VRN3 is an orthologue of FT . Proc. Natl Acad. Sci. USA, 103, 19581–19586. PubMed PMC

You, F.M. , Luo, M.C. , Gu, Y.Q. , Lazo, G.R. , Deal, K. , Dvorak, J. and Anderson, O.D. (2007) GenoProfiler: batch processing of high‐throughput capillary fingerprinting data. Bioinformatics, 23, 240–242. PubMed

Yu, Y. , Tomkins, J.P. , Waugh, R. , Frisch, D.A. , Kudrna, D. , Kleinhofs, A. , Brueggeman, R.S. , Muehlbauer, G.J. , Wise, R.P. and Wing, R.A. (2000) A bacterial artificial chromosome library for barley (Hordeum vulgare L.) and the identification of clones containing putative resistance genes. Theor. Appl. Genet. 101, 1093–1099.

Zeng, X. , Long, H. , Wang, Z. et al. (2015) The draft genome of Tibetan hulless barley reveals adaptive patterns to the high stressful Tibetan Plateau. Proc. Natl Acad. Sci. USA, 112, 1095–1100. PubMed PMC

Zerbino, D.R. and Birney, E. (2008) Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res. 18, 821–829. PubMed PMC

Zhong, C.X. , Marshall, J.B. , Topp, C. , Mroczek, R. , Kato, A. , Nagaki, K. , Birchler, J.A. , Jiang, J. and Dawe, R.K. (2002) Centromeric retroelements and satellites interact with maize kinetochore protein CENH3. Plant Cell, 14, 2825–2836. PubMed PMC

Zobrazit více v PubMed

GENBANK
AC250371, AC250421, AC250484, AC250784, AC251557, AC251639, AC251663, AC251805, AC251814, AC252228, AC252453, AC252497, AC252610, AC256237, AC256288, AC256303, AC269749

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...