Construction of a map-based reference genome sequence for barley, Hordeum vulgare L
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu dataset, časopisecké články, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.
Grantová podpora
BB/H531519/1
Biotechnology and Biological Sciences Research Council - United Kingdom
PubMed
28448065
PubMed Central
PMC5407242
DOI
10.1038/sdata.2017.44
PII: sdata201744
Knihovny.cz E-zdroje
- MeSH
- genom rostlinný * MeSH
- ječmen (rod) genetika MeSH
- mapování chromozomů MeSH
- sekvenční analýza MeSH
- Publikační typ
- časopisecké články MeSH
- dataset MeSH
- práce podpořená grantem MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
Barley (Hordeum vulgare L.) is a cereal grass mainly used as animal fodder and raw material for the malting industry. The map-based reference genome sequence of barley cv. 'Morex' was constructed by the International Barley Genome Sequencing Consortium (IBSC) using hierarchical shotgun sequencing. Here, we report the experimental and computational procedures to (i) sequence and assemble more than 80,000 bacterial artificial chromosome (BAC) clones along the minimum tiling path of a genome-wide physical map, (ii) find and validate overlaps between adjacent BACs, (iii) construct 4,265 non-redundant sequence scaffolds representing clusters of overlapping BACs, and (iv) order and orient these BAC clusters along the seven barley chromosomes using positional information provided by dense genetic maps, an optical map and chromosome conformation capture sequencing (Hi-C). Integrative access to these sequence and mapping resources is provided by the barley genome explorer (BARLEX).
Australian Export Grains Innovation Centre South Perth Western Australia 6151 Australia
BGI Shenzhen Shenzhen 518083 China
BioNano Genomics Inc San Diego California 92121 USA
Carlsberg Research Laboratory 1799 Copenhagen Denmark
Centre for Comparative Genomics Murdoch University Murdoch Western Australia 6150 Australia
College of Agriculture and Biotechnology Zhejiang University Hangzhou 310058 China
Department of Agricultural and Environmental Sciences University of Udine 33100 Udine Italy
Department of Agronomy and Plant Genetics University of Minnesota St Paul Minnesota 55108 USA
Department of Biology Lund University 22362 Lund Sweden
Department of Plant and Microbial Biology University of Minnesota St Paul Minnesota 55108 USA
Earlham Institute Norwich NR4 7UH UK
European Molecular Biology Laboratory The European Bioinformatics Institute Hinxton CB10 1SD UK
German Centre for Integrative Biodiversity Research Halle Jena Leipzig 04103 Leipzig Germany
Leibniz Institute of Plant Genetics and Crop Plant Research Gatersleben 06466 Seeland Germany
Leibniz Institute on Aging Fritz Lipmann Institute 07745 Jena Germany
National Institute of Agricultural Botany Cambridge CB3 0LE UK
School of Agriculture University of Adelaide Urrbrae South Australia 5064 Australia
School of Environmental Sciences University of East Anglia Norwich NR4 7UH UK
School of Life Sciences University of Dundee Dundee DD2 5DA UK
School of Plant Biology University of Western Australia Crawley 6009 Australia
School of Veterinary and Life Sciences Murdoch University Murdoch Western Australia 6150 Australia
doi: 10.1111/tpj.12959 PubMed
Zobrazit více v PubMed
International Barley Genome Sequencing Consortium 2016. European Nucleotide Archive. PRJEB9062
International Barley Genome Sequencing Consortium 2016. European Nucleotide Archive. PRJEB9097
International Barley Genome Sequencing Consortium 2016. European Nucleotide Archive. PRJEB9098
International Barley Genome Sequencing Consortium 2016. European Nucleotide Archive. PRJEB9099
International Barley Genome Sequencing Consortium 2016. European Nucleotide Archive. PRJEB9100
International Barley Genome Sequencing Consortium 2016. European Nucleotide Archive. PRJEB9101
International Barley Genome Sequencing Consortium 2016. European Nucleotide Archive. PRJEB9102
International Barley Genome Sequencing Consortium 2016. European Nucleotide Archive. PRJEB9103
International Barley Genome Sequencing Consortium 2016. European Nucleotide Archive. PRJEB9104
International Barley Genome Sequencing Consortium 2016. European Nucleotide Archive. PRJEB8576
International Barley Genome Sequencing Consortium 2016. European Nucleotide Archive. PRJEB8577
International Barley Genome Sequencing Consortium 2016. European Nucleotide Archive. PRJEB8578
International Barley Genome Sequencing Consortium 2016. European Nucleotide Archive. PRJEB9619
International Barley Genome Sequencing Consortium 2016. European Nucleotide Archive. PRJEB8579
International Barley Genome Sequencing Consortium 2016. European Nucleotide Archive. PRJEB8580
International Barley Genome Sequencing Consortium 2016. European Nucleotide Archive. PRJEB9429
International Barley Genome Sequencing Consortium 2016. European Nucleotide Archive. PRJEB9430
International Barley Genome Sequencing Consortium 2016. European Nucleotide Archive. PRJEB9431
International Barley Genome Sequencing Consortium 2016. European Nucleotide Archive. PRJEB10963
International Barley Genome Sequencing Consortium 2016. European Nucleotide Archive. PRJEB11489
International Barley Genome Sequencing Consortium 2016. European Nucleotide Archive. PRJEB12096
International Barley Genome Sequencing Consortium 2016. European Nucleotide Archive. PRJEB11758
International Barley Genome Sequencing Consortium 2016. European Nucleotide Archive. PRJEB9428
International Barley Genome Sequencing Consortium 2016. European Nucleotide Archive. PRJEB11991
International Barley Genome Sequencing Consortium 2016. European Nucleotide Archive. PRJEB9427
International Barley Genome Sequencing Consortium 2016. European Nucleotide Archive. PRJEB11798
International Barley Genome Sequencing Consortium 2016. European Nucleotide Archive. PRJEB11992
International Barley Genome Sequencing Consortium 2016. European Nucleotide Archive. PRJEB13020
Muñoz-Amatriaín M. 2015. NCBI BioProject. PRJNA198204
International Barley Genome Sequencing Consortium 2016. IPK Gatersleben. http://dx.doi.org/10.5447/IPK/2016/21 DOI
International Barley Genome Sequencing Consortium 2016. IPK Gatersleben. http://dx.doi.org/10.5447/IPK/2016/28 DOI
International Barley Genome Sequencing Consortium 2016. IPK Gatersleben. http://dx.doi.org/10.5447/IPK/2016/12 DOI
International Barley Genome Sequencing Consortium 2016. IPK Gatersleben. http://dx.doi.org/10.5447/IPK/2016/31 DOI
International Barley Genome Sequencing Consortium 2016. European Nucleotide Archive. PRJEB13028
International Barley Genome Sequencing Consortium 2016. IPK Gatersleben. http://dx.doi.org/10.5447/IPK/2016/33 DOI
International Barley Genome Sequencing Consortium 2016. IPK Gatersleben. http://dx.doi.org/10.5447/IPK/2016/22 DOI
International Barley Genome Sequencing Consortium 2016. IPK Gatersleben. http://dx.doi.org/10.5447/IPK/2016/30 DOI
International Barley Genome Sequencing Consortium 2016. European Nucleotide Archive. PRJEB14130
International Barley Genome Sequencing Consortium 2016. IPK Gatersleben. http://dx.doi.org/10.5447/IPK/2016/29 DOI
International Barley Genome Sequencing Consortium 2016. European Nucleotide Archive. PRJEB14169
International Barley Genome Sequencing Consortium 2016. IPK Gatersleben. http://dx.doi.org/10.5447/IPK/2016/20 DOI
International Barley Genome Sequencing Consortium 2016. IPK Gatersleben. http://dx.doi.org/10.5447/IPK/2016/34 DOI
International Barley Genome Sequencing Consortium 2016. IPK Gatersleben. http://dx.doi.org/10.5447/IPK/2016/27 DOI
International Barley Genome Sequencing Consortium 2016. IPK Gatersleben. http://dx.doi.org/10.5447/IPK/2016/36 DOI
International Barley Genome Sequencing Consortium 2016. IPK Gatersleben. http://dx.doi.org/10.5447/IPK/2016/23 DOI
International Barley Genome Sequencing Consortium 2016. IPK Gatersleben. http://dx.doi.org/10.5447/IPK/2016/24 DOI
International Barley Genome Sequencing Consortium 2016. IPK Gatersleben. http://dx.doi.org/10.5447/IPK/2016/25 DOI
International Barley Genome Sequencing Consortium 2016. IPK Gatersleben. http://dx.doi.org/10.5447/IPK/2016/26 DOI
International Barley Genome Sequencing Consortium 2016. IPK Gatersleben. http://dx.doi.org/10.5447/IPK/2016/35 DOI
International Barley Genome Sequencing Consortium 2016. IPK Gatersleben. http://dx.doi.org/10.5447/IPK/2016/37 DOI
International Barley Genome Sequencing Consortium 2016. IPK Gatersleben. http://dx.doi.org/10.5447/IPK/2016/17 DOI
International Barley Genome Sequencing Consortium 2016. IPK Gatersleben. http://dx.doi.org/10.5447/IPK/2016/19 DOI
International Barley Genome Sequencing Consortium. A physical, genetic and functional sequence assembly of the barley genome. Nature 491, 711–716 (2012). PubMed
Lander E. S. PubMed
Schnable P. S. PubMed
Poland J. A., Brown P. J., Sorrells M. E. & Jannink J.-L. Development of high-density genetic maps for barley and wheat using a novel two-enzyme genotyping-by-sequencing approach. PLoS ONE 7, e32253 (2012). PubMed PMC
Colmsee C. PubMed
Pasquariello M. PubMed
Meyer M., Stenzel U. & Hofreiter M. Parallel tagged sequencing on the 454 platform. Nature protocols 3, 267–278 (2008). PubMed
Sambrook J. & Russell D. W. Molecular cloning: a laboratory manual. 3rd edition (Coldspring-Harbour Laboratory Press, 2001).
Meyer M. & Kircher M. Illumina sequencing library preparation for highly multiplexed target capture and sequencing. Cold Spring Harb Protoc 2010, pdb prot5448 (2010). PubMed
Zerbino D. R. & Birney E. Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome research 18, 821–829 (2008). PubMed PMC
Ounit R., Wanamaker S., Close T. J. & Lonardi S. CLARK: fast and accurate classification of metagenomic and genomic sequences using discriminative k-mers. BMC genomics 16, 236 (2015). PubMed PMC
Zhang Z., Schwartz S., Wagner L. & Miller W. A greedy algorithm for aligning DNA sequences. Journal of computational biology: a journal of computational molecular cell biology 7, 203–214 (2000). PubMed
Chevreux B., Wetter T. & Suhai S. in German conference on bioinformatics (1999); 45–56.
Li H. & Durbin R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009). PubMed PMC
Boetzer M., Henkel C. V., Jansen H. J., Butler D. & Pirovano W. Scaffolding pre-assembled contigs using SSPACE. Bioinformatics 27, 578–579 (2011). PubMed
Andrews S. FastQC: a quality control tool for high throughput sequence data. Available online at: http://www.bioinformatics.babraham.ac.uk/projects/fastqc (2010).
Leggett R. M., Ramirez-Gonzalez R. H., Clavijo B. J., Waite D. & Davey R. P. Sequencing quality assessment tools to enable data-driven informatics for high throughput genomics. Frontiers in genetics 4, 288 (2013). PubMed PMC
Magoc T. & Salzberg S. L. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27, 2957–2963 (2011). PubMed PMC
Leggett R. M., Clavijo B. J., Clissold L., Clark M. D. & Caccamo M. NextClip: an analysis and read preparation tool for Nextera Long Mate Pair libraries. Bioinformatics 30, 566–568 (2014). PubMed PMC
Slater G. S. & Birney E. Automated generation of heuristics for biological sequence comparison. BMC bioinformatics 6, 31 (2005). PubMed PMC
Quinlan A. R. & Hall I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010). PubMed PMC
R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2015).
Mascher M. PubMed
Li H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. Preprint at https://arxiv.org/pdf/1303.3997v2.pdf (2013).
Mascher M., Wu S., Amand P. S., Stein N. & Poland J. Application of genotyping-by-sequencing on semiconductor sequencing platforms: a comparison of genetic and reference-based marker ordering in barley. PLoS ONE 8, e76925 (2013). PubMed PMC
Wu Y., Bhat P. R., Close T. J. & Lonardi S. Efficient and accurate construction of genetic linkage maps from the minimum spanning tree of a graph. PLoS genetics 4, e1000212 (2008). PubMed PMC
Csardi G. & Nepusz T. The igraph software package for complex network research, InterJournal, Complex Systems 1695 (2006).
Prim R. C. Shortest connection networks and some generalizations. Bell system technical journal 36, 1389–1401 (1957).
Wendler N. PubMed
Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. journal 17, 10–12 (2011).
Garrison E. & Marth G. Haplotype-based variant detection from short-read sequencing. Preprint at https://arxiv.org/pdf/1207.3907v2.pdf (2012).
Kalhor R., Tjong H., Jayathilaka N., Alber F. & Chen L. Genome architectures revealed by tethered chromosome conformation capture and population-based modeling. Nature biotechnology 30, 90–98 (2012). PubMed PMC
Wu T. D. & Watanabe C. K. GMAP: a genomic mapping and alignment program for mRNA and EST sequences. Bioinformatics 21, 1859–1875 (2005). PubMed
Künzel G., Korzun L. & Meister A. Cytologically integrated physical restriction fragment length polymorphism maps for the barley genome based on translocation breakpoints. Genetics 154, 397–412 (2000). PubMed PMC
Aliyeva-Schnorr L. PubMed
Helical coiling of metaphase chromatids
Aegilops sharonensis genome-assisted identification of stem rust resistance gene Sr62
A novel way to identify specific powdery mildew resistance genes in hybrid barley cultivars
The Dark Matter of Large Cereal Genomes: Long Tandem Repeats
A chromosome conformation capture ordered sequence of the barley genome