Helical coiling of metaphase chromatids

. 2023 Apr 11 ; 51 (6) : 2641-2654.

Jazyk angličtina Země Anglie, Velká Británie Médium print

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid36864547

Chromatids of mitotic chromosomes were suggested to coil into a helix in early cytological studies and this assumption was recently supported by chromosome conformation capture (3C) sequencing. Still, direct differential visualization of a condensed chromatin fibre confirming the helical model was lacking. Here, we combined Hi-C analysis of purified metaphase chromosomes, biopolymer modelling and spatial structured illumination microscopy of large fluorescently labeled chromosome segments to reveal the chromonema - a helically-wound, 400 nm thick chromatin thread forming barley mitotic chromatids. Chromatin from adjacent turns of the helix intermingles due to the stochastic positioning of chromatin loops inside the chromonema. Helical turn size varies along chromosome length, correlating with chromatin density. Constraints on the observable dimensions of sister chromatid exchanges further supports the helical chromonema model.

Zobrazit více v PubMed

Zhou C.Y., Heald R.. Emergent properties of mitotic chromosomes. Curr. Opin. Cell Biol. 2020; 64:43–49. PubMed PMC

Beseda T., Cápal P., Kubalová I., Schubert V., Doležel J., Šimková H.. Mitotic chromosome organization: general rules meet species-specific variability. Comput. Struct. 2020; 18:1311–1319. PubMed PMC

Manton I. The spiral structure of chromosomes. Biol. Rev. Camb. Philos. Soc. 1950; 25:486–508. PubMed

Ohnuki Y. Structure of chromosomes. Chromosoma. 1968; 25:402–428. PubMed

Saitoh Y., Laemmli U.K.. Metaphase chromosome structure: bands arise from a differential folding path of the highly AT-rich scaffold. Cell. 1994; 76:609–622. PubMed

Sumner A.T. The mitotic chromosome. Adv. Genome Biol. 1998; 5:211–261.

Daban J. Supramolecular multilayer organization of chromosomes: possible functional roles of planar chromatin in gene expression and DNA replication and repair. FEBS Lett. 2020; 594:395–411. PubMed

Schloissnig S., Kawaguchi A., Nowoshilow S., Falcon F., Otsuki L., Tardivo P., Timoshevskaya N., Keinath M.C., Smith J.J., Voss S.R.et al. .. The giant axolotl genome uncovers the evolution, scaling, and transcriptional control of complex gene loci. Proc. Natl. Acad. Sci. U.S.A. 2021; 118:e2017176118. PubMed PMC

Ohnuki Y. Demonstration of the spiral structure of human chromosomes. Nature. 1965; 208:916–917. PubMed

Gibcus J.H., Samejima K., Goloborodko A., Samejima I., Naumova N., Nuebler J., Kanemaki M.T., Xie L., Paulson J.R., Earnshaw W.C.et al. .. A pathway for mitotic chromosome formation. Science. 2018; 359:eaao6135. PubMed PMC

Paulson J.R., Laemmli U.K.. The structure of histone-depleted metaphase chromosomes. Cell. 1977; 12:817–828. PubMed

Belmont A.S., Sedat J.W., Agard D.A.. A three-dimensional approach to mitotic chromosome structure: evidence for a complex hierarchical organization. J. Cell Biol. 1987; 105:77–92. PubMed PMC

Belmont A.S., Braunfeld M.B., Sedat J.W., Agard D.A.. Large-scale chromatin structural domains within mitotic and interphase chromosomes in vivo and in vitro. Chromosoma. 1989; 98:129–143. PubMed

Strukov Y.G., Wang Y., Belmont A.S.. Engineered chromosome regions with altered sequence composition demonstrate hierarchical large-scale folding within metaphase chromosomes. J. Cell Biol. 2003; 162:23–35. PubMed PMC

Kireeva N., Lakonishok M., Kireev I., Hirano T., Belmont A.S.. Visualization of early chromosome condensation. J. Cell Biol. 2004; 166:775–785. PubMed PMC

Chu L., Liang Z., Mukhina M., Fisher J., Vincenten N., Zhang Z., Hutchinson J., Zickler D., Kleckner N.. The 3D topography of mitotic chromosomes. Mol. Cell. 2020; 79:902–916. PubMed PMC

Naumova N., Imakaev M., Fudenberg G., Zhan Y., Lajoie B.R., Mirny L.A., Dekker J.. Organization of the mitotic chromosome. Science. 2013; 342:948–953. PubMed PMC

Baranetzky J. Die Kerntheilung in den Pollenmutterzellen einiger Tradescantien. Bot. Zeitschr. 1880; 38:281–296.

Lee A.B. Memoirs: the structure of certain chromosomes and the mechanism of their division. J. Cell Sci. 1920; s2-65:1–32.

Nebel B.R. Chromosome structure in Tradescantiae. I. Methods and morphology. Zeitschr. Zellforsch. Mikroskop. Anat. 1932; 16:251–284.

Nebel B.R. Chromosome structure. Bot. Rev. 1939; 5:563–626.

Ruch Fr. Über den Schraubenbau der meiotischen Chromosomen. Chromosoma. 1950; 3:357–392.

Schvartzman J.B., Cortés F., López-Sáez J.F.. Sister subchromatid exchanged segments and chromosome structure. Exp. Cell. Res. 1978; 114:443–446. PubMed

Nokkala S., Nokkala C.. Spiral structures of meiotic chromosomes in plants. Hereditas. 1985; 103:187–194.

Strukov Y.G., Sural T.H., Kuroda M.I., Sedat J.W.. Evidence of activity-specific, radial organization of mitotic chromosomes in Drosophila. PLoS Biol. 2011; 9:e1000574. PubMed PMC

Strukov Y.G., Belmont A.S.. Mitotic chromosome structure: reproducibility of folding and symmetry between sister chromatids. Biophys. J. 2009; 96:1617–1628. PubMed PMC

Aurich-Costa J., Zamechek L., Keenan P., Bradley S.. Oligo fluorescence in situ hybridization (oligo-FISH), a new strategy for enumerating chromosomes in interphase nuclei. Fertil. Steril. 2007; 88:S86.

Braz G.T., He L., Zhao H., Zhang T., Semrau K., Rouillard J.-M., Torres G.A., Jiang J.. Comparative oligo-FISH mapping: an efficient and powerful methodology to reveal karyotypic and chromosomal evolution. Genetics. 2018; 208:513–523. PubMed PMC

Li G., Zhang T., Yu Z., Wang H., Yang E., Yang Z.. An efficient Oligo-FISH painting system for revealing chromosome rearrangements and polyploidization in Triticeae. Plant J. 2021; 105:978–993. PubMed

Szabo Q., Jost D., Chang J.-M., Cattoni D.I., Papadopoulos G.L., Bonev B., Sexton T., Gurgo J., Jacquier C., Nollmann M.et al. .. TADs are 3D structural units of higher-order chromosome organization in Drosophila. Sci. Adv. 2018; 4:eaar8082. PubMed PMC

Schubert I., Schubert V., Fuchs J.. No evidence for “break-induced replication” in a higher plant – but break-induced conversion may occur. Front. Plant Sci. 2011; 2:8. PubMed PMC

Schvartzman J.B. Sister-chromatid exchanges in higher plant cells: past and perspectives. Mutat. Res. 1987; 181:127–145.

Wilson D.M., Thompson L.H.. Molecular mechanisms of sister-chromatid exchange. Mutat. Res. 2007; 616:11–23. PubMed

Schubert V., Zelkowski M., Klemme S., Houben A.. Similar sister chromatid arrangement in mono- and holocentric plant chromosomes. Cytogenet. Genome Res. 2016; 149:218–225. PubMed

Rachel A.J., Sharma T., Menon V.V.. Harlequin banding and localisation of sister-chromatid exchanges. Mutat. Res. 1991; 264:71–80. PubMed

Jordan R., Edington J., Evans H.H., Schwartz J.L.. Detection of chromosome aberrations by FISH as a function of cell division cycle (Harlequin-FISH). BioTechniques. 1999; 26:532–534. PubMed

Doležel J., Čížková J., Šimková H., Bartoš J.. One major challenge of sequencing large plant genomes is to know how big they really are. Int. J. Mol. Sci. 2018; 19:3554. PubMed PMC

Lysák M.A., Číhalíková J., Kubaláková M., Šimková H., Künzel G., Doležel J.. Flow karyotyping and sorting of mitotic chromosomes of barley (Hordeumvulgare L.). Chromosome Res. 1999; 7:431–444. PubMed

Šimková H., Číhalíková J., Vrána J., Lysák M.A., Doležel J.. Preparation of HMW DNA from plant nuclei and chromosomes isolated from root tips. Biol. Plantarum. 2003; 46:369–373.

Rao S.S.P., Huntley M.H., Durand N.C., Stamenova E.K., Bochkov I.D., Robinson J.T., Sanborn A.L., Machol I., Omer A.D., Lander E.S.et al. .. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell. 2014; 159:1665–1680. PubMed PMC

Monat C., Padmarasu S., Lux T., Wicker T., Gundlach H., Himmelbach A., Ens J., Li C., Muehlbauer G.J., Schulman A.H.et al. .. TRITEX: chromosome-scale sequence assembly of Triticeae genomes with open-source tools. Genome Biol. 2019; 20:284. PubMed PMC

Beier S., Himmelbach A., Colmsee C., Zhang X.-Q., Barrero R.A., Zhang Q., Li L., Bayer M., Bolser D., Taudien S.et al. .. Construction of a map-based reference genome sequence for barley, Hordeumvulgare L. Sci Data. 2017; 4:170044. PubMed PMC

R Core Team R: a language and environment for statistical computing. 2020; Vienna, Austria: R Foundation for Statistical Computing.

Bass H.W., Marshall W.F., Sedat J.W., Agard D.A., Cande W.Z.. Telomeres cluster de novo before the initiation of synapsis: a three-dimensional spatial analysis of telomere positions before and during meiotic prophase. J. Cell Biol. 1997; 137:5–18. PubMed PMC

Howe E.S., Murphy S.P., Bass H.W.. Plant meiosis, methods and protocols. Methods Mo.l Biol. 2013; 990:53–66. PubMed

Němečková A., Koláčková V., Vrána J., Doležel J., Hřibová E.. DNA replication and chromosome positioning throughout the interphase in three-dimensional space of plant nuclei. J. Exp. Bot. 2020; 71:6262–6272. PubMed

Mascher M., Gundlach H., Himmelbach A., Beier S., Twardziok S.O., Wicker T., Radchuk V., Dockter C., Hedley P.E., Russell J.et al. .. A chromosome conformation capture ordered sequence of the barley genome. Nature. 2017; 544:427–433. PubMed

Belostotsky D.A., Ananiev E.V.. Characterization of relic DNA from barley genome. Theor. Appl. Genet. 1990; 80:374–380. PubMed

Schubert I., Shi F., Fuchs J., Endo T.R.. An efficient screening for terminal deletions and translocations of barley chromosomes added to common wheat. Plant J. 1998; 14:489–495.

Richards E.J., Ausubel F.M.. Isolation of a higher eukaryotic telomere from Arabidopsis thaliana. Cell. 1988; 53:127–136. PubMed

Zhang S., Zhu M., Shang Y., Wang J., Dawadundup Zhuang L., Zhang J., Chu C., Qi Z.. Physical organization of repetitive sequences and chromosome diversity of barley revealed by fluorescence in situ hybridization (FISH). Genome. 2019; 62:329–339. PubMed

Gerlach W.L., Bedbrook J.R.. Cloning and characterization of ribosomal RNA genes from wheat and barley. Nucleic Acids Res. 1979; 7:1869–1885. PubMed PMC

Weisshart K., Fuchs J., Schubert V.. Structured illumination microscopy (SIM) and photoactivated localization microscopy (PALM) to analyze the abundance and distribution of RNA polymerase II molecules on flow-sorted Arabidopsis nuclei. Bio Protoc. 2016; 6:e1725.

Eastman P., Swails J., Chodera J.D., McGibbon R.T., Zhao Y., Beauchamp K.A., Wang L.-P., Simmonett A.C., Harrigan M.P., Stern C.D.et al. .. OpenMM 7: rapid development of high performance algorithms for molecular dynamics. PLoS Comput. Biol. 2017; 13:e1005659. PubMed PMC

Tour E.B., Laemmli U.K.. The metaphase scaffold is helically folded: sister chromatids have predominantly opposite helical handedness. Cell. 1988; 55:937–944. PubMed

Maeshima K., Laemmli U.K.. A two-step scaffolding model for mitotic chromosome assembly. Dev. Cell. 2003; 4:467–480. PubMed

Schubert V., Ruban A., Houben A.. Chromatin ring formation at plant centromeres. Front. Plant Sci. 2016; 7:28. PubMed PMC

Nagasaka K., Hossain M.J., Roberti M.J., Ellenberg J., Hirota T.. Sister chromatid resolution is an intrinsic part of chromosome organization in prophase. Nat. Cell Biol. 2016; 18:692–699. PubMed

Williams S.P., Athey B.D., Muglia L.J., Schappe R.S., Gough A.H., Langmore J.P.. Chromatin fibers are left-handed double helices with diameter and mass per unit length that depend on linker length. Biophys. J. 1986; 49:233–248. PubMed PMC

Sorsa V. Distribution of chromomeres as a basis of chromosomal coiling. J. Cell Sci. 1986; 80:193–205. PubMed

Sax K. Chromosome structure in the meiotic chromosomes of Rhoeo discolor Hance. J. Arnold Arbor., Harv. Univ. 1935; 61:216–224.

Manton I., Smiles J.. Observations on the spiral structure of somatic chromosomes in Osmunda with the aid of ultraviolet light. Ann. Bot. 1943; 27:195–212.

Nebel B.R. Chromosome structure in Tradescantiae. II. Zeitschr. Zellforsch. Mikroskop. Anat. 1932; 16:285–304.

Nebel B.R., Ruttle M.L.. Chromosome structure in Tradescantiae. VII. Further observations on the direction of coiling in Tradescantia reflexa Raf. Am. Nat. 1936; 70:226–236.

Nebel B.R., Ruttle M.L.. Chromosome structure. IX. Tradescantia reflexa and Trillium erectum. Am. J. Bot. 1936; 23:652–663.

Sax K., Humphrey L.M.. Structure of meiotic chromosomes in microsporogenesis of Tradescantia. Bot. Gaz. (Chicago). 1934; 96:353–362.

Kubalová I., Němečková A., Weisshart K., Hřibová E., Schubert V.. Comparing super-resolution microscopy techniques to analyze chromosomes. Int. J. Mol. Sci. 2021; 22:1903. PubMed PMC

Perry P., Wolff S.. New Giemsa method for the differential staining of sister chromatids. Nature. 1974; 251:156–158. PubMed

Banigan E.J., Mirny L.A.. Loop extrusion: theory meets single-molecule experiments. Curr. Opin. Cell Biol. 2020; 64:124–138. PubMed

Walther N., Hossain M.J., Politi A.Z., Koch B., Kueblbeck M., Ødegård-Fougner Ø., Lampe M., Ellenberg J.. A quantitative map of human condensins provides new insights into mitotic chromosome architecture - a quantitative 3D map of condensins in mitosis. J. Cell Biol. 2018; 217:2309–2328. PubMed PMC

Sun M., Biggs R., Hornick J., Marko J.F.. Condensin controls mitotic chromosome stiffness and stability without forming a structurally contiguous scaffold. Chromosome Res. 2018; 26:277–295. PubMed PMC

Hoencamp C., Dudchenko O., Elbatsh A.M.O., Brahmachari S., Raaijmakers J.A., Schaik T., Cacciatore Á.S., Contessoto V.G., Heesbeen R.G.H.P., van Broek B.et al. .. 3D genomics across the tree of life reveals condensin II as a determinant of architecture type. Science. 2021; 372:984–989. PubMed PMC

Goto T., Wang J.C.. Yeast DNA topoisomerase II. An ATP-dependent type II topoisomerase that catalyzes the catenation, decatenation, unknotting, and relaxation of double-stranded DNA rings. J. Biol. Chem. 1982; 257:5866–5872. PubMed

Andonegui-Elguera M.A., Cáceres-Gutiérrez R.E., López-Saavedra A., Cisneros-Soberanis F., Justo-Garrido M., Díaz-Chávez J., Herrera L.A.. The roles of histone post-translational modifications in the formation and function of a mitotic chromosome. Int. J. Mol. Sci. 2022; 23:8704. PubMed PMC

Mascher M., Muehlbauer G.J., Rokhsar D.S., Chapman J., Schmutz J., Barry K., Muñoz-Amatriaín M., Close T.J., Wise R.P., Schulman A.H.et al. .. Anchoring and ordering NGS contig assemblies by population sequencing (POPSEQ). Plant J. 2013; 76:718–727. PubMed PMC

Snir Y., Kamien R.D.. Entropically driven helix formation. Science. 2005; 307:1067–1067. PubMed

Maritan A., Micheletti C., Trovato A., Banavar J.R.. Optimal shapes of compact strings. Nature. 2000; 406:287–290. PubMed

Finan K., Cook P.R., Marenduzzo D.. Non-specific (entropic) forces as major determinants of the structure of mammalian chromosomes. Chromosome Res. 2011; 19:53–61. PubMed

Kuznetsova M.A., Chaban I.A., Sheval E.V.. Visualization of chromosome condensation in plants with large chromosomes. BMC Plant Biol. 2017; 17:153. PubMed PMC

Przybył S., Pierański P.. Helical close packings of ideal ropes. Eur. Phys. J. E. 2001; 4:445–449.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...