Helical coiling of metaphase chromatids
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
36864547
PubMed Central
PMC10085683
DOI
10.1093/nar/gkad028
PII: 7058222
Knihovny.cz E-zdroje
- MeSH
- chromatidy * chemie MeSH
- chromatin genetika MeSH
- chromozomy rostlin MeSH
- chromozomy MeSH
- ječmen (rod) * cytologie MeSH
- metafáze * MeSH
- mikroskopie MeSH
- výměna sesterských chromatid MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- chromatin MeSH
Chromatids of mitotic chromosomes were suggested to coil into a helix in early cytological studies and this assumption was recently supported by chromosome conformation capture (3C) sequencing. Still, direct differential visualization of a condensed chromatin fibre confirming the helical model was lacking. Here, we combined Hi-C analysis of purified metaphase chromosomes, biopolymer modelling and spatial structured illumination microscopy of large fluorescently labeled chromosome segments to reveal the chromonema - a helically-wound, 400 nm thick chromatin thread forming barley mitotic chromatids. Chromatin from adjacent turns of the helix intermingles due to the stochastic positioning of chromatin loops inside the chromonema. Helical turn size varies along chromosome length, correlating with chromatin density. Constraints on the observable dimensions of sister chromatid exchanges further supports the helical chromonema model.
Chemical Engineering Department University of Michigan Ann Arbor MI USA
Daicel Arbor Biosciences Ann Arbor MI USA
German Centre for Integrative Biodiversity Research Halle Jena Leipzig D 04103Leipzig Germany
Leibniz Institute of Plant Genetics and Crop Plant Research Gatersleben D 06466 Seeland Germany
Zobrazit více v PubMed
Zhou C.Y., Heald R.. Emergent properties of mitotic chromosomes. Curr. Opin. Cell Biol. 2020; 64:43–49. PubMed PMC
Beseda T., Cápal P., Kubalová I., Schubert V., Doležel J., Šimková H.. Mitotic chromosome organization: general rules meet species-specific variability. Comput. Struct. 2020; 18:1311–1319. PubMed PMC
Manton I. The spiral structure of chromosomes. Biol. Rev. Camb. Philos. Soc. 1950; 25:486–508. PubMed
Ohnuki Y. Structure of chromosomes. Chromosoma. 1968; 25:402–428. PubMed
Saitoh Y., Laemmli U.K.. Metaphase chromosome structure: bands arise from a differential folding path of the highly AT-rich scaffold. Cell. 1994; 76:609–622. PubMed
Sumner A.T. The mitotic chromosome. Adv. Genome Biol. 1998; 5:211–261.
Daban J. Supramolecular multilayer organization of chromosomes: possible functional roles of planar chromatin in gene expression and DNA replication and repair. FEBS Lett. 2020; 594:395–411. PubMed
Schloissnig S., Kawaguchi A., Nowoshilow S., Falcon F., Otsuki L., Tardivo P., Timoshevskaya N., Keinath M.C., Smith J.J., Voss S.R.et al. .. The giant axolotl genome uncovers the evolution, scaling, and transcriptional control of complex gene loci. Proc. Natl. Acad. Sci. U.S.A. 2021; 118:e2017176118. PubMed PMC
Ohnuki Y. Demonstration of the spiral structure of human chromosomes. Nature. 1965; 208:916–917. PubMed
Gibcus J.H., Samejima K., Goloborodko A., Samejima I., Naumova N., Nuebler J., Kanemaki M.T., Xie L., Paulson J.R., Earnshaw W.C.et al. .. A pathway for mitotic chromosome formation. Science. 2018; 359:eaao6135. PubMed PMC
Paulson J.R., Laemmli U.K.. The structure of histone-depleted metaphase chromosomes. Cell. 1977; 12:817–828. PubMed
Belmont A.S., Sedat J.W., Agard D.A.. A three-dimensional approach to mitotic chromosome structure: evidence for a complex hierarchical organization. J. Cell Biol. 1987; 105:77–92. PubMed PMC
Belmont A.S., Braunfeld M.B., Sedat J.W., Agard D.A.. Large-scale chromatin structural domains within mitotic and interphase chromosomes in vivo and in vitro. Chromosoma. 1989; 98:129–143. PubMed
Strukov Y.G., Wang Y., Belmont A.S.. Engineered chromosome regions with altered sequence composition demonstrate hierarchical large-scale folding within metaphase chromosomes. J. Cell Biol. 2003; 162:23–35. PubMed PMC
Kireeva N., Lakonishok M., Kireev I., Hirano T., Belmont A.S.. Visualization of early chromosome condensation. J. Cell Biol. 2004; 166:775–785. PubMed PMC
Chu L., Liang Z., Mukhina M., Fisher J., Vincenten N., Zhang Z., Hutchinson J., Zickler D., Kleckner N.. The 3D topography of mitotic chromosomes. Mol. Cell. 2020; 79:902–916. PubMed PMC
Naumova N., Imakaev M., Fudenberg G., Zhan Y., Lajoie B.R., Mirny L.A., Dekker J.. Organization of the mitotic chromosome. Science. 2013; 342:948–953. PubMed PMC
Baranetzky J. Die Kerntheilung in den Pollenmutterzellen einiger Tradescantien. Bot. Zeitschr. 1880; 38:281–296.
Lee A.B. Memoirs: the structure of certain chromosomes and the mechanism of their division. J. Cell Sci. 1920; s2-65:1–32.
Nebel B.R. Chromosome structure in Tradescantiae. I. Methods and morphology. Zeitschr. Zellforsch. Mikroskop. Anat. 1932; 16:251–284.
Nebel B.R. Chromosome structure. Bot. Rev. 1939; 5:563–626.
Ruch Fr. Über den Schraubenbau der meiotischen Chromosomen. Chromosoma. 1950; 3:357–392.
Schvartzman J.B., Cortés F., López-Sáez J.F.. Sister subchromatid exchanged segments and chromosome structure. Exp. Cell. Res. 1978; 114:443–446. PubMed
Nokkala S., Nokkala C.. Spiral structures of meiotic chromosomes in plants. Hereditas. 1985; 103:187–194.
Strukov Y.G., Sural T.H., Kuroda M.I., Sedat J.W.. Evidence of activity-specific, radial organization of mitotic chromosomes in Drosophila. PLoS Biol. 2011; 9:e1000574. PubMed PMC
Strukov Y.G., Belmont A.S.. Mitotic chromosome structure: reproducibility of folding and symmetry between sister chromatids. Biophys. J. 2009; 96:1617–1628. PubMed PMC
Aurich-Costa J., Zamechek L., Keenan P., Bradley S.. Oligo fluorescence in situ hybridization (oligo-FISH), a new strategy for enumerating chromosomes in interphase nuclei. Fertil. Steril. 2007; 88:S86.
Braz G.T., He L., Zhao H., Zhang T., Semrau K., Rouillard J.-M., Torres G.A., Jiang J.. Comparative oligo-FISH mapping: an efficient and powerful methodology to reveal karyotypic and chromosomal evolution. Genetics. 2018; 208:513–523. PubMed PMC
Li G., Zhang T., Yu Z., Wang H., Yang E., Yang Z.. An efficient Oligo-FISH painting system for revealing chromosome rearrangements and polyploidization in Triticeae. Plant J. 2021; 105:978–993. PubMed
Szabo Q., Jost D., Chang J.-M., Cattoni D.I., Papadopoulos G.L., Bonev B., Sexton T., Gurgo J., Jacquier C., Nollmann M.et al. .. TADs are 3D structural units of higher-order chromosome organization in Drosophila. Sci. Adv. 2018; 4:eaar8082. PubMed PMC
Schubert I., Schubert V., Fuchs J.. No evidence for “break-induced replication” in a higher plant – but break-induced conversion may occur. Front. Plant Sci. 2011; 2:8. PubMed PMC
Schvartzman J.B. Sister-chromatid exchanges in higher plant cells: past and perspectives. Mutat. Res. 1987; 181:127–145.
Wilson D.M., Thompson L.H.. Molecular mechanisms of sister-chromatid exchange. Mutat. Res. 2007; 616:11–23. PubMed
Schubert V., Zelkowski M., Klemme S., Houben A.. Similar sister chromatid arrangement in mono- and holocentric plant chromosomes. Cytogenet. Genome Res. 2016; 149:218–225. PubMed
Rachel A.J., Sharma T., Menon V.V.. Harlequin banding and localisation of sister-chromatid exchanges. Mutat. Res. 1991; 264:71–80. PubMed
Jordan R., Edington J., Evans H.H., Schwartz J.L.. Detection of chromosome aberrations by FISH as a function of cell division cycle (Harlequin-FISH). BioTechniques. 1999; 26:532–534. PubMed
Doležel J., Čížková J., Šimková H., Bartoš J.. One major challenge of sequencing large plant genomes is to know how big they really are. Int. J. Mol. Sci. 2018; 19:3554. PubMed PMC
Lysák M.A., Číhalíková J., Kubaláková M., Šimková H., Künzel G., Doležel J.. Flow karyotyping and sorting of mitotic chromosomes of barley (Hordeumvulgare L.). Chromosome Res. 1999; 7:431–444. PubMed
Šimková H., Číhalíková J., Vrána J., Lysák M.A., Doležel J.. Preparation of HMW DNA from plant nuclei and chromosomes isolated from root tips. Biol. Plantarum. 2003; 46:369–373.
Rao S.S.P., Huntley M.H., Durand N.C., Stamenova E.K., Bochkov I.D., Robinson J.T., Sanborn A.L., Machol I., Omer A.D., Lander E.S.et al. .. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell. 2014; 159:1665–1680. PubMed PMC
Monat C., Padmarasu S., Lux T., Wicker T., Gundlach H., Himmelbach A., Ens J., Li C., Muehlbauer G.J., Schulman A.H.et al. .. TRITEX: chromosome-scale sequence assembly of Triticeae genomes with open-source tools. Genome Biol. 2019; 20:284. PubMed PMC
Beier S., Himmelbach A., Colmsee C., Zhang X.-Q., Barrero R.A., Zhang Q., Li L., Bayer M., Bolser D., Taudien S.et al. .. Construction of a map-based reference genome sequence for barley, Hordeumvulgare L. Sci Data. 2017; 4:170044. PubMed PMC
R Core Team R: a language and environment for statistical computing. 2020; Vienna, Austria: R Foundation for Statistical Computing.
Bass H.W., Marshall W.F., Sedat J.W., Agard D.A., Cande W.Z.. Telomeres cluster de novo before the initiation of synapsis: a three-dimensional spatial analysis of telomere positions before and during meiotic prophase. J. Cell Biol. 1997; 137:5–18. PubMed PMC
Howe E.S., Murphy S.P., Bass H.W.. Plant meiosis, methods and protocols. Methods Mo.l Biol. 2013; 990:53–66. PubMed
Němečková A., Koláčková V., Vrána J., Doležel J., Hřibová E.. DNA replication and chromosome positioning throughout the interphase in three-dimensional space of plant nuclei. J. Exp. Bot. 2020; 71:6262–6272. PubMed
Mascher M., Gundlach H., Himmelbach A., Beier S., Twardziok S.O., Wicker T., Radchuk V., Dockter C., Hedley P.E., Russell J.et al. .. A chromosome conformation capture ordered sequence of the barley genome. Nature. 2017; 544:427–433. PubMed
Belostotsky D.A., Ananiev E.V.. Characterization of relic DNA from barley genome. Theor. Appl. Genet. 1990; 80:374–380. PubMed
Schubert I., Shi F., Fuchs J., Endo T.R.. An efficient screening for terminal deletions and translocations of barley chromosomes added to common wheat. Plant J. 1998; 14:489–495.
Richards E.J., Ausubel F.M.. Isolation of a higher eukaryotic telomere from Arabidopsis thaliana. Cell. 1988; 53:127–136. PubMed
Zhang S., Zhu M., Shang Y., Wang J., Dawadundup Zhuang L., Zhang J., Chu C., Qi Z.. Physical organization of repetitive sequences and chromosome diversity of barley revealed by fluorescence in situ hybridization (FISH). Genome. 2019; 62:329–339. PubMed
Gerlach W.L., Bedbrook J.R.. Cloning and characterization of ribosomal RNA genes from wheat and barley. Nucleic Acids Res. 1979; 7:1869–1885. PubMed PMC
Weisshart K., Fuchs J., Schubert V.. Structured illumination microscopy (SIM) and photoactivated localization microscopy (PALM) to analyze the abundance and distribution of RNA polymerase II molecules on flow-sorted Arabidopsis nuclei. Bio Protoc. 2016; 6:e1725.
Eastman P., Swails J., Chodera J.D., McGibbon R.T., Zhao Y., Beauchamp K.A., Wang L.-P., Simmonett A.C., Harrigan M.P., Stern C.D.et al. .. OpenMM 7: rapid development of high performance algorithms for molecular dynamics. PLoS Comput. Biol. 2017; 13:e1005659. PubMed PMC
Tour E.B., Laemmli U.K.. The metaphase scaffold is helically folded: sister chromatids have predominantly opposite helical handedness. Cell. 1988; 55:937–944. PubMed
Maeshima K., Laemmli U.K.. A two-step scaffolding model for mitotic chromosome assembly. Dev. Cell. 2003; 4:467–480. PubMed
Schubert V., Ruban A., Houben A.. Chromatin ring formation at plant centromeres. Front. Plant Sci. 2016; 7:28. PubMed PMC
Nagasaka K., Hossain M.J., Roberti M.J., Ellenberg J., Hirota T.. Sister chromatid resolution is an intrinsic part of chromosome organization in prophase. Nat. Cell Biol. 2016; 18:692–699. PubMed
Williams S.P., Athey B.D., Muglia L.J., Schappe R.S., Gough A.H., Langmore J.P.. Chromatin fibers are left-handed double helices with diameter and mass per unit length that depend on linker length. Biophys. J. 1986; 49:233–248. PubMed PMC
Sorsa V. Distribution of chromomeres as a basis of chromosomal coiling. J. Cell Sci. 1986; 80:193–205. PubMed
Sax K. Chromosome structure in the meiotic chromosomes of Rhoeo discolor Hance. J. Arnold Arbor., Harv. Univ. 1935; 61:216–224.
Manton I., Smiles J.. Observations on the spiral structure of somatic chromosomes in Osmunda with the aid of ultraviolet light. Ann. Bot. 1943; 27:195–212.
Nebel B.R. Chromosome structure in Tradescantiae. II. Zeitschr. Zellforsch. Mikroskop. Anat. 1932; 16:285–304.
Nebel B.R., Ruttle M.L.. Chromosome structure in Tradescantiae. VII. Further observations on the direction of coiling in Tradescantia reflexa Raf. Am. Nat. 1936; 70:226–236.
Nebel B.R., Ruttle M.L.. Chromosome structure. IX. Tradescantia reflexa and Trillium erectum. Am. J. Bot. 1936; 23:652–663.
Sax K., Humphrey L.M.. Structure of meiotic chromosomes in microsporogenesis of Tradescantia. Bot. Gaz. (Chicago). 1934; 96:353–362.
Kubalová I., Němečková A., Weisshart K., Hřibová E., Schubert V.. Comparing super-resolution microscopy techniques to analyze chromosomes. Int. J. Mol. Sci. 2021; 22:1903. PubMed PMC
Perry P., Wolff S.. New Giemsa method for the differential staining of sister chromatids. Nature. 1974; 251:156–158. PubMed
Banigan E.J., Mirny L.A.. Loop extrusion: theory meets single-molecule experiments. Curr. Opin. Cell Biol. 2020; 64:124–138. PubMed
Walther N., Hossain M.J., Politi A.Z., Koch B., Kueblbeck M., Ødegård-Fougner Ø., Lampe M., Ellenberg J.. A quantitative map of human condensins provides new insights into mitotic chromosome architecture - a quantitative 3D map of condensins in mitosis. J. Cell Biol. 2018; 217:2309–2328. PubMed PMC
Sun M., Biggs R., Hornick J., Marko J.F.. Condensin controls mitotic chromosome stiffness and stability without forming a structurally contiguous scaffold. Chromosome Res. 2018; 26:277–295. PubMed PMC
Hoencamp C., Dudchenko O., Elbatsh A.M.O., Brahmachari S., Raaijmakers J.A., Schaik T., Cacciatore Á.S., Contessoto V.G., Heesbeen R.G.H.P., van Broek B.et al. .. 3D genomics across the tree of life reveals condensin II as a determinant of architecture type. Science. 2021; 372:984–989. PubMed PMC
Goto T., Wang J.C.. Yeast DNA topoisomerase II. An ATP-dependent type II topoisomerase that catalyzes the catenation, decatenation, unknotting, and relaxation of double-stranded DNA rings. J. Biol. Chem. 1982; 257:5866–5872. PubMed
Andonegui-Elguera M.A., Cáceres-Gutiérrez R.E., López-Saavedra A., Cisneros-Soberanis F., Justo-Garrido M., Díaz-Chávez J., Herrera L.A.. The roles of histone post-translational modifications in the formation and function of a mitotic chromosome. Int. J. Mol. Sci. 2022; 23:8704. PubMed PMC
Mascher M., Muehlbauer G.J., Rokhsar D.S., Chapman J., Schmutz J., Barry K., Muñoz-Amatriaín M., Close T.J., Wise R.P., Schulman A.H.et al. .. Anchoring and ordering NGS contig assemblies by population sequencing (POPSEQ). Plant J. 2013; 76:718–727. PubMed PMC
Snir Y., Kamien R.D.. Entropically driven helix formation. Science. 2005; 307:1067–1067. PubMed
Maritan A., Micheletti C., Trovato A., Banavar J.R.. Optimal shapes of compact strings. Nature. 2000; 406:287–290. PubMed
Finan K., Cook P.R., Marenduzzo D.. Non-specific (entropic) forces as major determinants of the structure of mammalian chromosomes. Chromosome Res. 2011; 19:53–61. PubMed
Kuznetsova M.A., Chaban I.A., Sheval E.V.. Visualization of chromosome condensation in plants with large chromosomes. BMC Plant Biol. 2017; 17:153. PubMed PMC
Przybył S., Pierański P.. Helical close packings of ideal ropes. Eur. Phys. J. E. 2001; 4:445–449.
Insight into chromatin compaction and spatial organization in rice interphase nuclei