Comparing Super-Resolution Microscopy Techniques to Analyze Chromosomes
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu srovnávací studie, časopisecké články
Grantová podpora
Deutsche Forschungsgemeinschaft (Schu 762/11-1); ERDF project "Plants as a tool for sustainable global development" (grant award CZ.02.1.01/0.0/0.0/16_019/0000827)
Deutsche Forschungsgemeinschaft
PubMed
33672992
PubMed Central
PMC7917581
DOI
10.3390/ijms22041903
PII: ijms22041903
Knihovny.cz E-zdroje
- Klíčová slova
- Hordeum vulgare, chromatin, deconvolution microscopy, metaphase chromosome, nanoscopy, photoactivated localization microscopy, stimulated emission depletion microscopy, structured illumination microscopy, topoisomerase II, wide-field microscopy,
- MeSH
- chromozomy rostlin chemie genetika metabolismus MeSH
- DNA-topoisomerasy typu II metabolismus MeSH
- fluorescenční barviva chemie MeSH
- fluorescenční mikroskopie metody MeSH
- indoly chemie MeSH
- ječmen (rod) cytologie genetika MeSH
- konfokální mikroskopie metody MeSH
- metafáze genetika MeSH
- reprodukovatelnost výsledků MeSH
- zobrazení jednotlivé molekuly metody MeSH
- Publikační typ
- časopisecké články MeSH
- srovnávací studie MeSH
- Názvy látek
- DAPI MeSH Prohlížeč
- DNA-topoisomerasy typu II MeSH
- fluorescenční barviva MeSH
- indoly MeSH
The importance of fluorescence light microscopy for understanding cellular and sub-cellular structures and functions is undeniable. However, the resolution is limited by light diffraction (~200-250 nm laterally, ~500-700 nm axially). Meanwhile, super-resolution microscopy, such as structured illumination microscopy (SIM), is being applied more and more to overcome this restriction. Instead, super-resolution by stimulated emission depletion (STED) microscopy achieving a resolution of ~50 nm laterally and ~130 nm axially has not yet frequently been applied in plant cell research due to the required specific sample preparation and stable dye staining. Single-molecule localization microscopy (SMLM) including photoactivated localization microscopy (PALM) has not yet been widely used, although this nanoscopic technique allows even the detection of single molecules. In this study, we compared protein imaging within metaphase chromosomes of barley via conventional wide-field and confocal microscopy, and the sub-diffraction methods SIM, STED, and SMLM. The chromosomes were labeled by DAPI (4',6-diamidino-2-phenylindol), a DNA-specific dye, and with antibodies against topoisomerase IIα (Topo II), a protein important for correct chromatin condensation. Compared to the diffraction-limited methods, the combination of the three different super-resolution imaging techniques delivered tremendous additional insights into the plant chromosome architecture through the achieved increased resolution.
Carl Zeiss Microscopy GmbH D 07745 Jena Germany
Leibniz Institute of Plant Genetics and Crop Plant Research Gatersleben D 06466 Seeland Germany
Zobrazit více v PubMed
Abbe E. Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung. Archiv für Mikroskopische Anatomie. 1873;9:413–468. doi: 10.1007/BF02956173. DOI
Dodgson J., Chessel A., Cox S., Carazo Salas R.E. Super-resolution microscopy: SIM, STED and Localization Microscopy. In: Dahms T.E.S., Czymmek K.J., editors. Advanced Microscopy in Mycology. Springer International Publishing; Cham, Switzerland: 2015. pp. 47–60. DOI
Pawley J.B. Handbook of Biological Confocal Microscopy. 3rd ed. Springer Science+Business Media LLC; New York, NY, USA: 2006. DOI
Vangindertael J., Camacho R., Sempels W., Mizuno H., Dedecker P., Janssen K.P.F.P. An introduction to optical super-resolution microscopy for the adventurous biologist. Methods Appl. Fluoresc. 2018;6:022003. doi: 10.1088/2050-6120/aaae0c. PubMed DOI
Schermelleh L., Ferrand A., Huser T., Eggeling C., Sauer M., Biehlmaier O., Drummen G.P.C. Super-resolution microscopy demystified. Nat. Cell Biol. 2019;21:72–84. doi: 10.1038/s41556-018-0251-8. PubMed DOI
Gustafsson M.G.L. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. J. Microsc. 2000;198:82–87. doi: 10.1046/j.1365-2818.2000.00710.x. PubMed DOI
Rego E.H., Shao L., Macklin J.J., Winoto L., Johansson G.A., Kamps-Hughes N., Davidson M.W., Gustafsson M.G.L. Nonlinear structured-illumination microscopy with a photoswitchable protein reveals cellular structures at 50-nm resolution. Proc. Natl. Acad. Sci. USA. 2011;109:E135–E143. doi: 10.1073/pnas.1107547108. PubMed DOI PMC
Wegel E., Göhler A., Lagerholm B.C., Wainman A., Uphoff S., Kaufmann R., Dobbie I.M. Imaging cellular structures in super-resolution with SIM, STED and Localisation Microscopy: A practical comparison. Sci. Rep. 2016;6:27290. doi: 10.1038/srep27290. PubMed DOI PMC
Huff J. The Airyscan detector: Confocal microscopy evolution for the neurosciences. Optoelectron. Gyroscopes. 2018:83–102. doi: 10.1007/978-981-10-9020-2_4. DOI
Betzig E., Patterson G.H., Sougrat R., Lindwasser O.W., Olenych S., Bonifacino J.S., Davidson M.W., Lippincott-Schwartz J., Hess H.F. Imaging intracellular fluorescent proteins at nanometer resolution. Science. 2006;313:1642–1645. doi: 10.1126/science.1127344. PubMed DOI
Huang B., Babcock H., Zhuang X. Breaking the diffraction arrier: Super-resolution Imaging of Cells. Cell. 2010;143:1047–1058. doi: 10.1016/j.cell.2010.12.002. PubMed DOI PMC
Rust M.J., Bates M., Zhuang X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM) Nat. Methods. 2006;3:793–796. doi: 10.1038/nmeth929. PubMed DOI PMC
Liu S., Huh H., Lee S.-H., Huang F. Three-dimensional single-molecule localization microscopy in whole-cell and tissue specimens. Annu. Rev. Biomed. Eng. 2020;22:155–184. doi: 10.1146/annurev-bioeng-060418-052203. PubMed DOI PMC
Komis G., Šamajová O., Ovečka M., Šamaj J. Super-resolution microscopy in plant cell imaging. Trends Plant Sci. 2015;20:834–843. doi: 10.1016/j.tplants.2015.08.013. PubMed DOI
Schubert V. Super-resolution microscopy—Applications in plant cell research. Front. Plant Sci. 2017;8:531. doi: 10.3389/fpls.2017.00531. PubMed DOI PMC
Korobchevskaya K., Lagerholm B.C., Colin-York H., Fritzsche M. Exploring the potential of Airyscan microscopy for live cell imaging. Photonics. 2017;4:41. doi: 10.3390/photonics4030041. DOI
Müller T., Schumann C., Kraegeloh A. STED Microscopy and its applications: New insights into cellular processes on the nanoscale. Chem. Phys. Chem. 2012;13:1986–2000. doi: 10.1002/cphc.201100986. PubMed DOI
Hell S.W., Wichmann J. Breaking the diffraction resolution limit by stimulated emission: Stimulated-emission-depletion fluorescence microscopy. Opt. Lett. 1994;19:780–782. doi: 10.1364/OL.19.000780. PubMed DOI
Willig K.I., Harke B., Medda R., Hell S.W. STED microscopy with continuous wave beams. Nat. Methods. 2007;4:915–918. doi: 10.1038/nmeth1108. PubMed DOI
Khater I.M., Nabi I.R., Hamarneh G. A Review of super-resolution single-molecule localization microscopy cluster analysis and quantification methods. Gene Exp. Patterns. 2020;1 doi: 10.1016/j.patter.2020.100038. PubMed DOI PMC
Li L., Xin B., Kuang W., Zhou Z., Huang Z.-L. Divide and conquer: Real-time maximum likelihood fitting of multiple emitters for super-resolution localization microscopy. Opt. Express. 2019;27:21029–21049. doi: 10.1364/OE.27.021029. PubMed DOI
Weisshart K., Dertinger T., Kalkbrenner T., Kleppe I., Kempe M. Super-resolution microscopy heads towards 3D dynamics. Adv. Opt. Technol. 2013;2:211–231. doi: 10.1515/aot-2013-0015. DOI
Komis G., Novák D., Ovečka M., Šamajová O., Šamaj J. Advances in imaging plant cell dynamics. Plant Physiol. 2018;176:80–93. doi: 10.1104/pp.17.00962. PubMed DOI PMC
Kostiuk G., Bucevicius J., Gerasimaite R., Lukinavicius G. Application of STED imaging for chromatin studies. J. Phys. D Appl. Phys. 2019;52:504003. doi: 10.1088/1361-6463/ab4410. DOI
Maß L., Holtmannspötter M., Zachgo S. Dual-color 3D-dSTORM colocalization and quantification of ROXY1 and RNAPII variants throughout the transcription cycle in root meristem nuclei. Plant J. 2020;104:1423–1436. doi: 10.1111/tpj.14986. PubMed DOI
Němečková A., Wäsch C., Schubert V., Ishii T., Hřibová E., Houben A. CRISPR/Cas9-based RGEN-ISL allows the simultaneous and specific visualization of proteins, DNA repeats, and sites of DNA replication. Cytogenet. Genome Res. 2019;159:48–53. doi: 10.1159/000502600. PubMed DOI
Schubert V., Neumann P., Marques A., Heckmann S., Macas J., Pedrosa-Harand A., Schubert I., Jang T.-S., Houben A. Super-resolution microscopy reveals diversity of plant centromere architecture. Int. J. Mol. Sci. 2020;21:3488. doi: 10.3390/ijms21103488. PubMed DOI PMC
Schubert V., Weisshart K. Abundance and distribution of RNA polymerase II in Arabidopsis interphase nuclei. J. Exp. Bot. 2015;66:1687–1698. doi: 10.1093/jxb/erv091. PubMed DOI PMC
Tichá M., Hlaváčková K., Hrbáčková M., Ovečka M., Šamajová O., Šamaj J. Super-resolution imaging of microtubules in Medicago Sativa. Methods Cell Biol. 2020;160:237–251. doi: 10.1016/bs.mcb.2020.03.004. PubMed DOI
Sivaguru M., Urban M.A., Fried G., Wesseln C.J., Mander L., Punyasena S.W. Comparative performance of airyscan and structured illumination superresolution microscopy in the study of the surface texture and 3D shape of pollen. Microsc. Res. Tech. 2018;81:101–114. doi: 10.1002/jemt.22732. PubMed DOI
Tröger J., Hoischen C., Perner B., Monajembashi S., Barbotin A., Löschberger A., Eggeling C., Kessels M.M., Qualmann B., Hemmerich P. Comparison of mMultiscale imaging methods for brain research. Cells. 2020;9:1377. doi: 10.3390/cells9061377. PubMed DOI PMC
Fukui K., Uchiyama S. Chromosome protein framework from proteome analysis of isolated human metaphase chromosomes. Chem. Rec. 2007;7:230–237. doi: 10.1002/tcr.20120. PubMed DOI
Hizume K., Araki S., Yoshikawa K., Takeyasu K. Topoisomerase II, scaffold component, promotes chromatin compaction in vitro in a linker-histone H1-dependent manner. Nucleic Acids Res. 2007;35:2787–2799. doi: 10.1093/nar/gkm116. PubMed DOI PMC
Nitiss J.L. DNA topoisomerase II and its growing repertoire of biological functions. Nat. Rev. Cancer. 2009;9:327–337. doi: 10.1038/nrc2608. PubMed DOI PMC
Chu L., Liang Z., Mukhina M., Fisher J., Vincenten N., Zhang Z., Hutchinson J., Zickler D., Kleckner N. The 3D topography of Mmitotic chromosomes. Mol. Cell. 2020;79:902–916.e6. doi: 10.1016/j.molcel.2020.07.002. PubMed DOI PMC
Earnshaw W.C., Halligan B., Cooke C.A., Heck M.M.S., Liu L.F. Topoisomerase II is a structural component of mitotic chromosome scaffolds. J. Cell Biol. 1985;100:1706–1715. doi: 10.1083/jcb.100.5.1706. PubMed DOI PMC
Samejima K., Samejima I., Vagnarelli P., Ogawa H., Vargiu G., Kelly D.A., Alves F.D.L., Kerr A., Green L.C., Hudson D.F., et al. Mitotic chromosomes are compacted laterally by KIF4 and condensin and axially by topoisomerase IIα. J. Cell Biol. 2012;199:755–770. doi: 10.1083/jcb.201202155. PubMed DOI PMC
Żabka A., Polit J.T., Bernasińska J., Maszewski J. DNA topoisomerase II-dependent control of the cell cycle progression in root meristems of Allium cepa. Cell Biol. Int. 2013;38:355–367. doi: 10.1002/cbin.10211. PubMed DOI
Singh B.N., Achary V.M.M., Panditi V., Sopory S.K., Reddy M.K. Dynamics of tobacco DNA topoisomerases II in cell cycle regulation: To manage topological constrains during replication, transcription and mitotic chromosome condensation and segregation. Plant Mol. Biol. 2017;94:595–607. doi: 10.1007/s11103-017-0626-4. PubMed DOI
Martinez-Garcia M., Schubert V., Osman K., Darbyshire A., Sanchez-Moran E., Franklin F.C.H. TOPII and chromosome movement help remove interlocks between entangled chromosomes during meiosis. J. Cell Biol. 2018;217:4070–4079. doi: 10.1083/jcb.201803019. PubMed DOI PMC
Sparrow C.M. On spectroscopic resolving power. Astrophys. J. 1916;44:76. doi: 10.1086/142271. DOI
Schultz P., Olland S., Oudet P., Hancock R. Structure and conformational changes of DNA topoisomerase II visualized by electron microscopy. Proc. Natl. Acad. Sci. USA. 1996;93:5936–5940. doi: 10.1073/pnas.93.12.5936. PubMed DOI PMC
Hebisch E., Wagner E., Westphal V., Sieber J., Lehnart S. A protocol for registration and correction of multicolour STED superresolution images. J. Microsc. 2017;267:160–175. doi: 10.1111/jmi.12556. PubMed DOI
Weisshart K., Fuchs J., Schubert V. Structured illumination microscopy (SIM) and photoactivated localization microscopy (PALM) to analyze the abundance and distribution of RNA polymerase II molecules on flow-sorted Arabidopsis nuclei. Bio-Protocol. 2016;6:1725. doi: 10.21769/BioProtoc.1725. DOI
Lysák M.A., Číhalíková J., Kubaláková M., Šimková H., Künzel G., Doležel J. Flow karyotyping and sorting of mitotic chromosomes of barley (Hordeum vulgare L.) Chromosome Res. 1999;7:431–444. doi: 10.1023/A:1009293628638. PubMed DOI
Karras C., Smedh M., Förster R., Deschout H., Fernandez-Rodriguez J., Heintzmann R. Successful optimization of reconstruction parameters in structured illumination microscopy—A practical guide. Opt. Commun. 2019;436:69–75. doi: 10.1016/j.optcom.2018.12.005. DOI
Dekker A.J.D., Bos A.V.D. Resolution: A survey. J. Opt. Soc. Am. A. 1997;14:547–557. doi: 10.1364/JOSAA.14.000547. DOI
Weik M.H. Computer Science and Communications Dictionary. Springer International Publishing; Boston, MA, USA: 2000. Nyquist theorem; p. 1127.
Nieuwenhuizen R.P., Stallinga S., Rieger B. Cell Membrane Nanodomains. CRC Press; New York, NY, USA: 2015. Visualization and resolution in localization microscopy. DOI
The genetic mechanism of B chromosome drive in rye illuminated by chromosome-scale assembly
Helical coiling of metaphase chromatids
Kinetochore size scales with chromosome size in bimodal karyotypes of Agavoideae