Comparing Super-Resolution Microscopy Techniques to Analyze Chromosomes

. 2021 Feb 14 ; 22 (4) : . [epub] 20210214

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu srovnávací studie, časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33672992

Grantová podpora
Deutsche Forschungsgemeinschaft (Schu 762/11-1); ERDF project "Plants as a tool for sustainable global development" (grant award CZ.02.1.01/0.0/0.0/16_019/0000827) Deutsche Forschungsgemeinschaft

The importance of fluorescence light microscopy for understanding cellular and sub-cellular structures and functions is undeniable. However, the resolution is limited by light diffraction (~200-250 nm laterally, ~500-700 nm axially). Meanwhile, super-resolution microscopy, such as structured illumination microscopy (SIM), is being applied more and more to overcome this restriction. Instead, super-resolution by stimulated emission depletion (STED) microscopy achieving a resolution of ~50 nm laterally and ~130 nm axially has not yet frequently been applied in plant cell research due to the required specific sample preparation and stable dye staining. Single-molecule localization microscopy (SMLM) including photoactivated localization microscopy (PALM) has not yet been widely used, although this nanoscopic technique allows even the detection of single molecules. In this study, we compared protein imaging within metaphase chromosomes of barley via conventional wide-field and confocal microscopy, and the sub-diffraction methods SIM, STED, and SMLM. The chromosomes were labeled by DAPI (4',6-diamidino-2-phenylindol), a DNA-specific dye, and with antibodies against topoisomerase IIα (Topo II), a protein important for correct chromatin condensation. Compared to the diffraction-limited methods, the combination of the three different super-resolution imaging techniques delivered tremendous additional insights into the plant chromosome architecture through the achieved increased resolution.

Zobrazit více v PubMed

Abbe E. Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung. Archiv für Mikroskopische Anatomie. 1873;9:413–468. doi: 10.1007/BF02956173. DOI

Dodgson J., Chessel A., Cox S., Carazo Salas R.E. Super-resolution microscopy: SIM, STED and Localization Microscopy. In: Dahms T.E.S., Czymmek K.J., editors. Advanced Microscopy in Mycology. Springer International Publishing; Cham, Switzerland: 2015. pp. 47–60. DOI

Pawley J.B. Handbook of Biological Confocal Microscopy. 3rd ed. Springer Science+Business Media LLC; New York, NY, USA: 2006. DOI

Vangindertael J., Camacho R., Sempels W., Mizuno H., Dedecker P., Janssen K.P.F.P. An introduction to optical super-resolution microscopy for the adventurous biologist. Methods Appl. Fluoresc. 2018;6:022003. doi: 10.1088/2050-6120/aaae0c. PubMed DOI

Schermelleh L., Ferrand A., Huser T., Eggeling C., Sauer M., Biehlmaier O., Drummen G.P.C. Super-resolution microscopy demystified. Nat. Cell Biol. 2019;21:72–84. doi: 10.1038/s41556-018-0251-8. PubMed DOI

Gustafsson M.G.L. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. J. Microsc. 2000;198:82–87. doi: 10.1046/j.1365-2818.2000.00710.x. PubMed DOI

Rego E.H., Shao L., Macklin J.J., Winoto L., Johansson G.A., Kamps-Hughes N., Davidson M.W., Gustafsson M.G.L. Nonlinear structured-illumination microscopy with a photoswitchable protein reveals cellular structures at 50-nm resolution. Proc. Natl. Acad. Sci. USA. 2011;109:E135–E143. doi: 10.1073/pnas.1107547108. PubMed DOI PMC

Wegel E., Göhler A., Lagerholm B.C., Wainman A., Uphoff S., Kaufmann R., Dobbie I.M. Imaging cellular structures in super-resolution with SIM, STED and Localisation Microscopy: A practical comparison. Sci. Rep. 2016;6:27290. doi: 10.1038/srep27290. PubMed DOI PMC

Huff J. The Airyscan detector: Confocal microscopy evolution for the neurosciences. Optoelectron. Gyroscopes. 2018:83–102. doi: 10.1007/978-981-10-9020-2_4. DOI

Betzig E., Patterson G.H., Sougrat R., Lindwasser O.W., Olenych S., Bonifacino J.S., Davidson M.W., Lippincott-Schwartz J., Hess H.F. Imaging intracellular fluorescent proteins at nanometer resolution. Science. 2006;313:1642–1645. doi: 10.1126/science.1127344. PubMed DOI

Huang B., Babcock H., Zhuang X. Breaking the diffraction arrier: Super-resolution Imaging of Cells. Cell. 2010;143:1047–1058. doi: 10.1016/j.cell.2010.12.002. PubMed DOI PMC

Rust M.J., Bates M., Zhuang X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM) Nat. Methods. 2006;3:793–796. doi: 10.1038/nmeth929. PubMed DOI PMC

Liu S., Huh H., Lee S.-H., Huang F. Three-dimensional single-molecule localization microscopy in whole-cell and tissue specimens. Annu. Rev. Biomed. Eng. 2020;22:155–184. doi: 10.1146/annurev-bioeng-060418-052203. PubMed DOI PMC

Komis G., Šamajová O., Ovečka M., Šamaj J. Super-resolution microscopy in plant cell imaging. Trends Plant Sci. 2015;20:834–843. doi: 10.1016/j.tplants.2015.08.013. PubMed DOI

Schubert V. Super-resolution microscopy—Applications in plant cell research. Front. Plant Sci. 2017;8:531. doi: 10.3389/fpls.2017.00531. PubMed DOI PMC

Korobchevskaya K., Lagerholm B.C., Colin-York H., Fritzsche M. Exploring the potential of Airyscan microscopy for live cell imaging. Photonics. 2017;4:41. doi: 10.3390/photonics4030041. DOI

Müller T., Schumann C., Kraegeloh A. STED Microscopy and its applications: New insights into cellular processes on the nanoscale. Chem. Phys. Chem. 2012;13:1986–2000. doi: 10.1002/cphc.201100986. PubMed DOI

Hell S.W., Wichmann J. Breaking the diffraction resolution limit by stimulated emission: Stimulated-emission-depletion fluorescence microscopy. Opt. Lett. 1994;19:780–782. doi: 10.1364/OL.19.000780. PubMed DOI

Willig K.I., Harke B., Medda R., Hell S.W. STED microscopy with continuous wave beams. Nat. Methods. 2007;4:915–918. doi: 10.1038/nmeth1108. PubMed DOI

Khater I.M., Nabi I.R., Hamarneh G. A Review of super-resolution single-molecule localization microscopy cluster analysis and quantification methods. Gene Exp. Patterns. 2020;1 doi: 10.1016/j.patter.2020.100038. PubMed DOI PMC

Li L., Xin B., Kuang W., Zhou Z., Huang Z.-L. Divide and conquer: Real-time maximum likelihood fitting of multiple emitters for super-resolution localization microscopy. Opt. Express. 2019;27:21029–21049. doi: 10.1364/OE.27.021029. PubMed DOI

Weisshart K., Dertinger T., Kalkbrenner T., Kleppe I., Kempe M. Super-resolution microscopy heads towards 3D dynamics. Adv. Opt. Technol. 2013;2:211–231. doi: 10.1515/aot-2013-0015. DOI

Komis G., Novák D., Ovečka M., Šamajová O., Šamaj J. Advances in imaging plant cell dynamics. Plant Physiol. 2018;176:80–93. doi: 10.1104/pp.17.00962. PubMed DOI PMC

Kostiuk G., Bucevicius J., Gerasimaite R., Lukinavicius G. Application of STED imaging for chromatin studies. J. Phys. D Appl. Phys. 2019;52:504003. doi: 10.1088/1361-6463/ab4410. DOI

Maß L., Holtmannspötter M., Zachgo S. Dual-color 3D-dSTORM colocalization and quantification of ROXY1 and RNAPII variants throughout the transcription cycle in root meristem nuclei. Plant J. 2020;104:1423–1436. doi: 10.1111/tpj.14986. PubMed DOI

Němečková A., Wäsch C., Schubert V., Ishii T., Hřibová E., Houben A. CRISPR/Cas9-based RGEN-ISL allows the simultaneous and specific visualization of proteins, DNA repeats, and sites of DNA replication. Cytogenet. Genome Res. 2019;159:48–53. doi: 10.1159/000502600. PubMed DOI

Schubert V., Neumann P., Marques A., Heckmann S., Macas J., Pedrosa-Harand A., Schubert I., Jang T.-S., Houben A. Super-resolution microscopy reveals diversity of plant centromere architecture. Int. J. Mol. Sci. 2020;21:3488. doi: 10.3390/ijms21103488. PubMed DOI PMC

Schubert V., Weisshart K. Abundance and distribution of RNA polymerase II in Arabidopsis interphase nuclei. J. Exp. Bot. 2015;66:1687–1698. doi: 10.1093/jxb/erv091. PubMed DOI PMC

Tichá M., Hlaváčková K., Hrbáčková M., Ovečka M., Šamajová O., Šamaj J. Super-resolution imaging of microtubules in Medicago Sativa. Methods Cell Biol. 2020;160:237–251. doi: 10.1016/bs.mcb.2020.03.004. PubMed DOI

Sivaguru M., Urban M.A., Fried G., Wesseln C.J., Mander L., Punyasena S.W. Comparative performance of airyscan and structured illumination superresolution microscopy in the study of the surface texture and 3D shape of pollen. Microsc. Res. Tech. 2018;81:101–114. doi: 10.1002/jemt.22732. PubMed DOI

Tröger J., Hoischen C., Perner B., Monajembashi S., Barbotin A., Löschberger A., Eggeling C., Kessels M.M., Qualmann B., Hemmerich P. Comparison of mMultiscale imaging methods for brain research. Cells. 2020;9:1377. doi: 10.3390/cells9061377. PubMed DOI PMC

Fukui K., Uchiyama S. Chromosome protein framework from proteome analysis of isolated human metaphase chromosomes. Chem. Rec. 2007;7:230–237. doi: 10.1002/tcr.20120. PubMed DOI

Hizume K., Araki S., Yoshikawa K., Takeyasu K. Topoisomerase II, scaffold component, promotes chromatin compaction in vitro in a linker-histone H1-dependent manner. Nucleic Acids Res. 2007;35:2787–2799. doi: 10.1093/nar/gkm116. PubMed DOI PMC

Nitiss J.L. DNA topoisomerase II and its growing repertoire of biological functions. Nat. Rev. Cancer. 2009;9:327–337. doi: 10.1038/nrc2608. PubMed DOI PMC

Chu L., Liang Z., Mukhina M., Fisher J., Vincenten N., Zhang Z., Hutchinson J., Zickler D., Kleckner N. The 3D topography of Mmitotic chromosomes. Mol. Cell. 2020;79:902–916.e6. doi: 10.1016/j.molcel.2020.07.002. PubMed DOI PMC

Earnshaw W.C., Halligan B., Cooke C.A., Heck M.M.S., Liu L.F. Topoisomerase II is a structural component of mitotic chromosome scaffolds. J. Cell Biol. 1985;100:1706–1715. doi: 10.1083/jcb.100.5.1706. PubMed DOI PMC

Samejima K., Samejima I., Vagnarelli P., Ogawa H., Vargiu G., Kelly D.A., Alves F.D.L., Kerr A., Green L.C., Hudson D.F., et al. Mitotic chromosomes are compacted laterally by KIF4 and condensin and axially by topoisomerase IIα. J. Cell Biol. 2012;199:755–770. doi: 10.1083/jcb.201202155. PubMed DOI PMC

Żabka A., Polit J.T., Bernasińska J., Maszewski J. DNA topoisomerase II-dependent control of the cell cycle progression in root meristems of Allium cepa. Cell Biol. Int. 2013;38:355–367. doi: 10.1002/cbin.10211. PubMed DOI

Singh B.N., Achary V.M.M., Panditi V., Sopory S.K., Reddy M.K. Dynamics of tobacco DNA topoisomerases II in cell cycle regulation: To manage topological constrains during replication, transcription and mitotic chromosome condensation and segregation. Plant Mol. Biol. 2017;94:595–607. doi: 10.1007/s11103-017-0626-4. PubMed DOI

Martinez-Garcia M., Schubert V., Osman K., Darbyshire A., Sanchez-Moran E., Franklin F.C.H. TOPII and chromosome movement help remove interlocks between entangled chromosomes during meiosis. J. Cell Biol. 2018;217:4070–4079. doi: 10.1083/jcb.201803019. PubMed DOI PMC

Sparrow C.M. On spectroscopic resolving power. Astrophys. J. 1916;44:76. doi: 10.1086/142271. DOI

Schultz P., Olland S., Oudet P., Hancock R. Structure and conformational changes of DNA topoisomerase II visualized by electron microscopy. Proc. Natl. Acad. Sci. USA. 1996;93:5936–5940. doi: 10.1073/pnas.93.12.5936. PubMed DOI PMC

Hebisch E., Wagner E., Westphal V., Sieber J., Lehnart S. A protocol for registration and correction of multicolour STED superresolution images. J. Microsc. 2017;267:160–175. doi: 10.1111/jmi.12556. PubMed DOI

Weisshart K., Fuchs J., Schubert V. Structured illumination microscopy (SIM) and photoactivated localization microscopy (PALM) to analyze the abundance and distribution of RNA polymerase II molecules on flow-sorted Arabidopsis nuclei. Bio-Protocol. 2016;6:1725. doi: 10.21769/BioProtoc.1725. DOI

Lysák M.A., Číhalíková J., Kubaláková M., Šimková H., Künzel G., Doležel J. Flow karyotyping and sorting of mitotic chromosomes of barley (Hordeum vulgare L.) Chromosome Res. 1999;7:431–444. doi: 10.1023/A:1009293628638. PubMed DOI

Karras C., Smedh M., Förster R., Deschout H., Fernandez-Rodriguez J., Heintzmann R. Successful optimization of reconstruction parameters in structured illumination microscopy—A practical guide. Opt. Commun. 2019;436:69–75. doi: 10.1016/j.optcom.2018.12.005. DOI

Dekker A.J.D., Bos A.V.D. Resolution: A survey. J. Opt. Soc. Am. A. 1997;14:547–557. doi: 10.1364/JOSAA.14.000547. DOI

Weik M.H. Computer Science and Communications Dictionary. Springer International Publishing; Boston, MA, USA: 2000. Nyquist theorem; p. 1127.

Nieuwenhuizen R.P., Stallinga S., Rieger B. Cell Membrane Nanodomains. CRC Press; New York, NY, USA: 2015. Visualization and resolution in localization microscopy. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace