Recurrent Plant-Specific Duplications of KNL2 and Its Conserved Function as a Kinetochore Assembly Factor
Status Publisher Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
35671323
PubMed Central
PMC9210943
DOI
10.1093/molbev/msac123
PII: 6603878
Knihovny.cz E-zdroje
- Klíčová slova
- CENH3, KNL2, adaptive evolution, centromere, endopolyploidy, gene duplication, kinetochore,
- Publikační typ
- časopisecké články MeSH
KINETOCHORE NULL2 (KNL2) plays key role in the recognition of centromeres and new CENH3 deposition. To gain insight into the origin and diversification of the KNL2 gene, we reconstructed its evolutionary history in the plant kingdom. Our results indicate that the KNL2 gene in plants underwent three independent ancient duplications in ferns, grasses and eudicots. Additionally, we demonstrated that previously unclassified KNL2 genes could be divided into two clades αKNL2 and βKNL2 in eudicots and γKNL2 and δKNL2 in grasses, respectively. KNL2s of all clades encode the conserved SANTA domain, but only the αKNL2 and γKNL2 groups additionally encode the CENPC-k motif. In the more numerous eudicot sequences, signatures of positive selection were found in both αKNL2 and βKNL2 clades, suggesting recent or ongoing adaptation. The confirmed centromeric localization of βKNL2 and mutant analysis suggests that it participates in loading of new CENH3, similarly to αKNL2. A high rate of seed abortion was found in heterozygous βKNL2 plants and the germinated homozygous mutants did not develop beyond the seedling stage. Taken together, our study provides a new understanding of the evolutionary diversification of the plant kinetochore assembly gene KNL2, and suggests that the plant-specific duplicated KNL2 genes are involved in centromere and/or kinetochore assembly for preserving genome stability.
Central European Institute of Technology Masaryk University Kamenice 5 CZ 625 00 Brno Czech Republic
Zobrazit více v PubMed
Ahmadli U, Kalidass M, Khaitova LC, Fuchs J, Cuacos M, Demidov D, Zuo S, Pecinkova J, Mascher M, Heckmann S, et al. 2022a. High temperature increases centromere-mediated genome elimination frequency in Arabidopsis deficient in cenH3 or its assembly factor KNL2. BioRxive. PubMed PMC
Ahmadli U, Sandmann M, Fuchs J, Lermontova I. 2022b. Immunolabeling of nuclei/chromosomes in Arabidopsis thaliana. In: Caillaud MC, editor. Plant cell division. Methods in molecular biology, vol. 2382. New York: (NY: ): Humana. p. 19–28. PubMed
Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, Ren JY, Li WW, Noble WS. 2009. MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res. 37(2):W202–W208. PubMed PMC
Bailey TL, Gribskov M. 1998. Combining evidence using p-values: application to sequence homology searches. Bioinformatics. 14(1):48–54. PubMed
Banks JA, Nishiyama T, Hasebe M, Bowman JL, Gribskov M, dePamphilis C, Albert VA, Aono N, Aoyama T, Ambrose BA, et al. 2011. The Selaginella genome identifies genetic changes associated with the evolution of vascular plants. Science. 332(6032):960–963. PubMed PMC
Barra V, Fachinetti D. 2018. The dark side of centromeres: types, causes and consequences of structural abnormalities implicating centromeric DNA. Nat Commun. 9(1):4340. PubMed PMC
Blanc G, Agarkova I, Grimwood J, Kuo A, Brueggeman A, Dunigan DD, Gurnon J, Ladunga I, Lindquist E, Lucas S, et al. . 2012. The genome of the polar eukaryotic microalga Coccomyxa subellipsoidea reveals traits of cold adaptation. Genome Biol. 13(5):R39. PubMed PMC
Britt AB, Kuppu S. 2016. Cenh3: an emerging player in haploid induction technology. Front Plant Sci. 7357. PubMed PMC
Bush MS, Crowe N, Zheng T, Doonan JH. 2015. The RNA helicase, eIF4A-1, is required for ovule development and cell size homeostasis in Arabidopsis. Plant J. 84(5):989–1004. PubMed PMC
Cheeseman IM, Desai A. 2008. Molecular architecture of the kinetochore-microtubule interface. Nat Rev Mol Cell Biol. 9(1):33–46. PubMed
Cheng CY, Krishnakumar V, Chan AP, Thibaud-Nissen F, Schobel S, Town CD. 2017. Araport11: a complete reannotation of the Arabidopsis thaliana reference genome. Plant J. 89(4):789–804. PubMed
Clough SJ, Bent AF. 1998. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16(6):735–743. PubMed
Collen J, Porcel B, Carre W, Ball SG, Chaparro C, Tonon T, Barbeyron T, Michel G, Noel B, Valentin K, et al. . 2013. Genome structure and metabolic features in the red seaweed Chondrus crispus shed light on evolution of the Archaeplastida. Proc Natl Acad Sci U S A. 110(13):5247–5252. PubMed PMC
Crooks GE, Hon G, Chandonia JM, Brenner SE. 2004. WebLogo: a sequence logo generator. Genome Res. 14(6):1188–1190. PubMed PMC
Czechowski T, Stitt M, Altmann T, Udvardi MK, Scheible WR. 2005. Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis. Plant Physiol. 139(1):5–17. PubMed PMC
Edger PP, Hall JC, Harkess A, Tang M, Coombs J, Mohammadin S, Schranz ME, Xiong Z, Leebens-Mack J, Meyers BC, et al. 2018. Brassicales phylogeny inferred from 72 plastid genes: a reanalysis of the phylogenetic localization of two paleopolyploid events and origin of novel chemical defenses. Am J Bot. 105(3):463–469. PubMed
Edwards K, Johnstone C, Thompson C. 1991. A simple and rapid method for the preparation of plant genomic DNA for PCR analysis. Nucleic Acids Res. 19(6):1349. PubMed PMC
Fachinetti D, Folco HD, Nechemia-Arbely Y, Valente LP, Nguyen K, Wong AJ, Zhu Q, Holland AJ, Desai A, Jansen LE, et al. 2013. A two-step mechanism for epigenetic specification of centromere identity and function. Nat Cell Biol. 15(9):1056–1066. PubMed PMC
French BT, Straight AF. 2019. CDK phosphorylation of Xenopus laevis M18BP1 promotes its metaphase centromere localization. Embo J. 38(4):e100093. PubMed PMC
French BT, Westhorpe FG, Limouse C, Straight AF. 2017. Xenopus laevis M18BP1 directly binds existing CENP-A nucleosomes to promote centromeric chromatin assembly. Dev Cell. 42(2):190–199. PubMed PMC
Friis EM, Pedersen KR, Crane PR. 2016. The emergence of core eudicots: new floral evidence from the earliest Late Cretaceous. Proc R Soc B. 283(1845):20161325. PubMed PMC
Fujita Y, Hayashi T, Kiyomitsu T, Toyoda Y, Kokubu A, Obuse C, Yanagida M. 2007. Priming of centromere for CENP-A recruitment by human hMis18 alpha, hMis18 beta, and M18BP1. Dev Cell. 12(1):17–30. PubMed
Goodstein DM, Shu SQ, Howson R, Neupane R, Hayes RD, Fazo J, Mitros T, Dirks W, Hellsten U, Putnam N, et al. 2012. Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res. 40(D1):D1178–D1186. PubMed PMC
Hara M, Fukagawa T. 2018. Kinetochore assembly and disassembly during mitotic entry and exit. Curr Opin Cell Biol. 52:73–81. PubMed
Hori T, Shang WH, Hara M, Ariyoshi M, Arimura Y, Fujita R, Kurumizaka H, Fukagawa T. 2017. Association of M18BP1/KNL2 with CENP-A nucleosome is essential for centromere formation in non-mammalian vertebrates. Dev Cell. 42(2):181–189. PubMed
Kalinowska K, Chamas S, Unkel K, Demidov D, Lermontova I, Dresselhaus T, Kumlehn J, Dunemann F, Houben A. 2019. State-of-the-art and novel developments of in vivo haploid technologies. Theor Appl Genet. 132(3):593–605. PubMed PMC
Kato H, Jiang JS, Zhou BR, Rozendaal M, Feng HQ, Ghirlando R, Xiao TS, Straight AF, Bai YW. 2013. A conserved mechanism for centromeric nucleosome recognition by centromere protein CENP-C. Science. 340(6136):1110–1113. PubMed PMC
Kim IS, Lee M, Park KC, Jeon Y, Park JH, Hwang EJ, Jeon TI, Ko S, Lee H, Baek SH, et al. . 2012. Roles of Mis18alpha in epigenetic regulation of centromeric chromatin and CENP-A loading. Mol Cell. 46(3):260–273. PubMed
Klepikova AV, Kasianov AS, Gerasimov ES, Logacheva MD, Penin AA. 2016. A high resolution map of the Arabidopsis thaliana developmental transcriptome based on RNA-seq profiling. Plant J. 88(6):1058–1070. PubMed
Kral L. 2016. Possible identification of CENP-C in fish and the presence of the CENP-C motif in M18BP1 of vertebrates. F1000Res. 4:474. PubMed PMC
Kubalova I, Nemeckova A, Weisshart K, Hribova E, Schubert V. 2021. Comparing super-resolution microscopy techniques to analyze chromosomes. Int J Mol Sci. 22(4):1903. PubMed PMC
Kursel LE, Malik HS. 2017. Recurrent gene duplication leads to diverse repertoires of centromeric histones in Drosophila species. Mol Biol Evol. 34(6):1445–1462. PubMed PMC
Kursel LE, Welsh FC, Malik HS. 2020. Ancient coretention of paralogs of Cid centromeric histones and Cal1 chaperones in Mosquito species. Mol Biol Evol. 37(7):1949–1963. PubMed PMC
Le Goff S, Keceli BN, Jerabkova H, Heckmann S, Rutten T, Cotterell S, Schubert V, Roitinger E, Mechtler K, Franklin FCH, et al. 2020. The H3 histone chaperone NASPSIM3 escorts CenH3 in Arabidopsis. Plant J. 101(1):71–86. PubMed
Lermontova I. 2017. Generation of haploid plants based on KNL 2. Available from: https://patents.google.com/patent/WO2017067714A1/en
Lermontova I, Kuhlmann M, Friedel S, Rutten T, Heckmann S, Sandmann M, Demidov D, Schubert V, Schubert I. 2013. Arabidopsis KINETOCHORE NULL2 is an upstream component for centromeric histone H3 variant cenH3 deposition at centromeres. Plant Cell. 25(9):3389–3404. PubMed PMC
Lermontova I, Schubert V, Fuchs J, Klatte S, Macas J, Schubert I. 2006. Loading of Arabidopsis centromeric histone CENH3 occurs mainly during G2 and requires the presence of the histone fold domain. Plant Cell. 18(10):2443–2451. PubMed PMC
Lv J, Yu K, Wei J, Gui H, Liu C, Liang D, Wang Y, Zhou H, Carlin R, Rich R, et al. 2020. Generation of paternal haploids in wheat by genome editing of the centromeric histone CENH3. Nat Biotechnol. 38(12):1397–1401. PubMed
McKinley KL, Cheeseman IM. 2016. The molecular basis for centromere identity and function. Nat Rev Mol Cell Biol. 17(1):16–29. PubMed PMC
Merchant SS, Prochnik SE, Vallon O, Harris EH, Karpowicz SJ, Witman GB, Terry A, Salamov A, Fritz-Laylin LK, Marechal-Drouard L, et al. 2007. The Chlamydomonas genome reveals the evolution of key animal and plant functions. Science 318(5848):245–250. PubMed PMC
Moree B, Meyer CB, Fuller CJ, Straight AF. 2011. CENP-C recruits M18BP1 to centromeres to promote CENP-A chromatin assembly. J Cell Biol. 194(6):855–871. PubMed PMC
Murashige T, Skoog F. 1962. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant. 15(3):473–497.
Musacchio A, Desai A. 2017. A molecular view of kinetochore assembly and function. Biology 6(1):5. PubMed PMC
Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ. 2015. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol. 32(1):268–274. PubMed PMC
Pecinka A, Schubert V, Meister A, Kreth G, Klatte M, Lysak MA, Fuchs J, Schubert I. 2004. Chromosome territory arrangement and homologous pairing in nuclei of Arabidopsis thaliana are predominantly random except for NOR-bearing chromosomes. Chromosoma 113(5):258–269. PubMed
Qi XP, Kuo LY, Guo CC, Li H, Li ZY, Qi J, Wang LB, Hu Y, Xiang JY, Zhang CF, et al. . 2018. A well-resolved fern nuclear phylogeny reveals the evolution history of numerous transcription factor families. Mol Phylogenet Evol. 127:961–977. PubMed
Safavian D, Zayed Y, Indriolo E, Chapman L, Ahmed A, Goring DR. 2015. RNA silencing of exocyst genes in the stigma impairs the acceptance of compatible pollen in Arabidopsis. Plant Physiol. 169(4):2526–2538. PubMed PMC
Sandmann M, Talbert P, Demidov D, Kuhlmann M, Rutten T, Conrad U, Lermontova I. 2017. Targeting of Arabidopsis KNL2 to centromeres depends on the conserved CENPC-k motif in its C terminus. Plant Cell. 29(1):144–155. PubMed PMC
Stellfox ME, Nardi IK, Knippler CM, Foltz DR. 2016. Differential binding partners of the Mis18 α/β YIPPEE domains regulate Mis18 complex recruitment to centromeres. Cell Rep. 15(10):2127–2135. PubMed PMC
Sugimoto K, Yata H, Muro Y, Himeno M. 1994. Human centromere protein-C (CENP-C) is a DNA-binding protein which possesses a novel DNA-binding motif. J Biochem. 116(4):877–881. PubMed
Talbert PB, Bryson TD, Henikoff S. 2004. Adaptive evolution of centromere proteins in plants and animals. J Biol. 3(4):18. PubMed PMC
Talbert PB, Masuelli R, Tyagi AP, Comai L, Henikoff S. 2002. Centromeric localization and adaptive evolution of an Arabidopsis histone H3 variant. Plant Cell. 14(5):1053–1066. PubMed PMC
Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, Pimentel H, Salzberg SL, Rinn JL, Pachter L. 2012. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc. 7(3):562–578. PubMed PMC
Wang N, Gent JI, Dawe RK. 2021. Haploid induction by a maize cenh3 null mutant. Sci Adv. 7(4):abe2299. PubMed PMC
Weisshart K, Fuchs J, Schubert V. 2016. Structured Illumination Microscopy (SIM) and Photoactivated Localization Microscopy (PALM) to analyze the abundance and distribution of RNA polymerase II molecules on flow-sorted Arabidopsis nuclei. Bio Protocol. 6(3):e1725.
Wu Y, You HL, Li XQ. 2018. Dinosaur-associated Poaceae epidermis and phytoliths from the early cretaceous of China. Natl Sci Rev. 5(5):721–727.
Yamada KD, Tomii K, Katoh K. 2016. Application of the MAFFT sequence alignment program to large data-reexamination of the usefulness of chained guide trees. Bioinformatics 32(21):3246–3251. PubMed PMC
Yang Z. 2007. PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol. 24(8):1586–1591. PubMed
Zhang D, Martyniuk CJ, Trudeau VL. 2006. SANTA domain: a novel conserved protein module in Eukaryota with potential involvement in chromatin regulation. Bioinformatics 22(20):2459–2462. PubMed
Zhang M, Zheng F, Xiong YJ, Shao C, Wang CL, Wu MH, Niu XJ, Dong FF, Zhang X, Fu CH, et al. 2020. Centromere targeting of Mis18 requires the interaction with DNA and H2A-H2B in fission yeast. Cell Mol Life Sci. 78(1):373–384. PubMed PMC
Disruption of the standard kinetochore in holocentric Cuscuta species