High temperature increases centromere-mediated genome elimination frequency and enhances haploid induction in Arabidopsis
Jazyk angličtina Země Čína Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
36540022
PubMed Central
PMC10203384
DOI
10.1016/j.xplc.2022.100507
PII: S2590-3462(22)00354-6
Knihovny.cz E-zdroje
- Klíčová slova
- CENPC-k, cenh3-4, centromere, haploid induction, kinetochore null 2, temperature stress,
- MeSH
- Arabidopsis * genetika metabolismus MeSH
- centromera genetika MeSH
- haploidie MeSH
- kinetochory MeSH
- teplota MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Double haploid production is the most effective way to create true-breeding lines in a single generation. In Arabidopsis, haploid induction via mutation of the centromere-specific histone H3 (cenH3) has been shown when the mutant is outcrossed to the wild-type, and the wild-type genome remains in the haploid progeny. However, factors that affect haploid induction are still poorly understood. Here, we report that a mutant of the cenH3 assembly factor Kinetochore Null2 (KNL2) can be used as a haploid inducer when pollinated by the wild-type. We discovered that short-term temperature stress of the knl2 mutant increased the efficiency of haploid induction 10-fold. We also demonstrated that a point mutation in the CENPC-k motif of KNL2 is sufficient to generate haploid-inducing lines, suggesting that haploid-inducing lines in crops can be identified in a naturally occurring or chemically induced mutant population, avoiding the generic modification (GM) approach at any stage. Furthermore, a cenh3-4 mutant functioned as a haploid inducer in response to short-term heat stress, even though it did not induce haploids under standard conditions. Thus, we identified KNL2 as a new target gene for the generation of haploid-inducer lines and showed that exposure of centromeric protein mutants to high temperature strongly increases their haploid induction efficiency.
Zobrazit více v PubMed
Allshire R.C. Centromeres, checkpoints and chromatid cohesion. Curr. Opin. Genet. Dev. 1997;7:264–273. PubMed
Armstrong S.J., Sanchez-Moran E., Franklin F.C.H. Cytological analysis of Arabidopsis thaliana meiotic chromosomes. Methods Mol. Biol. 2009;558:131–145. PubMed
Boudichevskaia A., Houben A., Fiebig A., Prochazkova K., Pecinka A., Lermontova I. Depletion of KNL2 results in altered expression of genes involved in regulation of the cell cycle, transcription, and development in Arabidopsis. Int. J. Mol. Sci. 2019;20:5726. PubMed PMC
Britt A.B., Kuppu S. Cenh3: an emerging player in haploid induction technology. Front. Plant Sci. 2016;7:357. PubMed PMC
Capitao C., Tanasa S., Fulnecek J., Raxwal V.K., Akimcheva S., Bulankova P., Mikulkova P., Crhak Khaitova L., Kalidass M., Lermontova I., et al. A CENH3 mutation promotes meiotic exit and restores fertility in SMG7-deficient Arabidopsis. PLoS Genet. 2021;17:e1009779. PubMed PMC
Clough S.J., Bent A.F. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 1998;16:735–743. PubMed
Galbraith D.W., Harkins K.R., Maddox J.M., Ayres N.M., Sharma D.P., Firoozabady E. Rapid flow cytometric analysis of the cell cycle in intact plant tissues. Science. 1983;220:1049–1051. PubMed
Han S.H., Park Y.J., Park C.M. HOS1 activates DNA repair systems to enhance plant thermotolerance. Nat. Plants. 2020;6:1439–1446. PubMed
Hedhly A., Hormaza J.I., Herrero M. Global warming and sexual plant reproduction. Trends Plant Sci. 2009;14:30–36. PubMed
Holtorf S., Apel K., Bohlmann H. Comparison of different constitutive and inducible promoters for the overexpression of transgenes in Arabidopsis thaliana. Plant Mol. Biol. 1995;29:637–646. PubMed
Kalinowska K., Chamas S., Unkel K., Demidov D., Lermontova I., Dresselhaus T., Kumlehn J., Dunemann F., Houben A. State-of-the-art and novel developments of in vivo haploid technologies. Theor. Appl. Genet. 2019;132:593–605. PubMed PMC
Kantidze O.L., Velichko A.K., Luzhin A.V., Razin S.V. Heat stress-induced DNA damage. Acta Naturae. 2016;8:75–78. PubMed PMC
Karimi-Ashtiyani R., Ishii T., Niessen M., Stein N., Heckmann S., Gurushidze M., Banaei-Moghaddam A.M., Fuchs J., Schubert V., Koch K., et al. Point mutation impairs centromeric CENH3 loading and induces haploid plants. Proc. Natl. Acad. Sci. USA. 2015;112:11211–11216. PubMed PMC
Kelliher T., Starr D., Wang W., McCuiston J., Zhong H., Nuccio M.L., Martin B. Maternal haploids are preferentially induced by CENH3-tailswap transgenic complementation in maize. Front. Plant Sci. 2016;7:414. PubMed PMC
Kuppu S., Ron M., Marimuthu M.P.A., Li G., Huddleson A., Siddeek M.H., Terry J., Buchner R., Shabek N., Comai L., et al. A variety of changes, including CRISPR/Cas9-mediated deletions, in CENH3 lead to haploid induction on outcrossing. Plant Biotechnol. J. 2020;18:2068–2080. PubMed PMC
Kuppu S., Tan E.H., Nguyen H., Rodgers A., Comai L., Chan S.W.L., Britt A.B. Point mutations in centromeric histone induce post-zygotic incompatibility and uniparental inheritance. PLoS Genet. 2015;11:e1005494. PubMed PMC
Lermontova I., Koroleva O., Rutten T., Fuchs J., Schubert V., Moraes I., Koszegi D., Schubert I. Knockdown of CENH3 in Arabidopsis reduces mitotic divisions and causes sterility by disturbed meiotic chromosome segregation. Plant J. 2011;68:40–50. PubMed
Lermontova I., Kuhlmann M., Friedel S., Rutten T., Heckmann S., Sandmann M., Demidov D., Schubert V., Schubert I. Arabidopsis kinetochore null2 is an upstream component for centromeric histone H3 variant cenH3 deposition at centromeres. Plant Cell. 2013;25:3389–3404. PubMed PMC
Li H. A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics. 2011;27:2987–2993. PubMed PMC
Li H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics. 2018;34:3094–3100. PubMed PMC
Li H., Handsaker B., Wysoker A., Fennell T., Ruan J., Homer N., Marth G., Abecasis G., Durbin R., 1000 Genome Project Data Processing Subgroup The sequence alignment/map format and SAMtools. Bioinformatics. 2009;25:2078–2079. PubMed PMC
Li W., Chen C., Markmann-Mulisch U., Timofejeva L., Schmelzer E., Ma H., Reiss B. The Arabidopsis AtRAD51 gene is dispensable for vegetative development but required for meiosis. Proc. Natl. Acad. Sci. USA. 2004;101:10596–10601. PubMed PMC
Lv J., Yu K., Wei J., Gui H., Liu C., Liang D., Wang Y., Zhou H., Carlin R., Rich R., et al. Generation of paternal haploids in wheat by genome editing of the centromeric histone CENH3. Nat. Biotechnol. 2020;38:1397–1401. PubMed
Marimuthu M.P.A., Maruthachalam R., Bondada R., Kuppu S., Tan E.H., Britt A., Chan S.W.L., Comai L. Epigenetically mismatched parental centromeres trigger genome elimination in hybrids. Sci. Adv. 2021;7 eabk1151. PubMed PMC
Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. J. 2011;17:10–12.
Mitsuhara I., Shirasawa-Seo N., Iwai T., Nakamura S., Honkura R., Ohashi Y. Release from post-transcriptional gene silencing by cell proliferation in transgenic tobacco plants: possible mechanism for noninheritance of the silencing. Genetics. 2002;160:343–352. PubMed PMC
Peet M.M., Sato S., Gardner R.G. Comparing heat stress effects on male-fertile and male-sterile tomatoes. Plant Cell Environ. 1998;21:225–231.
Probst A.V., Mittelsten Scheid O. Stress-induced structural changes in plant chromatin. Curr. Opin. Plant Biol. 2015;27:8–16. PubMed
R Core Team . R Foundation for Statistical Computing; Vienna, Austria: 2017. R: A Language and Environment for Statistical Computing.
Ravi M., Chan S.W.L. Haploid plants produced by centromere-mediated genome elimination. Nature. 2010;464:615–618. PubMed
Ravi M., Marimuthu M.P.A., Tan E.H., Maheshwari S., Henry I.M., Marin-Rodriguez B., Urtecho G., Tan J., Thornhill K., Zhu F., et al. A haploid genetics toolbox for Arabidopsis thaliana. Nat. Commun. 2014;5:5334. PubMed
Ravi M., Shibata F., Ramahi J.S., Nagaki K., Chen C., Murata M., Chan S.W.L. Meiosis-specific loading of the centromere-specific histone CENH3 in Arabidopsis thaliana. PLoS Genet. 2011;7:e1002121. PubMed PMC
Sandmann M., Fuchs J., Lermontova I. Immunolabeling of nuclei/chromosomes in Arabidopsis thaliana. Methods Mol. Biol. 2016;1370:127–135. PubMed
Sandmann M., Talbert P., Demidov D., Kuhlmann M., Rutten T., Conrad U., Lermontova I. Targeting of Arabidopsis KNL2 to centromeres depends on the conserved CENPC-k motif in its C terminus. Plant Cell. 2017;29:144–155. PubMed PMC
Schalch T., Steiner F.A. Structure of centromere chromatin: from nucleosome to chromosomal architecture. Chromosoma. 2017;126:443–455. PubMed PMC
Tan K.-K., Tan Y.-C., Chang L.-Y., Lee K.W., Nore S.S., Yee W.-Y., Mat Isa M.N., Jafar F.L., Hoh C.-C., AbuBakar S. Full genome SNP-based phylogenetic analysis reveals the origin and global spread of Brucella melitensis. BMC Genom. 2015;16:93. PubMed PMC
Thondehaalmath T., Kulaar D.S., Bondada R., Maruthachalam R. Understanding and exploiting uniparental genome elimination in plants: insights from Arabidopsis thaliana. J. Exp. Bot. 2021;72:4646–4662. PubMed
Verdaasdonk J.S., Bloom K. Centromeres: unique chromatin structures that drive chromosome segregation. Nat. Rev. Mol. Cell Biol. 2011;12:320–332. PubMed PMC
Wang N., Dawe R.K. Centromere size and its relationship to haploid formation in plants. Mol. Plant. 2018;11:398–406. PubMed
Wang N., Gent J.I., Dawe R.K. Haploid induction by a maize cenh3 null mutant. Sci. Adv. 2021;7 eabe2299. PubMed PMC
Wang Z.P., Xing H.L., Dong L., Zhang H.Y., Han C.Y., Wang X.C., Chen Q.J. Egg cell-specific promoter-controlled CRISPR/Cas9 efficiently generates homozygous mutants for multiple target genes in Arabidopsis in a single generation. Genome Biol. 2015;16:144. PubMed PMC
Zhang H., Zhang F., Yu Y., Feng L., Jia J., Liu B., Li B., Guo H., Zhai J. A comprehensive online database for exploring similar to 20, 000 public Arabidopsis RNA-seq libraries. Mol. Plant. 2020;13:1231–1233. PubMed
Zhao J., Lu Z., Wang L., Jin B. Plant responses to heat stress: physiology, transcription, noncoding RNAs, and epigenetics. Int. J. Mol. Sci. 2020;22:117. PubMed PMC
Heat stress impairs centromere structure and segregation of meiotic chromosomes in Arabidopsis