A CENH3 mutation promotes meiotic exit and restores fertility in SMG7-deficient Arabidopsis
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
34591845
PubMed Central
PMC8509889
DOI
10.1371/journal.pgen.1009779
PII: PGENETICS-D-21-00504
Knihovny.cz E-zdroje
- MeSH
- aparát dělícího vřeténka MeSH
- Arabidopsis genetika fyziologie MeSH
- fertilita genetika MeSH
- meióza genetika MeSH
- messenger RNA genetika MeSH
- mutace * MeSH
- proteiny huseníčku genetika MeSH
- rostlinné geny * MeSH
- transportní proteiny genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- messenger RNA MeSH
- proteiny huseníčku MeSH
- SMG7 protein, Arabidopsis MeSH Prohlížeč
- transportní proteiny MeSH
Meiosis in angiosperm plants is followed by mitotic divisions to form multicellular haploid gametophytes. Termination of meiosis and transition to gametophytic development is, in Arabidopsis, governed by a dedicated mechanism that involves SMG7 and TDM1 proteins. Mutants carrying the smg7-6 allele are semi-fertile due to reduced pollen production. We found that instead of forming tetrads, smg7-6 pollen mother cells undergo multiple rounds of chromosome condensation and spindle assembly at the end of meiosis, resembling aberrant attempts to undergo additional meiotic divisions. A suppressor screen uncovered a mutation in centromeric histone H3 (CENH3) that increased fertility and promoted meiotic exit in smg7-6 plants. The mutation led to inefficient splicing of the CENH3 mRNA and a substantial decrease of CENH3, resulting in smaller centromeres. The reduced level of CENH3 delayed formation of the mitotic spindle but did not have an apparent effect on plant growth and development. We suggest that impaired spindle re-assembly at the end of meiosis limits aberrant divisions in smg7-6 plants and promotes formation of tetrads and viable pollen. Furthermore, the mutant with reduced level of CENH3 was very inefficient haploid inducer indicating that differences in centromere size is not the key determinant of centromere-mediated genome elimination.
Central European Institute of Technology Masaryk University Brno Czech Republic
Gregor Mendel Institute Austrian Academy of Sciences Vienna Austria
Leibniz Institute of Plant Genetics and Crop Plant Research Gatersleben Germany
National Centre for Biomolecular Research Faculty of Science Masaryk University Brno Czech Republic
Zobrazit více v PubMed
Marston AL, Amon A. Meiosis: cell-cycle controls shuffle and deal. Nat Rev Mol Cell Biol. 2004;5(12):983–97. doi: 10.1038/nrm1526 . PubMed DOI
Petronczki M, Siomos MF, Nasmyth K. Un menage a quatre: the molecular biology of chromosome segregation in meiosis. Cell. 2003;112(4):423–40. doi: 10.1016/s0092-8674(03)00083-7 . PubMed DOI
Mirzaghaderi G, Horandl E. The evolution of meiotic sex and its alternatives. Proc Biol Sci. 2016;283(1838). Epub 2016/09/09. doi: 10.1098/rspb.2016.1221 . PubMed DOI PMC
Bowman JL, Sakakibara K, Furumizu C, Dierschke T. Evolution in the Cycles of Life. Annu Rev Genet. 2016;50:133–54. Epub 2016/09/13. doi: 10.1146/annurev-genet-120215-035227 . PubMed DOI
Yang WC, Ye D, Xu J, Sundaresan V. The SPOROCYTELESS gene of Arabidopsis is required for initiation of sporogenesis and encodes a novel nuclear protein. Genes Dev. 1999;13(16):2108–17. Epub 1999/08/31. doi: 10.1101/gad.13.16.2108 . PubMed DOI PMC
Nonomura K, Eiguchi M, Nakano M, Takashima K, Komeda N, Fukuchi S, et al.. A novel RNA-recognition-motif protein is required for premeiotic G1/S-phase transition in rice (Oryza sativa L.). PLoS Genet. 2011;7(1):e1001265. Epub 2011/01/22. doi: 10.1371/journal.pgen.1001265 . PubMed DOI PMC
Mercier R, Vezon D, Bullier E, Motamayor JC, Sellier A, Lefevre F, et al.. SWITCH1 (SWI1): a novel protein required for the establishment of sister chromatid cohesion and for bivalent formation at meiosis. Genes Dev. 2001;15(14):1859–71. doi: 10.1101/gad.203201 . PubMed DOI PMC
Pawlowski WP, Wang CJ, Golubovskaya IN, Szymaniak JM, Shi L, Hamant O, et al.. Maize AMEIOTIC1 is essential for multiple early meiotic processes and likely required for the initiation of meiosis. Proc Natl Acad Sci U S A. 2009;106(9):3603–8. doi: 10.1073/pnas.0810115106 . PubMed DOI PMC
Zhao X, Bramsiepe J, Van Durme M, Komaki S, Prusicki MA, Maruyama D, et al.. RETINOBLASTOMA RELATED1 mediates germline entry in Arabidopsis. Science. 2017;356(6336). doi: 10.1126/science.aaf6532 . PubMed DOI
Kelliher T, Walbot V. Hypoxia triggers meiotic fate acquisition in maize. Science. 2012;337(6092):345–8. Epub 2012/07/24. doi: 10.1126/science.1220080 . PubMed DOI PMC
Nonomura K, Morohoshi A, Nakano M, Eiguchi M, Miyao A, Hirochika H, et al.. A germ cell specific gene of the ARGONAUTE family is essential for the progression of premeiotic mitosis and meiosis during sporogenesis in rice. Plant Cell. 2007;19(8):2583–94. Epub 2007/08/07. doi: 10.1105/tpc.107.053199 . PubMed DOI PMC
Olmedo-Monfil V, Duran-Figueroa N, Arteaga-Vazquez M, Demesa-Arevalo E, Autran D, Grimanelli D, et al.. Control of female gamete formation by a small RNA pathway in Arabidopsis. Nature. 2010;464(7288):628–32. Epub 2010/03/09. doi: 10.1038/nature08828 . PubMed DOI PMC
Yuan TL, Huang WJ, He J, Zhang D, Tang WH. Stage-Specific Gene Profiling of Germinal Cells Helps Delineate the Mitosis/Meiosis Transition. Plant Physiol. 2018;176(2):1610–26. Epub 2017/12/01. doi: 10.1104/pp.17.01483 . PubMed DOI PMC
Nelms B, Walbot V. Defining the developmental program leading to meiosis in maize. Science. 2019;364(6435):52–6. doi: 10.1126/science.aav6428 . PubMed DOI
Dissmeyer N, Nowack MK, Pusch S, Stals H, Inze D, Grini PE, et al.. T-loop phosphorylation of Arabidopsis CDKA;1 is required for its function and can be partially substituted by an aspartate residue. Plant Cell. 2007;19(3):972–85. doi: 10.1105/tpc.107.050401 . PubMed DOI PMC
Sofroni K, Takatsuka H, Yang C, Dissmeyer N, Komaki S, Hamamura Y, et al.. CDKD-dependent activation of CDKA;1 controls microtubule dynamics and cytokinesis during meiosis. J Cell Biol. 2020;219(8). Epub 2020/07/02. doi: 10.1083/jcb.201907016 . PubMed DOI PMC
Yang C, Sofroni K, Wijnker E, Hamamura Y, Carstens L, Harashima H, et al.. The Arabidopsis Cdk1/Cdk2 homolog CDKA;1 controls chromosome axis assembly during plant meiosis. EMBO J. 2020;39(3):e101625. Epub 2019/09/27. doi: 10.15252/embj.2019101625 . PubMed DOI PMC
Wijnker E, Harashima H, Muller K, Parra-Nunez P, de Snoo CB, van de Belt J, et al.. The Cdk1/Cdk2 homolog CDKA;1 controls the recombination landscape in Arabidopsis. Proc Natl Acad Sci U S A. 2019;116(25):12534–9. Epub 2019/06/06. doi: 10.1073/pnas.1820753116 . PubMed DOI PMC
Bulankova P, Akimcheva S, Fellner N, Riha K. Identification of Arabidopsis meiotic cyclins reveals functional diversification among plant cyclin genes. PLoS Genet. 2013;9(5):e1003508. Epub 2013/05/15. doi: 10.1371/journal.pgen.1003508 . PubMed DOI PMC
Azumi Y, Liu D, Zhao D, Li W, Wang G, Hu Y, et al.. Homolog interaction during meiotic prophase I in Arabidopsis requires the SOLO DANCERS gene encoding a novel cyclin-like protein. Embo J. 2002;21(12):3081–95. doi: 10.1093/emboj/cdf285 . PubMed DOI PMC
Wang Y, Magnard JL, McCormick S, Yang M. Progression through meiosis I and meiosis II in Arabidopsis anthers is regulated by an A-type cyclin predominately expressed in prophase I. Plant Physiol. 2004;136(4):4127–35. doi: 10.1104/pp.104.051201 . PubMed DOI PMC
Prusicki MA, Keizer EM, van Rosmalen RP, Komaki S, Seifert F, Muller K, et al.. Live cell imaging of meiosis in Arabidopsis thaliana. Elife. 2019;8. doi: 10.7554/eLife.42834 . PubMed DOI PMC
d’Erfurth I, Cromer L, Jolivet S, Girard C, Horlow C, Sun Y, et al.. The cyclin-A CYCA1;2/TAM is required for the meiosis I to meiosis II transition and cooperates with OSD1 for the prophase to first meiotic division transition. PLoS Genet. 2010;6(6):e1000989. doi: 10.1371/journal.pgen.1000989 . PubMed DOI PMC
Cromer L, Heyman J, Touati S, Harashima H, Araou E, Girard C, et al.. OSD1 promotes meiotic progression via APC/C inhibition and forms a regulatory network with TDM and CYCA1;2/TAM. PLoS Genet. 2012;8(7):e1002865. Epub 2012/07/31. doi: 10.1371/journal.pgen.1002865 . PubMed DOI PMC
Ross KJ, Fransz P, Armstrong SJ, Vizir I, Mulligan B, Franklin FC, et al.. Cytological characterization of four meiotic mutants of Arabidopsis isolated from T-DNA-transformed lines. Chromosome Res. 1997;5(8):551–9. doi: 10.1023/a:1018497804129 . PubMed DOI
Glover J, Grelon M, Craig S, Chaudhury A, Dennis E. Cloning and characterization of MS5 from Arabidopsis: a gene critical in male meiosis. Plant J. 1998;15(3):345–56. doi: 10.1046/j.1365-313x.1998.00216.x . PubMed DOI
Sanders PM, Bui AQ, Weterings K, McIntire KN, Hsu YC, Lee PY, et al.. Anther developmental defects in Arabidopsis thaliana male-sterile mutants. Sex Plant Reprod. 1999;11:297–322.
Cifuentes M, Jolivet S, Cromer L, Harashima H, Bulankova P, Renne C, et al.. TDM1 Regulation Determines the Number of Meiotic Divisions. PLoS Genet. 2016;12(2):e1005856. doi: 10.1371/journal.pgen.1005856 . PubMed DOI PMC
Bulankova P, Riehs-Kearnan N, Nowack MK, Schnittger A, Riha K. Meiotic progression in Arabidopsis is governed by complex regulatory interactions between SMG7, TDM1, and the meiosis I-specific cyclin TAM. Plant Cell. 2010;22(11):3791–803. doi: 10.1105/tpc.110.078378 . PubMed DOI PMC
Riehs N, Akimcheva S, Puizina J, Bulankova P, Idol RA, Siroky J, et al.. Arabidopsis SMG7 protein is required for exit from meiosis. J Cell Sci. 2008;121(Pt 13):2208–16. doi: 10.1242/jcs.027862 . PubMed DOI
Capitao C, Shukla N, Wandrolova A, Mittelsten Scheid O, Riha K. Functional Characterization of SMG7 Paralogs in Arabidopsis thaliana. Front Plant Sci. 2018;9:1602. doi: 10.3389/fpls.2018.01602 . PubMed DOI PMC
Riehs-Kearnan N, Gloggnitzer J, Dekrout B, Jonak C, Riha K. Aberrant growth and lethality of Arabidopsis deficient in nonsense-mediated RNA decay factors is caused by autoimmune-like response. Nucleic Acids Res. 2012;40(12):5615–24. Epub 2012/03/02. doi: 10.1093/nar/gks195 . PubMed DOI PMC
Valuchova S, Mikulkova P, Pecinkova J, Klimova J, Krumnikl M, Bainar P, et al.. Imaging plant germline differentiation within Arabidopsis flowers by light sheet microscopy. Elife. 2020;9. Epub 2020/02/12. doi: 10.7554/eLife.52546 . PubMed DOI PMC
Javorka P, Raxwal VK, Najvarek J, Riha K. artMAP: A user-friendly tool for mapping ethyl methanesulfonate-induced mutations in Arabidopsis. Plant Direct. 2019;3(6):e00146. Epub 2019/06/28. doi: 10.1002/pld3.146 . PubMed DOI PMC
Lermontova I, Schubert V, Fuchs J, Klatte S, Macas J, Schubert I. Loading of Arabidopsis centromeric histone CENH3 occurs mainly during G2 and requires the presence of the histone fold domain. Plant Cell. 2006;18(10):2443–51. doi: 10.1105/tpc.106.043174 . PubMed DOI PMC
Ogura Y, Shibata F, Sato H, Murata M. Characterization of a CENP-C homolog in Arabidopsis thaliana. Genes Genet Syst. 2004;79(3):139–44. Epub 2004/08/27. doi: 10.1266/ggs.79.139 . PubMed DOI
Sato H, Shibata F, Murata M. Characterization of a Mis12 homologue in Arabidopsis thaliana. Chromosome Res. 2005;13(8):827–34. doi: 10.1007/s10577-005-1016-3 . PubMed DOI
Lermontova I, Kuhlmann M, Friedel S, Rutten T, Heckmann S, Sandmann M, et al.. Arabidopsis kinetochore null2 is an upstream component for centromeric histone H3 variant cenH3 deposition at centromeres. Plant Cell. 2013;25(9):3389–404. Epub 2013/09/10. doi: 10.1105/tpc.113.114736 . PubMed DOI PMC
Morejohn LC, Bureau TE, Mole-Bajer J, Bajer AS, Fosket DE. Oryzalin, a dinitroaniline herbicide, binds to plant tubulin and inhibits microtubule polymerization in vitro. Planta. 1987;172(2):252–64. Epub 1987/10/01. doi: 10.1007/BF00394595 . PubMed DOI
Ravi M, Chan SW. Haploid plants produced by centromere-mediated genome elimination. Nature. 2010;464(7288):615–8. doi: 10.1038/nature08842 . PubMed DOI
Karimi-Ashtiyani R, Ishii T, Niessen M, Stein N, Heckmann S, Gurushidze M, et al.. Point mutation impairs centromeric CENH3 loading and induces haploid plants. Proc Natl Acad Sci U S A. 2015;112(36):11211–6. Epub 2015/08/22. doi: 10.1073/pnas.1504333112 . PubMed DOI PMC
Kuppu S, Tan EH, Nguyen H, Rodgers A, Comai L, Chan SW, et al.. Point Mutations in Centromeric Histone Induce Post-zygotic Incompatibility and Uniparental Inheritance. PLoS Genet. 2015;11(9):e1005494. Epub 2015/09/10. doi: 10.1371/journal.pgen.1005494 . PubMed DOI PMC
Kuppu S, Ron M, Marimuthu MPA, Li G, Huddleson A, Siddeek MH, et al.. A variety of changes, including CRISPR/Cas9-mediated deletions, in CENH3 lead to haploid induction on outcrossing. Plant Biotechnol J. 2020. Epub 2020/02/26. doi: 10.1111/pbi.13365 . PubMed DOI PMC
Wang N, Dawe RK. Centromere Size and Its Relationship to Haploid Formation in Plants. Mol Plant. 2018;11(3):398–406. Epub 2017/12/27. doi: 10.1016/j.molp.2017.12.009 . PubMed DOI
Unterholzner L, Izaurralde E. SMG7 acts as a molecular link between mRNA surveillance and mRNA decay. Mol Cell. 2004;16(4):587–96. doi: 10.1016/j.molcel.2004.10.013 . PubMed DOI
Loh B, Jonas S, Izaurralde E. The SMG5-SMG7 heterodimer directly recruits the CCR4-NOT deadenylase complex to mRNAs containing nonsense codons via interaction with POP2. Genes Dev. 2013;27(19):2125–38. doi: 10.1101/gad.226951.113 . PubMed DOI PMC
Merai Z, Benkovics AH, Nyiko T, Debreczeny M, Hiripi L, Kerenyi Z, et al.. The late steps of plant nonsense-mediated mRNA decay. Plant J. 2012. Epub 2012/09/15. doi: 10.1111/tpj.12015 . PubMed DOI
Raxwal VK, Simpson CG, Gloggnitzer J, Entinze JC, Guo W, Zhang R, et al.. Nonsense-Mediated RNA Decay Factor UPF1 Is Critical for Posttranscriptional and Translational Gene Regulation in Arabidopsis. Plant Cell. 2020;32(9):2725–41. Epub 2020/07/16. doi: 10.1105/tpc.20.00244 . PubMed DOI PMC
Lopez-Aviles S, Kapuy O, Novak B, Uhlmann F. Irreversibility of mitotic exit is the consequence of systems-level feedback. Nature. 2009;459(7246):592–5. Epub 2009/04/24. doi: 10.1038/nature07984 . PubMed DOI PMC
Potapova TA, Daum JR, Pittman BD, Hudson JR, Jones TN, Satinover DL, et al.. The reversibility of mitotic exit in vertebrate cells. Nature. 2006;440(7086):954–8. doi: 10.1038/nature04652 . PubMed DOI PMC
Lermontova I, Koroleva O, Rutten T, Fuchs J, Schubert V, Moraes I, et al.. Knockdown of CENH3 in Arabidopsis reduces mitotic divisions and causes sterility by disturbed meiotic chromosome segregation. Plant J. 2011;68(1):40–50. Epub 2011/06/04. doi: 10.1111/j.1365-313X.2011.04664.x . PubMed DOI
Jin W, Lamb JC, Vega JM, Dawe RK, Birchler JA, Jiang J. Molecular and functional dissection of the maize B chromosome centromere. Plant Cell. 2005;17(5):1412–23. doi: 10.1105/tpc.104.030643 . PubMed DOI PMC
Tanaka K, Mukae N, Dewar H, van Breugel M, James EK, Prescott AR, et al.. Molecular mechanisms of kinetochore capture by spindle microtubules. Nature. 2005;434(7036):987–94. doi: 10.1038/nature03483 . PubMed DOI
Magidson V, Paul R, Yang N, Ault JG, O’Connell CB, Tikhonenko I, et al.. Adaptive changes in the kinetochore architecture facilitate proper spindle assembly. Nat Cell Biol. 2015;17(9):1134–44. Epub 2015/08/11. doi: 10.1038/ncb3223 . PubMed DOI PMC
Drpic D, Almeida AC, Aguiar P, Renda F, Damas J, Lewin HA, et al.. Chromosome Segregation Is Biased by Kinetochore Size. Curr Biol. 2018;28(9):1344–56.e5. Epub 2018/05/01. doi: 10.1016/j.cub.2018.03.023 . PubMed DOI PMC
Jacquier NMA, Gilles LM, Pyott DE, Martinant JP, Rogowsky PM, Widiez T. Puzzling out plant reproduction by haploid induction for innovations in plant breeding. Nat Plants. 2020;6(6):610–9. Epub 2020/06/10. doi: 10.1038/s41477-020-0664-9 . PubMed DOI
Maheshwari S, Tan EH, West A, Franklin FC, Comai L, Chan SW. Naturally occurring differences in CENH3 affect chromosome segregation in zygotic mitosis of hybrids. PLoS Genet. 2015;11(1):e1004970. Epub 2015/01/27. doi: 10.1371/journal.pgen.1004970 . PubMed DOI PMC
Sanei M, Pickering R, Kumke K, Nasuda S, Houben A. Loss of centromeric histone H3 (CENH3) from centromeres precedes uniparental chromosome elimination in interspecific barley hybrids. Proc Natl Acad Sci U S A. 2011;108(33):E498–505. Epub 2011/07/13. doi: 10.1073/pnas.1103190108 . PubMed DOI PMC
Comai L, Tan EH. Haploid Induction and Genome Instability. Trends Genet. 2019;35(11):791–803. Epub 2019/08/20. doi: 10.1016/j.tig.2019.07.005 . PubMed DOI
Wang N, Gent JI, Dawe RK. Haploid induction by a maize cenh3 null mutant. Sci Adv. 2021;7(4). Epub 2021/02/02. doi: 10.1126/sciadv.abe2299 . PubMed DOI PMC
Marimuthu MPA, Maruthachalam R, Bondada R, Kuppu S, Tan EK, Britt A, et al.. Biased removal and loading of centromeric histone H3 during reproduction underlies uniparental genome elimination. bioRxiv. 2021. doi: 10.1101/2021.02.24.432754 DOI
Lv J, Yu K, Wei J, Gui H, Liu C, Liang D, et al.. Generation of paternal haploids in wheat by genome editing of the centromeric histone CENH3. Nat Biotechnol. 2020;38(12):1397–401. Epub 2020/11/11. doi: 10.1038/s41587-020-0728-4 . PubMed DOI
Fitzgerald MS, Riha K, Gao F, Ren S, McKnight TD, Shippen DE. Disruption of the telomerase catalytic subunit gene from Arabidopsis inactivates telomerase and leads to a slow loss of telomeric DNA. Proc Natl Acad Sci U S A. 1999;96(26):14813–8. doi: 10.1073/pnas.96.26.14813 PubMed DOI PMC
Alexander MP. Differential staining of aborted and nonaborted pollen. Stain Technology. 1969;44(3):117–22. doi: 10.3109/10520296909063335 PubMed DOI
Clarke JD. Cetyltrimethyl ammonium bromide (CTAB) DNA miniprep for plant DNA isolation. Cold Spring Harb Protoc. 2009;2009(3):pdb prot5177. Epub 2010/02/12. doi: 10.1101/pdb.prot5177 . PubMed DOI
Brownfield L, Yi J, Jiang H, Minina EA, Twell D, Kohler C. Organelles maintain spindle position in plant meiosis. Nat Commun. 2015;6:6492. doi: 10.1038/ncomms7492 . PubMed DOI
Talbert PB, Masuelli R, Tyagi AP, Comai L, Henikoff S. Centromeric localization and adaptive evolution of an Arabidopsis histone H3 variant. Plant Cell. 2002;14(5):1053–66. doi: 10.1105/tpc.010425 . PubMed DOI PMC
Jasencakova Z, Meister A, Walter J, Turner BM, Schubert I. Histone H4 acetylation of euchromatin and heterochromatin is cell cycle dependent and correlated with replication rather than with transcription. Plant Cell. 2000;12(11):2087–100. Epub 2000/11/23. doi: 10.1105/tpc.12.11.2087 . PubMed DOI PMC
Derboven E, Ekker H, Kusenda B, Bulankova P, Riha K. Role of STN1 and DNA polymerase alpha in telomere stability and genome-wide replication in Arabidopsis. PLoS Genet. 2014;10(10):e1004682. doi: 10.1371/journal.pgen.1004682 . PubMed DOI PMC
Valuchova S, Fulnecek J, Prokop Z, Stolt-Bergner P, Janouskova E, Hofr C, et al.. Protection of Arabidopsis Blunt-Ended Telomeres Is Mediated by a Physical Association with the Ku Heterodimer. Plant Cell. 2017;29(6):1533–45. doi: 10.1105/tpc.17.00064 . PubMed DOI PMC
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods. 2001. doi: 10.1006/meth.2001.1262 PubMed DOI
Heat stress impairs centromere structure and segregation of meiotic chromosomes in Arabidopsis
A complex role of Arabidopsis CDKD;3 in meiotic progression and cytokinesis