Heat stress impairs centromere structure and segregation of meiotic chromosomes in Arabidopsis
Language English Country Great Britain, England Media electronic
Document type Journal Article
Grant support
21-25163J
Czech Science Foundation
LE2299/5-1
Deutsche Forschungsgemeinschaft
LM2018129
Ministry of Education, Youth and Sports, Czech Republic
PubMed
38629825
PubMed Central
PMC11023694
DOI
10.7554/elife.90253
PII: 90253
Knihovny.cz E-resources
- Keywords
- A. thaliana, cell biology, centremeres, centromeric histone, chromosomes, gene expression, meiosis, micronuclei, spindle assembly checkpoint,
- MeSH
- Arabidopsis * genetics metabolism MeSH
- Centromere metabolism MeSH
- Histones metabolism MeSH
- Kinetochores metabolism MeSH
- Meiosis MeSH
- Heat-Shock Response MeSH
- Plants genetics MeSH
- Chromosome Segregation MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Histones MeSH
Heat stress is a major threat to global crop production, and understanding its impact on plant fertility is crucial for developing climate-resilient crops. Despite the known negative effects of heat stress on plant reproduction, the underlying molecular mechanisms remain poorly understood. Here, we investigated the impact of elevated temperature on centromere structure and chromosome segregation during meiosis in Arabidopsis thaliana. Consistent with previous studies, heat stress leads to a decline in fertility and micronuclei formation in pollen mother cells. Our results reveal that elevated temperature causes a decrease in the amount of centromeric histone and the kinetochore protein BMF1 at meiotic centromeres with increasing temperature. Furthermore, we show that heat stress increases the duration of meiotic divisions and prolongs the activity of the spindle assembly checkpoint during meiosis I, indicating an impaired efficiency of the kinetochore attachments to spindle microtubules. Our analysis of mutants with reduced levels of centromeric histone suggests that weakened centromeres sensitize plants to elevated temperature, resulting in meiotic defects and reduced fertility even at moderate temperatures. These results indicate that the structure and functionality of meiotic centromeres in Arabidopsis are highly sensitive to heat stress, and suggest that centromeres and kinetochores may represent a critical bottleneck in plant adaptation to increasing temperatures.
CEITEC Masaryk University Brno Czech Republic
Leibniz Institute of Plant Genetics and Crop Plant Research Gatersleben Gatersleben Germany
doi: 10.1101/2023.04.19.537519 PubMed
Update Ofdoi: 10.7554/eLife.90253.1 PubMed
Update Ofdoi: 10.7554/eLife.90253.2 PubMed
See more in PubMed
Ahmadli U, Kalidass M, Khaitova LC, Fuchs J, Cuacos M, Demidov D, Zuo S, Pecinkova J, Mascher M, Ingouff M, Heckmann S, Houben A, Riha K, Lermontova I. High temperature increases centromere-mediated genome elimination frequency and enhances haploid induction in Arabidopsis. Plant Communications. 2023;4:100507. doi: 10.1016/j.xplc.2022.100507. PubMed DOI PMC
Alexander MP. Differential staining of aborted and nonaborted pollen. Stain Technology. 1969;44:117–122. doi: 10.3109/10520296909063335. PubMed DOI
Armstrong SJ, Franklin FCH, Jones GH. A meiotic time-course for Arabidopsis thaliana. Sexual Plant Reproduction. 2003;16:141–149. doi: 10.1007/s00497-003-0186-4. DOI
Brachi B, Faure N, Horton M, Flahauw E, Vazquez A, Nordborg M, Bergelson J, Cuguen J, Roux F. Linkage and association mapping of Arabidopsis thaliana flowering time in nature. PLOS Genetics. 2010;6:e1000940. doi: 10.1371/journal.pgen.1000940. PubMed DOI PMC
Brás TA, Seixas J, Carvalhais N, Jägermeyr J. Severity of drought and heatwave crop losses tripled over the last five decades in Europe. Environmental Research Letters. 2021;16:065012. doi: 10.1088/1748-9326/abf004. DOI
Capitao C, Tanasa S, Fulnecek J, Raxwal VK, Akimcheva S, Bulankova P, Mikulkova P, Crhak Khaitova L, Kalidass M, Lermontova I, Mittelsten Scheid O, Riha K. A CENH3 mutation promotes meiotic exit and restores fertility in SMG7-deficient Arabidopsis. PLOS Genetics. 2021;17:e1009779. doi: 10.1371/journal.pgen.1009779. PubMed DOI PMC
Chaturvedi P, Wiese AJ, Ghatak A, Záveská Drábková L, Weckwerth W, Honys D. Heat stress response mechanisms in pollen development. The New Phytologist. 2021;231:571–585. doi: 10.1111/nph.17380. PubMed DOI PMC
De Jaeger-Braet J, Krause L, Buchholz A, Schnittger A. Heat stress reveals a specialized variant of the pachytene checkpoint in meiosis of Arabidopsis thaliana. The Plant Cell. 2022;34:433–454. doi: 10.1093/plcell/koab257. PubMed DOI PMC
De Storme N, Geelen D. The impact of environmental stress on male reproductive development in plants: biological processes and molecular mechanisms. Plant, Cell & Environment. 2014;37:1–18. doi: 10.1111/pce.12142. PubMed DOI PMC
De Storme N, Geelen D. High temperatures alter cross-over distribution and induce male meiotic restitution in Arabidopsis thaliana. Communications Biology. 2020;3:187. doi: 10.1038/s42003-020-0897-1. PubMed DOI PMC
Demidov D, Lermontova I, Moebes M, Kochevenko A, Fuchs J, Weiss O, Rutten T, Sorge E, Zuljan E, Giehl RFH, Mascher M, Somasundaram S, Conrad U, Houben A. Haploid induction by nanobody-targeted ubiquitin-proteasome-based degradation of EYFP-tagged CENH3 in Arabidopsis thaliana. Journal of Experimental Botany. 2022;73:7243–7254. doi: 10.1093/jxb/erac359. PubMed DOI
Fenech M, Kirsch-Volders M, Natarajan AT, Surralles J, Crott JW, Parry J, Norppa H, Eastmond DA, Tucker JD, Thomas P. Molecular mechanisms of micronucleus, nucleoplasmic bridge and nuclear bud formation in mammalian and human cells. Mutagenesis. 2011;26:125–132. doi: 10.1093/mutage/geq052. PubMed DOI
Fu H, Zhao J, Ren Z, Yang K, Wang C, Zhang X, Elesawi IE, Zhang X, Xia J, Chen C, Lu P, Chen Y, Liu H, Yu G, Liu B. Interfered chromosome pairing at high temperature promotes meiotic instability in autotetraploid Arabidopsis. Plant Physiology. 2022;188:1210–1228. doi: 10.1093/plphys/kiab563. PubMed DOI PMC
Hartung F, Wurz-Wildersinn R, Fuchs J, Schubert I, Suer S, Puchta H. The catalytically active tyrosine residues of both SPO11-1 and SPO11-2 are required for meiotic double-strand break induction in Arabidopsis. The Plant Cell. 2007;19:3090–3099. doi: 10.1105/tpc.107.054817. PubMed DOI PMC
Hedhly A, Nestorova A, Herrmann A, Grossniklaus U. Acute heat stress during stamen development affects both the germline and sporophytic lineages in Arabidopsis thaliana (L.) Heynh. Environmental and Experimental Botany. 2020;173:103992. doi: 10.1016/j.envexpbot.2020.103992. DOI
Higgins JD, Perry RM, Barakate A, Ramsay L, Waugh R, Halpin C, Armstrong SJ, Franklin FCH. Spatiotemporal asymmetry of the meiotic program underlies the predominantly distal distribution of meiotic crossovers in barley. The Plant Cell. 2012;24:4096–4109. doi: 10.1105/tpc.112.102483. PubMed DOI PMC
Jin C, Sun L, Trinh HK, Danny G. Heat stress promotes haploid formation during CENH3-mediated genome elimination in Arabidopsis. Plant Reproduction. 2023;36:147–155. doi: 10.1007/s00497-023-00457-8. PubMed DOI
Kalitsis P, Earle E, Fowler KJ, Choo KH. Bub3 gene disruption in mice reveals essential mitotic spindle checkpoint function during early embryogenesis. Genes & Development. 2000;14:2277–2282. doi: 10.1101/gad.827500. PubMed DOI PMC
Kim J, Park J, Kim H, Son N, Kim EJ, Kim J, Byun D, Lee Y, Park YM, Nageswaran DC, Kuo P, Rose T, Dang TVT, Hwang I, Lambing C, Henderson IR, Choi K. Arabidopsis HEAT SHOCK FACTOR BINDING PROTEIN is required to limit meiotic crossovers and HEI10 transcription. The EMBO Journal. 2022;41:e109958. doi: 10.15252/embj.2021109958. PubMed DOI PMC
Komaki S, Schnittger A. The spindle assembly checkpoint in arabidopsis is rapidly shut off during severe stress. Developmental Cell. 2017;43:172–185. doi: 10.1016/j.devcel.2017.09.017. PubMed DOI
Lampou K, Böwer F, Komaki S, Köhler M, Schnittger A. A cytological and functional framework of the meiotic spindle assembly checkpoint in Arabidopsis thaliana. bioRxiv. 2023 doi: 10.1101/2023.05.26.542430. DOI
Le Goff S, Keceli BN, Jerabkova H, Heckmann S, Rutten T, Cotterell S, Schubert V, Roitinger E, Mechtler K, Franklin FCH, Tatout C, Houben A, Geelen D, Probst AV, Lermontova I. The H3 histone chaperone NASP(SIM3) escorts CenH3 in Arabidopsis. The Plant Journal: For Cell and Molecular Biology. 2020;101:71–86. doi: 10.1111/tpj.14518. PubMed DOI
Lermontova I, Schubert V, Fuchs J, Klatte S, Macas J, Schubert I. Loading of Arabidopsis centromeric histone CENH3 occurs mainly during G2 and requires the presence of the histone fold domain. The Plant Cell. 2006;18:2443–2451. doi: 10.1105/tpc.106.043174. PubMed DOI PMC
Lermontova I, Koroleva O, Rutten T, Fuchs J, Schubert V, Moraes I, Koszegi D, Schubert I. Knockdown of CENH3 in Arabidopsis reduces mitotic divisions and causes sterility by disturbed meiotic chromosome segregation. The Plant Journal. 2011a;68:40–50. doi: 10.1111/j.1365-313X.2011.04664.x. PubMed DOI
Lermontova I, Rutten T, Schubert I. Deposition, turnover, and release of CENH3 at Arabidopsis centromeres. Chromosoma. 2011b;120:633–640. doi: 10.1007/s00412-011-0338-5. PubMed DOI
Lippmann R, Babben S, Menger A, Delker C, Quint M. Development of wild and cultivated plants under global warming conditions. Current Biology. 2019;29:R1326–R1338. doi: 10.1016/j.cub.2019.10.016. PubMed DOI
Lloyd A, Morgan C, H Franklin FC, Bomblies K. Plasticity of meiotic recombination rates in response to temperature in Arabidopsis. Genetics. 2018;208:1409–1420. doi: 10.1534/genetics.117.300588. PubMed DOI PMC
Loidl J. Effects of elevated temperature on meiotic chromosome synapsis in Allium ursinum. Chromosoma. 1989;97:449–458. doi: 10.1007/BF00295029. DOI
Marimuthu MPA, Maruthachalam R, Bondada R, Kuppu S, Tan EH, Britt A, Chan SWL, Comai L. Epigenetically mismatched parental centromeres trigger genome elimination in hybrids. Science Advances. 2021;7:eabk1151. doi: 10.1126/sciadv.abk1151. PubMed DOI PMC
May BP, Lippman ZB, Fang Y, Spector DL, Martienssen RA. Differential regulation of strand-specific transcripts from Arabidopsis centromeric satellite repeats. PLOS Genetics. 2005;1:e79. doi: 10.1371/journal.pgen.0010079. PubMed DOI PMC
McAinsh AD, Marston AL. The four causes: the functional architecture of centromeres and kinetochores. Annual Review of Genetics. 2022;56:279–314. doi: 10.1146/annurev-genet-072820-034559. PubMed DOI PMC
Modliszewski JL, Wang H, Albright AR, Lewis SM, Bennett AR, Huang J, Ma H, Wang Y, Copenhaver GP. Elevated temperature increases meiotic crossover frequency via the interfering (Type I) pathway in Arabidopsis thaliana. PLOS Genetics. 2018;14:e1007384. doi: 10.1371/journal.pgen.1007384. PubMed DOI PMC
Ning Y, Liu Q, Wang C, Qin E, Wu Z, Wang M, Yang K, Elesawi IE, Chen C, Liu H, Qin R, Liu B. Heat stress interferes with formation of double-strand breaks and homolog synapsis. Plant Physiology. 2021;185:1783–1797. doi: 10.1093/plphys/kiab012. PubMed DOI PMC
Parslow A, Cardona A, Bryson-Richardson RJ. Sample drift correction following 4D confocal time-lapse imaging. Journal of Visualized Experiments. 2014;1:51086. doi: 10.3791/51086. PubMed DOI PMC
Pécrix Y, Rallo G, Folzer H, Cigna M, Gudin S, Le Bris M. Polyploidization mechanisms: temperature environment can induce diploid gamete formation in Rosa sp. Journal of Experimental Botany. 2011;62:3587–3597. doi: 10.1093/jxb/err052. PubMed DOI
Prusicki MA, Keizer EM, van Rosmalen RP, Komaki S, Seifert F, Müller K, Wijnker E, Fleck C, Schnittger A. Live cell imaging of meiosis in Arabidopsis thaliana. eLife. 2019;8:e42834. doi: 10.7554/eLife.42834. PubMed DOI PMC
Ravi M, Chan SWL. Haploid plants produced by centromere-mediated genome elimination. Nature. 2010;464:615–618. doi: 10.1038/nature08842. PubMed DOI
Ravi M, Shibata F, Ramahi JS, Nagaki K, Chen C, Murata M, Chan SWL. Meiosis-specific loading of the centromere-specific histone CENH3 in Arabidopsis thaliana. PLOS Genetics. 2011;7:e1002121. doi: 10.1371/journal.pgen.1002121. PubMed DOI PMC
Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez JY, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A. Fiji: an open-source platform for biological-image analysis. Nature Methods. 2012;9:676–682. doi: 10.1038/nmeth.2019. PubMed DOI PMC
Schubert V, Lermontova I, Schubert I. Loading of the centromeric histone H3 variant during meiosis-how does it differ from mitosis? Chromosoma. 2014;123:491–497. doi: 10.1007/s00412-014-0466-9. PubMed DOI
Shihan MH, Novo SG, Le Marchand SJ, Wang Y, Duncan MK. A simple method for quantitating confocal fluorescent images. Biochemistry and Biophysics Reports. 2021;25:100916. doi: 10.1016/j.bbrep.2021.100916. PubMed DOI PMC
Shindo C, Bernasconi G, Hardtke CS. Natural genetic variation in Arabidopsis: tools, traits and prospects for evolutionary ecology. Annals of Botany. 2007;99:1043–1054. doi: 10.1093/aob/mcl281. PubMed DOI PMC
Stacey NJ, Kuromori T, Azumi Y, Roberts G, Breuer C, Wada T, Maxwell A, Roberts K, Sugimoto-Shirasu K. Arabidopsis SPO11-2 functions with SPO11-1 in meiotic recombination. The Plant Journal. 2006;48:206–216. doi: 10.1111/j.1365-313X.2006.02867.x. PubMed DOI
Stirpe A, Heun P. The ins and outs of CENP-A: Chromatin dynamics of the centromere-specific histone. Seminars in Cell & Developmental Biology. 2023;135:24–34. doi: 10.1016/j.semcdb.2022.04.003. PubMed DOI
Swartz SZ, McKay LS, Su KC, Bury L, Padeganeh A, Maddox PS, Knouse KA, Cheeseman IM. Quiescent cells actively replenish CENP-a nucleosomes to maintain centromere identity and proliferative potential. Developmental Cell. 2019;51:35–48. doi: 10.1016/j.devcel.2019.07.016. PubMed DOI PMC
Talbert PB, Masuelli R, Tyagi AP, Comai L, Henikoff S. Centromeric localization and adaptive evolution of an Arabidopsis histone H3 variant. The Plant Cell. 2002;14:1053–1066. doi: 10.1105/tpc.010425. PubMed DOI PMC
Tittel-Elmer M, Bucher E, Broger L, Mathieu O, Paszkowski J, Vaillant I. Stress-induced activation of heterochromatic transcription. PLOS Genetics. 2010;6:e1001175. doi: 10.1371/journal.pgen.1001175. PubMed DOI PMC
Valuchova S, Mikulkova P, Pecinkova J, Klimova J, Krumnikl M, Bainar P, Heckmann S, Tomancak P, Riha K. Imaging plant germline differentiation within Arabidopsis flowers by light sheet microscopy. eLife. 2020;9:e52546. doi: 10.7554/eLife.52546. PubMed DOI PMC
Wang J, Li D, Shang F, Kang X. High temperature-induced production of unreduced pollen and its cytological effects in Populus. Scientific Reports. 2017;7:5281. doi: 10.1038/s41598-017-05661-x. PubMed DOI PMC
Wang Z, Chen M, Yang H, Hu Z, Yu Y, Xu H, Yan S, Yi K, Li J. A simple and highly efficient strategy to induce both paternal and maternal haploids through temperature manipulation. Nature Plants. 2023;9:699–705. doi: 10.1038/s41477-023-01389-x. PubMed DOI
Zhu J, Lou Y, Shi QS, Zhang S, Zhou WT, Yang J, Zhang C, Yao XZ, Xu T, Liu JL, Zhou L, Hou JQ, Wang JQ, Wang S, Huang XH, Yang ZN. Slowing development restores the fertility of thermo-sensitive male-sterile plant lines. Nature Plants. 2020;6:360–367. doi: 10.1038/s41477-020-0622-6. PubMed DOI
Zinn KE, Tunc-Ozdemir M, Harper JF. Temperature stress and plant sexual reproduction: uncovering the weakest links. Journal of Experimental Botany. 2010;61:1959–1968. doi: 10.1093/jxb/erq053. PubMed DOI PMC