The H3 histone chaperone NASPSIM3 escorts CenH3 in Arabidopsis
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
31463991
DOI
10.1111/tpj.14518
Knihovny.cz E-zdroje
- Klíčová slova
- Arabidopsis thaliana, CenH3, NASPSIM3, centromere, histone chaperone, kinetochore,
- MeSH
- Arabidopsis metabolismus MeSH
- centromera metabolismus MeSH
- histony metabolismus MeSH
- kinetochory metabolismus MeSH
- proteiny huseníčku metabolismus MeSH
- Schizosaccharomyces metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- histony MeSH
- proteiny huseníčku MeSH
Centromeres define the chromosomal position where kinetochores form to link the chromosome to microtubules during mitosis and meiosis. Centromere identity is determined by incorporation of a specific histone H3 variant termed CenH3. As for other histones, escort and deposition of CenH3 must be ensured by histone chaperones, which handle the non-nucleosomal CenH3 pool and replenish CenH3 chromatin in dividing cells. Here, we show that the Arabidopsis orthologue of the mammalian NUCLEAR AUTOANTIGENIC SPERM PROTEIN (NASP) and Schizosaccharomyces pombe histone chaperone Sim3 is a soluble nuclear protein that binds the histone variant CenH3 and affects its abundance at the centromeres. NASPSIM3 is co-expressed with Arabidopsis CenH3 in dividing cells and binds directly to both the N-terminal tail and the histone fold domain of non-nucleosomal CenH3. Reduced NASPSIM3 expression negatively affects CenH3 deposition, identifying NASPSIM3 as a CenH3 histone chaperone.
GReD Université Clermont Auvergne CNRS INSERM BP 38 63001 Clermont Ferrand France
Gregor Mendel Institute Vienna 1030 Austria
Institute of Molecular Biotechnology Vienna 1030 Austria
Institute of Molecular Pathology Vienna 1030 Austria
School of Biosciences University of Birmingham Edgbaston Birmingham B15 2TT UK
Zobrazit více v PubMed
Apta-Smith, M.J., Hernandez-Fernaud, J.R. and Bowman, A.J. (2018) Evidence for the nuclear import of histones H3.1 and H4 as monomers. EMBO J. 37, e98714.
Barnhart, M.C., Kuich, P.H.J.L., Stellfox, M.E., Ward, J.A., Bassett, E.A., Black, B.E. and Foltz, D.R. (2011) HJURP is a CENP-A chromatin assembly factor sufficient to form a functional de novo kinetochore. J. Cell Biol. 194, 229-243.
Batzenschlager, M., Masoud, K., Janski, N. et al. (2013) The GIP gamma-tubulin complex-associated proteins are involved in nuclear architecture in Arabidopsis thaliana. Front. Plant Sci. 4, 480.
Batzenschlager, M., Lermontova, I., Schubert, V. et al. (2015) Arabidopsis MZT1 homologs GIP1 and GIP2 are essential for centromere architecture. Proc. Natl Acad. Sci. USA, 112, 8656-8660.
Benoit, M., Simon, L., Desset, S., Duc, C., Cotterell, S., Poulet, A., Goff, S.Le, Tatout, C. and Probst, A.V. (2019) Replication-coupled histone H3.1 deposition determines nucleosome composition and heterochromatin dynamics during Arabidopsis seedling development. New Phytol. 221, 385-398.
Bowman, A., Lercher, L., Singh, H.R., Zinne, D., Timinszky, G., Carlomagno, T. and Ladurner, A.G. (2016) The histone chaperone sNASP binds a conserved peptide motif within the globular core of histone H3 through its TPR repeats. Nucleic Acids Res. 44, 3105-3117.
Campos, E.I., Fillingham, J., Li, G. et al. (2010) The program for processing newly synthesized histones H3.1 and H4. Nat. Struct. Mol. Biol. 17, 1343-1351.
Chen, Y., Baker, R.E., Keith, K.C., Harris, K., Stoler, S.A.M. and Fitzgerald-Hayes, M. (2000) The N terminus of the centromere H3-like protein Cse4p performs an essential function distinct from that of the histone fold domain. Mol. Cell. Biol. 20, 7037-7048.
Chen, C.-C., Dechassa, M.L., Bettini, E., Ledoux, M.B., Belisario, C., Heun, P., Luger, K. and Mellone, B.G. (2014) CAL1 is the Drosophila CENP-A assembly factor. J. Cell Biol. 204, 313-329.
Clough, S.J. and Bent, A.F. (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16, 735-743.
Cook, A.J., Gurard-Levin, Z.A., Vassias, I. and Almouzni, G. (2011) A specific function for the histone chaperone NASP to fine-tune a reservoir of soluble H3-H4 in the histone supply chain. Mol. Cell, 44, 918-927.
De Koning, L., Corpet, A., Haber, J.E. and Almouzni, G. (2007) Histone chaperones: an escort network regulating histone traffic. Nat. Struct. Mol. Biol. 14, 997-1007.
Duc, C., Benoit, M., Goff, S.Le, Simon, L., Poulet, A., Cotterell, S., Tatout, C. and Probst, A.V. (2015) The histone chaperone complex HIR maintains nucleosome occupancy and counterbalances impaired histone deposition in CAF-1 complex mutants. Plant J. 81, 707-722.
Dunleavy, E.M., Pidoux, A.L., Monet, M., Bonilla, C., Richardson, W., Hamilton, G.L., Ekwall, K., McLaughlin, P.J. and Allshire, R.C. (2007) A NASP (N1/N2)-related protein, Sim3, binds CENP-A and is required for its deposition at fission yeast centromeres. Mol. Cell, 28, 1029-1044.
Dunleavy, E.M., Roche, D., Tagami, H., Lacoste, N., Ray-Gallet, D., Nakamura, Y., Daigo, Y., Nakatani, Y. and Almouzni-Pettinotti, G. (2009) HJURP is a cell-cycle-dependent maintenance and deposition factor of CENP-A at centromeres. Cell, 137, 485-497.
Fang, Y. and Spector, D.L. (2005) Centromere positioning and dynamics in living Arabidopsis plants. Mol. Biol. Cell, 16, 5710-5718.
Foltz, D.R., Jansen, L.E., Bailey, A.O., Iii, J.R.Y., Bassett, E.A., Wood, S., Black, B.E. and Cleveland, D.W. (2009) Centromere-specific assembly of CENP-A nucleosomes is mediated by HJURP. Cell, 137, 472-484.
Hammond, C.M., Strømme, C.B., Huang, H., Patel, D.J. and Groth, A. (2017) Histone chaperone networks shaping chromatin function. Nat. Rev. Mol. Cell Biol. 18, 141-158.
Heckmann, S., Lermontova, I., Berckmans, B., Veylder, L.De, Bäumlein, H. and Schubert, I. (2011) The E2F transcription factor family regulates CENH3 expression in Arabidopsis thaliana. Plant J. 68, 646-656.
Hennig, L., Bouveret, R. and Gruissem, W. (2005) MSI1-like proteins: an escort service for chromatin assembly and remodeling complexes. Trends Cell Biol. 15, 295-302.
Janski, N., Masoud, K., Batzenschlager, M., Herzog, E., Evrard, J.-L., Houlné, G., Bourge, M., Chabouté, M.-E. and Schmit, A.-C. (2012) The GCP3-interacting proteins GIP1 and GIP2 are required for γ-tubulin complex protein localization, spindle integrity, and chromosomal stability. Plant Cell, 24, 1171-1187.
Jasencakova, Z., Scharf, A.N.D., Ask, K., Corpet, A., Imhof, A., Almouzni, G. and Groth, A. (2010) Replication stress interferes with histone recycling and predeposition marking of new histones. Mol. Cell, 37, 736-743.
Jasencakova, Z., Meister, A., Walter, J., Turner, B.M. and Schubert, I. (2000) Histone H4 acetylation of euchromatin and heterochromatin is cell cycle dependent and correlated with replication rather than with transcription. Plant Cell, 12, 2087-2100.
Jefferson, R.A., Kavanagh, T.A. and Bevan, M.W. (1987) GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J. 6, 3901-3907.
Jiang, D. and Berger, F. (2017) DNA replication-coupled histone modification maintains Polycomb gene silencing in plants. Science, 357, 1146-1149.
Jiang, Y., Yang, B., Harris, N.S. and Deyholos, M.K. (2007) Comparative proteomic analysis of NaCl stress-responsive proteins in Arabidopsis roots. J. Exp. Bot. 58, 3591-3607.
Kaya, H., Shibahara, K.I., Taoka, K.I., Iwabuchi, M., Stillman, B. and Araki, T. (2001) FASCIATA genes for chromatin assembly factor-1 in Arabidopsis maintain the cellular organization of apical meristems. Cell, 104, 131-142.
Lacoste, N., Woolfe, A., Tachiwana, H., Garea, A.V., Barth, T., Cantaloube, S., Kurumizaka, H., Imhof, A. and Almouzni, G. (2014) Mislocalization of the centromeric histone variant CenH3/CENP-A in human cells depends on the chaperone DAXX. Mol. Cell, 53, 631-644.
Lermontova, I., Schubert, V., Fuchs, J., Klatte, S., Macas, J. and Schubert, I. (2006) Loading of Arabidopsis centromeric histone CENH3 occurs mainly during G2 and requires the presence of the histone fold domain. Plant Cell, 18, 2443-2451.
Lermontova, I., Fuchs, J., Schubert, V. and Schubert, I. (2007) Loading time of the centromeric histone H3 variant differs between plants and animals. Chromosoma, 116, 507-510.
Lermontova, I., Koroleva, O., Rutten, T., Fuchs, J., Schubert, V., Moraes, I., Koszegi, D. and Schubert, I. (2011) Knockdown of CENH3 in Arabidopsis reduces mitotic divisions and causes sterility by disturbed meiotic chromosome segregation. Plant J. 68, 40-50.
Lermontova, I., Sandmann, M., Mascher, M., Schmit, A.-C. and Chabouté, M.-E. (2015) Centromeric chromatin and its dynamics in plants. Plant J. 83, 4-17.
Liu, Z., Zhu, Y., Gao, J., Yu, F., Dong, A. and Shen, W.-H. (2009) Molecular and reverse genetic characterization of NUCLEOSOME ASSEMBLY PROTEIN1 (NAP1) genes unravels their function in transcription and nucleotide excision repair in Arabidopsis thaliana. Plant J. 59, 27-38.
Maksimov, V., Nakamura, M., Wildhaber, T., Nanni, P., Ramström, M., Bergquist, J. and Hennig, L. (2016) The H3 chaperone function of NASP is conserved in Arabidopsis. Plant J. 88, 425-436.
Mattiroli, F., D'Arcy, S. and Luger, K. (2015) The right place at the right time: chaperoning core histone variants. EMBO Rep. 16, 1454-1466.
Müller, S. and Almouzni, G. (2017) Chromatin dynamics during the cell cycle at centromeres. Nat. Rev. Genet. 18, 192-208.
Nabeel-Shah, S., Ashraf, K., Pearlman, R.E. and Fillingham, J. (2014) Molecular evolution of NASP and conserved histone H3/H4 transport pathway. BMC Evol. Biol. 14, 139.
Nakaminami, K., Matsui, A., Nakagami, H. et al. (2014) Analysis of differential expression patterns of mRNA and protein during cold-acclimation and de-acclimation in Arabidopsis. Mol. Cell Proteomics, 13, 3602-3611.
Natsume, R., Eitoku, M., Akai, Y. and Sano, N. (2007) Structure and function of the histone chaperone CIA/ASF1 complexed with histones H3 and H4. Nature, 446, 1-4.
Okada, M., Cheeseman, I.M., Hori, T., Okawa, K., McLeod, I.X., Yates, J.R., Desai, A. and Fukagawa, T. (2006) The CENP-H-I complex is required for the efficient incorporation of newly synthesized CENP-A into centromeres. Nat. Cell Biol. 8, 446-457.
Osakabe, A., Tachiwana, H., Matsunaga, T., Shiga, T., Nozawa, R.S., Obuse, C. and Kurumizaka, H. (2010) Nucleosome formation activity of human somatic nuclear autoantigenic sperm protein (sNASP). J. Biol. Chem. 285, 11913-11921.
Phansalkar, R., Lapierre, P. and Mellone, B.G. (2012) Evolutionary insights into the role of the essential centromere protein CAL1 in Drosophila. Chromosome Res. 20, 493-504.
Pidoux, A.L., Choi, E.S., Abbott, J.K.R. et al. (2009) Article fission yeast Scm3: a CENP-A receptor required for integrity of subkinetochore chromatin. Mol. Cell, 33, 299-311.
Ravi, M. and Chan, S.W.L. (2010) Haploid plants produced by centromere-mediated genome elimination. Nature, 464, 615-618.
Ravi, M., Shibata, F., Ramahi, J.S., Nagaki, K., Chen, C., Murata, M. and Chan, S.W.L. (2011) Meiosis-specific loading of the centromere-specific histone CENH3 in Arabidopsis thaliana. PLoS Genet. 7, e1002121.
Ren, J., Wen, L., Gao, X., Jin, C., Xue, Y. and Yao, X. (2009) DOG 1.0: illustrator of protein domain structures. Cell Res. 19, 271.
Richardson, R.T., Batova, I.N., Widgren, E.E., Zheng, L., Whitfield, M., Marzluff, W.F. and Rand, M.G.O. (2000) Characterization of the histone H1-binding protein, NASP, as a cell cycle-regulated somatic protein. J. Biol. Chem. 275, 30378-30386.
Rosin, L.F. and Mellone, B.G. (2017) Centromeres drive a hard bargain. Trends Genet. 33, 101-117.
Schwab, R., Ossowski, S., Riester, M., Warthmann, N. and Weigel, D. (2006) Highly specific gene silencing by artificial microRNAs in Arabidopsis. Plant Cell, 18, 1121-1133.
Stoler, S., Rogers, K., Weitze, S., Morey, L., Fitzgerald-hayes, M. and Baker, R.E. (2007) Scm3, an essential Saccharomyces cerevisiae centromere protein required for G2/M progression and Cse4 localization. Proc. Natl Acad. Sci. USA, 104, 10571-10576.
Suzuki, T., Nakajima, S., Morikami, A. and Nakamura, K. (2005) An Arabidopsis protein with a novel calcium-binding repeat sequence interacts with TONSOKU/MGOUN3/BRUSHY1 involved in meristem maintenance. Plant Cell Physiol. 46, 1452-1461.
Talbert, P.B., Masuelli, R. and Tyagi, A. (2002) Centromeric localization and adaptive evolution of an Arabidopsis histone H3 variant. Plant Cell, 14, 1053-1066.
Talbert, P.B., Ahmad, K., Almouzni, G. et al. (2012) A unified phylogeny-based nomenclature for histone variants. Epigenetics Chromatin, 5, 7.
Tan, H.L., Lim, K.K., Yang, Q. et al. (2018) Prolyl isomerization of the CENP-A N-terminus regulates centromeric integrity in fission yeast. Nucleic Acids Res. 46, 1167-1179.
Tripathi, A.K., Singh, K., Pareek, A. and Singla-Pareek, S.L. (2015) Histone chaperones in Arabidopsis and rice: genome-wide identification, phylogeny, architecture and transcriptional regulation. BMC Plant Biol. 15, 1-25.
Van Leene, J., Eeckhout, D., Persiau, G., Van De Slijke, E., Geerinck, J., Van Isterdael, G., Witters, E. and De Jaeger, G. (2011) Isolation of Transcription Factor Complexes from Arabidopsis Cell Suspension Cultures by Tandem Affinity Purification BT - Plant Transcription Factors: Methods and Protocols (Yuan, L. and Perry, S.E., eds). Totowa, NJ: Humana Press, pp. 195-218.
Walter, M., Chaban, C., Schütze, K. et al. (2004) Visualization of protein interactions in living plant cells using bimolecular fluorescence complementation. Plant J. 40, 428-438.
Wang, H., Ge, Z., Walsh, S.T.R. and Parthun, M.R. (2012) The human histone chaperone sNASP interacts with linker and core histones through distinct mechanisms. Nucleic Acids Res. 40, 660-669.
Weisshart, K., Fuchs, J. and Schubert, V. (2016) Structured illumination microscopy (SIM) and photoactivated localization microscopy (PALM) to analyze the abundance and distribution of RNA polymerase II molecules on flow-sorted Arabidopsis nuclei. Bio-Protocol, 6, e1725.
Zasadzińska, E., Huang, J., Bailey, A.O. et al. (2018) Inheritance of CENP-A nucleosomes during DNA replication requires HJURP. Dev. Cell, 47, 348-362.e7.
Zhu, Y., Weng, M., Yang, Y., Zhang, C., Li, Z., Shen, W.H. and Dong, A. (2011) Arabidopsis homologues of the histone chaperone ASF1 are crucial for chromatin replication and cell proliferation in plant development. Plant J. 66, 443-455.