Growth and potential damage of human bone-derived cells on fresh and aged fullerene c60 films
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
23624607
PubMed Central
PMC3676779
DOI
10.3390/ijms14059182
PII: ijms14059182
Knihovny.cz E-zdroje
- MeSH
- buněčná adheze účinky léků MeSH
- fluorescenční protilátková technika MeSH
- fotoelektronová spektroskopie MeSH
- fullereny farmakologie MeSH
- hydrofobní a hydrofilní interakce účinky léků MeSH
- kosti a kostní tkáň cytologie MeSH
- lidé MeSH
- mikroskopie atomárních sil MeSH
- nádorové buněčné linie MeSH
- osteoblasty cytologie účinky léků MeSH
- poškození DNA MeSH
- povrchové vlastnosti MeSH
- proliferace buněk účinky léků MeSH
- průtoková cytometrie MeSH
- Ramanova spektroskopie MeSH
- tvar buňky účinky léků MeSH
- viabilita buněk účinky léků MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- fullerene C60 MeSH Prohlížeč
- fullereny MeSH
Fullerenes are nanoparticles composed of carbon atoms arranged in a spherical hollow cage-like structure. Numerous studies have evaluated the therapeutic potential of fullerene derivates against oxidative stress-associated conditions, including the prevention or treatment of arthritis. On the other hand, fullerenes are not only able to quench, but also to generate harmful reactive oxygen species. The reactivity of fullerenes may change in time due to the oxidation and polymerization of fullerenes in an air atmosphere. In this study, we therefore tested the dependence between the age of fullerene films (from one week to one year) and the proliferation, viability and metabolic activity of human osteosarcoma cells (lines MG-63 and U-2 OS). We also monitored potential membrane and DNA damage and morphological changes of the cells. After seven days of cultivation, we did not observe any cytotoxic morphological changes, such as enlarged cells or cytosolic vacuole formation. Furthermore, there was no increased level of DNA damage. The increasing age of the fullerene films did not cause enhancement of cytotoxicity. On the contrary, it resulted in an improvement in the properties of these materials, which are more suitable for cell cultivation. Therefore, fullerene films could be considered as a promising material with potential use as a bioactive coating of cell carriers for bone tissue engineering.
Zobrazit více v PubMed
Kroto H.W., Heath J.R., Obrien S.C., Curl R.F., Smalley R.E. C60: Buckminsterfullerene. Nature. 1985;318:162–163.
Aitken R.J., Chaudhry M.Q., Boxall A.B.A., Hull M. Manufacture and use of nanomaterials: Current status in the UK and global trends. Occup. Med. 2006;56:300–306. PubMed
Kato S., Taira H., Aoshima H., Saitoh Y., Miwa N. Clinical evaluation of fullerene-C60 dissolved in squalane for anti-wrinkle cosmetics. J. Nanosci. Nanotechnol. 2010;10:6769–6774. PubMed
Kato S., Aoshima H., Saitoh Y., Miwa N. Fullerene-C60/liposome complex: Defensive effects against UVA-induced damages in skin structure, nucleus and collagen type I/IV fibrils, and the permeability into human skin tissue. J. Photochem. Photobiol. B Biol. 2010;98:99–105. PubMed
Foley S., Crowley C., Smaihi M., Bonfils C., Erlanger B.F., Seta P., Larroque C. Cellular localisation of a water-soluble fullerene derivative. Biochem. Biophys. Res. Commun. 2002;294:116–119. PubMed
Venkatesan N., Yoshimitsu J., Ito Y., Shibata N., Takada K. Liquid filled nanoparticles as a drug delivery tool for protein therapeutics. Biomaterials. 2005;26:7154–7163. PubMed
Isobe H., Nakanishi W., Tomita N., Jinno S., Okayama H., Nakamura E. Nonviral gene delivery by tetraamino fullerene. Mol. Pharm. 2006;3:124–134. PubMed
Dugan L.L., Gabrielsen J.K., Yu S.P., Lin T.S., Choi D.W. Buckminsterfullerenol free radical scavengers reduce excitotoxic and apoptotic death of cultured cortical neurons. Neurobiol. Dis. 1996;3:129–135. PubMed
Dugan L.L., Lovett E.G., Quick K.L., Lotharius J., Lin T.T., O’Malley K.L. Fullerene-based antioxidants and neurodegenerative disorders. Parkinsonism Related Disord. 2001;7:243–246. PubMed
Ryan J.J., Bateman H.R., Stover A., Gomez G., Norton S.K., Zhao W., Schwartz L.B., Lenk R., Kepley C.L. Fullerene nanomaterials inhibit the allergic response. J. Immunol. 2007;179:665–672. PubMed
Tabata Y., Murakami Y., Ikada Y. Photodynamic effect of polyethylene glycol-modified fullerene on tumor. Jpn. J. Cancer Res. 1997;88:1108–1116. PubMed PMC
Tegos G.P., Demidova T.N., Arcila-Lopez D., Lee H., Wharton T., Gali H., Hamblin M.R. Cationic fullerenes are effective and selective antimicrobial photosensitizers. Chem. Biol. 2005;12:1127–1135. PubMed PMC
Käsermann F., Kempf C. Photodynamic inactivation of enveloped viruses by buckminsterfullerene. Antivir. Res. 1997;34:65–70. PubMed
Bacakova L., Grausova L., Vandrovcova M., Vacik J., Frazcek A., Blazewicz S., Kromka A., Rezek B., Vanecek M., Nesladek M., et al. Carbon Nanoparticles as Substrates for Cell Adhesion and Growth. In: Lombardi S.L., editor. Nanoparticles: New Research. Nova Science Publishers, Inc; Hauppauge, NY, USA: 2008. pp. 39–107.
Spohn P., Hirsch C., Hasler F., Bruinink A., Krug H.F., Wick P. C60 fullerene: A powerful antioxidant or a damaging agent? The importance of an in-depth material characterization prior to toxicity assays. Environ. Pollut. 2009;157:1134–1139. PubMed
Kovochich M., Espinasse B., Auffan M., Hotze E.M., Wessel L., Xia T., Nel A.E., Wiesner M.R. Comparative toxicity of C60 aggregates toward mammalian cells: Role of tetrahydrofuran (THF) decomposition. Environ. Sci. Technol. 2009;43:6378–6384. PubMed PMC
Henry T.B., Menn F.-M., Fleming J.T., Wilgus J., Compton R.N., Sayler G.S. Attributing effects of aqueous C60 nano-aggregates to tetrahydrofuran decomposition products in larval zebrafish by assessment of gene expression. Environ. Health Perspect. 2007;115:1059–1065. PubMed PMC
Gharbi N., Pressac M., Hadchouel M., Szwarc H., Wilson S.R., Moussa F. [60]fullerene is a powerful antioxidant in vivo with no acute or subacute toxicity. Nano Lett. 2005;5:2578–2585. PubMed
Huczko A., Lange H., Calco E. Fullerenes: Experimental evidence for a null risk of skin irritation and allergy. Full. Sci. Technol. 1999;7:935–939.
Nelson M.A., Domann F.E., Bowden G.T., Hooser S.B., Fernando Q., Carter D.E. Effects of acute and subchronic exposure of topically applied fullerene extracts on the mouse skin. Toxicol. Ind. Health. 1993;9:623–630. PubMed
Sayes C.M., Marchione A.A., Reed K.L., Warheit D.B. Comparative pulmonary toxicity assessments of C60 water suspensions in rats: Few differences in fullerene toxicity in vivo in contrast to in vitro profiles. Nano Lett. 2007;7:2399–2406. PubMed
Baker G.L., Gupta A., Clark M.L., Valenzuela B.R., Staska L.M., Harbo S.J., Pierce J.T., Dill J.A. Inhalation toxicity and lung toxicokinetics of C60 fullerene nanoparticles and microparticles. Toxicol. Sci. 2008;101:122–131. PubMed
Yudoh K., Shishido K., Murayama H., Yano M., Matsubayashi K., Takada H., Nakamura H., Masuko K., Kato T., Nishioka K. Water-soluble C60 fullerene prevents degeneration of articular cartilage in osteoarthritis via down-regulation of chondrocyte catabolic activity and inhibition of cartilage degeneration during disease development. Arthrit. Rheum. 2007;56:3307–3318. PubMed
Yudoh K., Karasawa R., Masuko K., Kato T. Water-soluble fullerene (C60) inhibits the development of arthritis in the rat model of arthritis. Int. J. Nanomed. 2009;4:217–225. PubMed PMC
Yudoh K., Karasawa R., Masuko K., Kato T. Water-soluble fullerene (C60) inhibits the osteoclast differentiation and bone destruction in arthritis. Int. J. Nanomed. 2009;4:233–239. PubMed PMC
Kasai T., Matsumura S., Iizuka T., Shiba K., Kanamori T., Yudasaka M., Iijima S., Yokoyama A. Carbon nanohorns accelerate bone regeneration in rat calvarial bone defect. Nanotechnology. 2011;22:065102. PubMed
Bacakova L., Grausova L., Vacik J., Fraczek A., Blazewicz S., Kromka A., Vanecek M., Svorcik V. Improved adhesion and growth of human osteoblast-like MG 63 cells on biomaterials modified with carbon nanoparticles. Diam. Related Mater. 2007;16:2133–2140.
Grausova L., Vacik J., Bilkova P., Vorlicek V., Svorcik V., Soukup D., Bacakova M., Lisa V., Bacakova L. Regionally-selective adhesion and growth of human osteoblast-like MG 63 cells on micropatterned fullerene C60 layers. J. Optoelectron. Adv. Mater. 2008;10:2071–2076.
Grausova L., Vacik J., Vorlicek V., Svorcik V., Slepicka P., Bilkova P., Vandrovcova M., Lisa V., Bacakova L. Fullerene C60 films of continuous and micropatterned morphology as substrates for adhesion and growth of bone cells. Diam. Related Mater. 2009;18:578–586.
Vandrovcova M., Vacik J., Svorcik V., Slepicka P., Kasalkova N., Vorlicek V., Lavrentiev V., Vosecek V., Grausova L., Lisa V., et al. Fullerene C60 and hybrid C60/Ti films as substrates for adhesion and growth of bone cells. Phys. Status Solidi A. 2008;205:2252–2261.
Vacik J., Lavrentiev V., Novotna K., Bacakova L., Lisa V., Vorlicek V., Fajgar R. Fullerene (C60)–transitional metal (Ti) composites: Structural and biological properties of the thin films. Diam. Related Mater. 2010;19:242–246.
Jirka I., Vandrovcova M., Frank O., Tolde Z., Plsek J., Luxbacher T., Bacakova L., Stary V. On the role of Nb-related sites of an oxidized β-TiNb alloy surface in its interaction with osteoblast-like MG-63 cells. Mater. Sci. Eng. C. 2013;33:1636–1645. PubMed
Bacakova L., Svorcik V. Cell Colonization Control by Physical and Chemical Modification of Materials. In: Kimura D., editor. Cell Growth Processes: New Research. Nova Science Publishersm, Inc; Hauppauge, NY, USA: 2008. pp. 5–56.
Bacakova L., Filova E., Parizek M., Ruml T., Svorcik V. Modulation of cell adhesion, proliferation and differentiation on materials designed for body implants. Biotechnol. Adv. 2011;29:739–767. PubMed
Bacakova L., Grausova L., Vacik J., Kromka A., Biederman H., Choukourov A., Stary V. Nanocomposite and Nanostructured Carbon-based Films as Growth Substrates for Bone Cells. In: Reddy B., editor. Advances in Diverse Industrial Applications of Nanocomposites. InTech; Vienna, Austria: 2011. pp. 399–435.
Webster T.J., Ergun C., Doremus R.H., Siegel R.W., Bizios R. Specific proteins mediate enhanced osteoblast adhesion on nanophase ceramics. J. Biomed. Mater. Res. 2000;51:475–483. PubMed
Kim K.T., Jang M.H., Kim J.Y., Kim S.D. Effect of preparation methods on toxicity of fullerene water suspensions to Japanese medaka embryos. Sci. Total Environ. 2010;408:5606–5612. PubMed
Zhao X., Striolo A., Cummings P.T. C60 binds to and deforms nucleotides. Biophys. J. 2005;89:3856–3862. PubMed PMC
Xu X., Wang X., Li Y., Wang Y., Yang L. A large-scale association study for nanoparticle C60 uncovers mechanisms of nanotoxicity disrupting the native conformations of DNA/RNA. Nucleic Acids Res. 2012;40:7622–7632. PubMed PMC
Band I.M., Kharitonov Yu I., Trzhaskovskaya M.B. Photoionization cross sections and photoelectron angular distributions for X-ray line energies in the range 0.132–4.509 keV targets: 1 ≤ Z ≤ 100. At. Data Nuclear Data Tables. 1979;23:443–505.
Tanuma S., Powell C.J., Penn D.R. Calculations of electron inelastic mean free paths. IX. Data for 41 elemental solids over the 50 eV to 30 keV range. Surf. Interface Anal. 2011;43:689–713.
Jiricek P. Measurement of the transmission function of the hemispherical energy analyzer of ADES 400 electron spectrometer. Czechoslov. J. Phys. 1994;44:261–267.