Heat treatment dependent cytotoxicity of silicalite-1 films deposited on Ti-6Al-4V alloy evaluated by bone-derived cells

. 2020 Jun 11 ; 10 (1) : 9456. [epub] 20200611

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid32528137
Odkazy

PubMed 32528137
PubMed Central PMC7289882
DOI 10.1038/s41598-020-66228-x
PII: 10.1038/s41598-020-66228-x
Knihovny.cz E-zdroje

A silicalite-1 film (SF) deposited on Ti-6Al-4V alloy was investigated in this study as a promising coating for metallic implants. Two forms of SFs were prepared: as-synthesized SFs (SF-RT), and SFs heated up to 500 °C (SF-500) to remove the excess of template species from the SF surface. The SFs were characterized in detail by X-ray photoelectron spectroscopy (XPS), by Fourier transform infrared spectroscopy (FTIR), by scanning electron microscopy (SEM) and water contact angle measurements (WCA). Two types of bone-derived cells (hFOB 1.19 non-tumor fetal osteoblast cell line and U-2 OS osteosarcoma cell line) were used for a biocompatibility assessment. The initial adhesion of hFOB 1.19 cells, evaluated by cell numbers and cell spreading area, was better supported by SF-500 than by SF-RT. While no increase in cell membrane damage, in ROS generation and in TNF-alpha secretion of bone-derived cells grown on both SFs was found, gamma H2AX staining revealed an elevated DNA damage response of U-2 OS cells grown on heat-treated samples (SF-500). This study also discusses differences between osteosarcoma cell lines and non-tumor osteoblastic cells, stressing the importance of choosing the right cell type model.

Zobrazit více v PubMed

Kurtz S, Ong K, Lau E, Mowat F, Halpern M. Projections of primary and revision hip and knee arthroplasty in the United States from 2005 to 2030. J. Bone Joint Surg. Am. 2007;89A:780–785. doi: 10.2106/jbjs.f.00222. PubMed DOI

Black, J. Biological Performance of Materials: Fundamentals of Biocompatibility, Fourth Edition. (CRC Press, 2005).

Katti KS. Biomaterials in total joint replacement. Colloids Surf. B. Biointerfaces. 2004;39:133–142. doi: 10.1016/j.colsurfb.2003.12.002. PubMed DOI

Geetha M, Singh AK, Asokamani R, Gogia AK. Ti based biomaterials, the ultimate choice for orthopaedic implants – A review. Prog. Mater Sci. 2009;54:397–425. doi: 10.1016/j.pmatsci.2008.06.004. DOI

Williams DF. On the mechanisms of biocompatibility. Biomaterials. 2008;29:2941–2953. doi: 10.1016/j.biomaterials.2008.04.023. PubMed DOI

Urban RM, et al. Dissemination of wear particles to the liver, spleen, and abdominal lymph nodes of patients with hip or knee replacement. J. Bone Joint Surg. Am. 2000;82:457–476. doi: 10.2106/00004623-200004000-00002. PubMed DOI

Vermes C, et al. The effects of particulate wear debris, cytokines, and growth factors on the functions of MG-63 osteoblasts. J. Bone Joint Surg. Am. 2001;83:201–201. doi: 10.2106/00004623-200102000-00007. PubMed DOI

Sansone V, Pagani D, Melato M. The effects on bone cells of metal ions released from orthopaedic implants. A review. Clin. Cases Miner. Bone Metab. 2013;10:34–40. doi: 10.11138/ccmbm/2013.10.1.034. PubMed DOI PMC

Hanawa T. Metal ion release from metal implants. Mater. Sci. Eng. C-Mater. Biol. Appl. 2004;24:745–752. doi: 10.1016/j.msec.2004.08.018. DOI

Gomes CC, et al. Assessment of the genetic risks of a metallic alloy used in medical implants. Genet. Mol. Biol. 2011;34:116–121. doi: 10.1590/S1415-47572010005000118. PubMed DOI PMC

Biesiekierski A, Wang J, Abdel-Hady Gepreel M, Wen C. A new look at biomedical Ti-based shape memory alloys. Acta Biomater. 2012;8:1661–1669. doi: 10.1016/j.actbio.2012.01.018. PubMed DOI

Domingo JL. Vanadium: A review of the reproductive and developmental toxicity. Reprod. Toxicol. 1996;10:175–182. doi: 10.1016/0890-6238(96)00019-6. PubMed DOI

McKay GC, Macnair R, MacDonald C, Grant MH. Interactions of orthopaedic metals with an immortalized rat osteoblast cell line. Biomaterials. 1996;17:1339–1344. doi: 10.1016/S0142-9612(96)80012-3. PubMed DOI

Bondy SC. The neurotoxicity of environmental aluminum is still an issue. Neurotoxicology. 2010;31:575–581. doi: 10.1016/j.neuro.2010.05.009. PubMed DOI PMC

Martinez MD, Bozzini C, Olivera MI, Dmytrenko G, Conti MI. Aluminum bone toxicity in immature rats exposed to simulated high altitude. J. Bone Miner. Metab. 2011;29:526–534. doi: 10.1007/s00774-010-0254-4. PubMed DOI

Li XW, et al. Effects of aluminum exposure on bone mineral density, mineral, and trace elements in rats. Biol. Trace Elem. Res. 2011;143:378–385. doi: 10.1007/s12011-010-8861-4. PubMed DOI

Mohseni E, Zalnezhad E, Bushroa AR. Comparative investigation on the adhesion of hydroxyapatite coating on Ti–6Al–4V implant: A review paper. Int. J. Adhes. Adhes. 2014;48:238–257. doi: 10.1016/j.ijadhadh.2013.09.030. DOI

Grausova L, et al. Nanodiamond as promising material for bone tissue engineering. J. Nanosci. Nanotechnol. 2009;9:3524–3534. doi: 10.1166/jnn.2009.NS26. PubMed DOI

Kopova, I., Kronek, J., Bacakova, L. & Fencl, J. A cytotoxicity and wear analysis of trapeziometacarpal total joint replacement implant consisting of DLC-coated Co-Cr-Mo alloy with the use of titanium gradient interlayer. Diamond Relat. Mater. 97, 10.1016/j.diamond.2019.107456 (2019).

Kopova I, Lavrentiev V, Vacik J, Bacakova L. Growth and potential damage of human bone-derived cells cultured on fresh and aged C60/Ti films. PLoS One. 2015;10:e0123680. doi: 10.1371/journal.pone.0123680. PubMed DOI PMC

Kopova I, Bacakova L, Lavrentiev V, Vacik J. Growth and potential damage of human bone-derived cells on fresh and aged fullerene C-60 films. Int. J. Mol. Sci. 2013;14:9182–9204. doi: 10.3390/ijms14059182. PubMed DOI PMC

Astala R, Auerbach SM, Monson PA. Density functional theory study of silica zeolite structures: Stabilities and mechanical properties of SOD, LTA, CHA, MOR, and MFI. J. Phys. Chem. B. 2004;108:9208–9215. doi: 10.1021/jp0493733. DOI

Dong Y, Peng Y, Wang G, Wang Z, Yan Y. Corrosion-resistant zeolite silicalite-1 coatings synthesized by seeded growth. Ind. Eng. Chem. Res. 2012;51:3646–3652. doi: 10.1021/ie202080a. DOI

Chow G, Bedi RS, Yan Y. & Wang, J. Zeolite as a wear-resistant coating. Microporous Mesoporous Mater. 2012;151:346–351. doi: 10.1016/j.micromeso.2011.10.013. DOI

Bedi RS, Beving DE, Zanello LP, Yan YS. Biocompatibility of corrosion-resistant zeolite coatings for titanium alloy biomedical implants. Acta Biomater. 2009;5:3265–3271. doi: 10.1016/j.actbio.2009.04.019. PubMed DOI

Li Z, et al. Mechanical and dielectric properties of pure-silica-zeolite low-k materials. Angew. Chem. Int. Ed. 2006;45:6329–6332. doi: 10.1002/anie.200602036. PubMed DOI

Sumner DR. Long-term implant fixation and stress-shielding in total hip replacement. J. Biomech. 2015;48:797–800. doi: 10.1016/j.jbiomech.2014.12.021. PubMed DOI

Bedi RS, Zanello LP, Yan YS. Osteoconductive and osteoinductive properties of zeolite MFI coatings on titanium alloys. Adv. Funct. Mater. 2009;19:3856–3861. doi: 10.1002/adfm.200901226. DOI

Li Y, Jiao Y, Li X, Guo Z. Improving the osteointegration of Ti6Al4V by zeolite MFI coating. Biochem. Biophys. Res. Commun. 2015;460:151–156. doi: 10.1016/j.bbrc.2015.02.157. PubMed DOI

Jirka I, et al. Interaction of human osteoblast-like Saos-2 cells with stainless steel coated by silicalite-1 films. Mater. Sci. Eng. C-Mater. Biol. Appl. 2017;76:775–781. doi: 10.1016/j.msec.2017.03.067. PubMed DOI

Doubkova M, Nemcakova I, Jirka I, Brezina V, Bacakova L. Silicalite-1 layers as a biocompatible nano- and micro-structured coating: An in vitro study on MG-63 cells. Materials. 2019;12:3583. doi: 10.3390/ma12213583. PubMed DOI PMC

Jirka I, Vandrovcova M, Plsek J, Bousa M, Bacakova L. Interaction of silicalite-1 film with human osteoblast-like Saos-2 cells: The role of micro-morphology. Mater. Lett. 2017;190:229–231. doi: 10.1016/j.matlet.2017.01.017. PubMed DOI

Jirka, I. et al. The photodynamic properties and the genotoxicity of heat-treated silicalite-1 films. Materials12, 10.3390/ma12040567 (2019). PubMed PMC

Harris SA, Enger RJ, Riggs BL, Spelsberg TC. Development and characterization of a conditionally immortalized human fetal osteoblastic cell-line. J. Bone Miner. Res. 1995;10:178–186. doi: 10.1002/jbmr.5650100203. PubMed DOI

Subramaniam M, et al. Further characterization of human fetal osteoblastic hFOB 1.19 and hFOB/ER alpha cells: bone formation in vivo and karyotype analysis using multicolor fluorescent in situ hybridization. J. Cell. Biochem. 2002;87:9–15. doi: 10.1002/jcb.10259. PubMed DOI

Nowotny M, Lercher JA, Kessler H. Ir spectroscopy of single zeolite crystals .1. Thermal-decomposition of the template in MFI-type materials. Zeolites. 1991;11:454–459. doi: 10.1016/s0144-2449(05)80117-4. DOI

Powell, C. J. & Jablonski, A. NIST electron inelastic mean-free-path database, version 1.2. (2012).

Weiner SW, Wagner HD. The material bone: Structure-mechanical function relations. Annu. Rev. Mater. Sci. 1998;28:271–298. doi: 10.1146/annurev.matsci.28.1.271. DOI

Bacakova, L. et al. Nanostructured materials as substrates for the adhesion, growth, and osteogenic differentiation of bone cells in Nanobiomaterials in Hard Tissue Engineering: Applications of Nanobiomaterials, Vol. 4 (ed. Grumezescu, A. M.) 103–153 (William Andrew Inc, 2016).

Lim JY, et al. The regulation of integrin-mediated osteoblast focal adhesion and focal adhesion kinase expression by nanoscale topography. Biomaterials. 2007;28:1787–1797. doi: 10.1016/j.biomaterials.2006.12.020. PubMed DOI

Bacakova L, Filova E, Parizek M, Ruml T, Svorcik V. Modulation of cell adhesion, proliferation and differentiation on materials designed for body implants. Biotechnol. Adv. 2011;29:739–767. doi: 10.1016/j.biotechadv.2011.06.004. PubMed DOI

Wu Y, Zitelli JP, TenHuisen KS, Yu X, Libera MR. Differential response of Staphylococci and osteoblasts to varying titanium surface roughness. Biomaterials. 2011;32:951–960. doi: 10.1016/j.biomaterials.2010.10.001. PubMed DOI

Kohal RJ, et al. Osteoblast and bone tissue response to surface modified zirconia and titanium implant materials. Dent. Mater. 2013;29:763–776. doi: 10.1016/j.dental.2013.04.003. PubMed DOI

Setzer B, Bachle M, Metzger MC, Kohal RJ. The gene-expression and phenotypic response of hFOB 1.19 osteoblasts to surface-modified titanium and zirconia. Biomaterials. 2009;30:979–990. doi: 10.1016/j.biomaterials.2008.10.054. PubMed DOI

Rezaei NM, et al. Biological and osseointegration capabilities of hierarchically (meso-/micro-/nano-scale) roughened zirconia. Int J Nanomedicine. 2018;13:3381–3395. doi: 10.2147/ijn.s159955. PubMed DOI PMC

Abarrategi, A. et al. Osteosarcoma: Cells-of-origin, cancer stem cells, and targeted therapies. Stem Cells Int., 10.1155/2016/3631764 (2016). PubMed PMC

Sandberg AA, Bridge JA. Updates on the cytogenetics and molecular genetics of bone and soft tissue tumors: osteosarcoma and related tumors. Cancer Genet. Cytogenet. 2003;145:1–30. doi: 10.1016/S0165-4608(03)00105-5. PubMed DOI

Wang, Q. Z. et al. Involvement of c-Fos in cell proliferation, migration, and invasion in osteosarcoma cells accompanied by altered expression of Wnt2 and Fzd9. PLoS One12, 10.1371/journal.pone.0180558 (2017). PubMed PMC

Somasundaram K, El-Deiry WS. Tumor suppressor P53: Regulation and function. Front. Biosci. 2000;5:D424–D437. doi: 10.2741/Somasund. PubMed DOI

Harbour JW, Dean DC. Rb function in cell-cycle regulation and apoptosis. Nat. Cell Biol. 2000;2:E65–E67. doi: 10.1038/35008695. PubMed DOI

Chou AJ, Gorlick R. Chemotherapy resistance in osteosarcoma: current challenges and future directions. Expert Rev. Anticancer Ther. 2006;6:1075–1085. doi: 10.1586/14737140.6.7.1075. PubMed DOI

Schwarz, R., Bruland, O., Cassoni, A., Schomberg, P. & Bielack, S. In Pediatric and Adolescent Osteosarcoma, Vol. 152 (eds N. Jaffe, O. S. Bruland, & S. S. Bielack) (Springer, 2009).

Lin D, Feng J, Chen W. Bcl-2 and caspase-8 related anoikis resistance in human osteosarcoma MG-63 cells. Cell Biol. Int. 2008;32:1199–1206. doi: 10.1016/j.cellbi.2008.07.002. PubMed DOI

Baumhoer D, et al. MicroRNA profiling with correlation to gene expression revealed the oncogenic miR-17-92 cluster to be up-regulated in osteosarcoma. Cancer Genet. 2012;205:212–219. doi: 10.1016/j.cancergen.2012.03.001. PubMed DOI

Bao YP, et al. Roles of microRNA-206 in osteosarcoma pathogenesis and progression. Asian Pac. J. Cancer Prev. 2013;14:3751–3755. doi: 10.7314/apjcp.2013.14.6.3751. PubMed DOI

Zhao G, Zhang LW, Qian DJ, Sun YF, Liu W. miR-495-3p inhibits the cell proliferation, invasion and migration of osteosarcoma by targeting C1q/TNF-related protein 3. Onco Targets Ther. 2019;12:6133–6143. doi: 10.2147/ott.s193937. PubMed DOI PMC

Zhang K, Wang WW, Liu Y, Guo AJ, Yang DH. Let-7b acts as a tumor suppressor in osteosarcoma via targeting IGF1R. Oncol. Lett. 2019;17:1646–1654. doi: 10.3892/ol.2018.9793. PubMed DOI PMC

Hu H, Zhang Y, Cai XH, Huang JF, Cai L. Changes in microRNA expression in the MG-63 osteosarcoma cell line compared with osteoblasts. Oncol. Lett. 2012;4:1037–1042. doi: 10.3892/ol.2012.866. PubMed DOI PMC

Xie Y, et al. Overexpression of miR-335 inhibits the migration and invasion of osteosarcoma by targeting SNIP1. Int. J. Biol. Macromol. 2019;133:137–147. doi: 10.1016/j.ijbiomac.2019.04.016. PubMed DOI

Huang JJ, et al. Knockdown of receptor tyrosine kinase-like orphan receptor 2 inhibits cell proliferation and colony formation in osteosarcoma cells by inducing arrest in cell cycle progression. Oncol. Lett. 2015;10:3705–3711. doi: 10.3892/ol.2015.3797. PubMed DOI PMC

Hulleman E. & Boonstra, J. Regulation of G1 phase progression by growth factors and the extracellular matrix. Cell. Mol. Life Sci. 2001;58:80–93. doi: 10.1007/pl00000780. PubMed DOI PMC

Zhang, Z. Y. et al. Comparative proteomic analysis of plasma membrane proteins between human osteosarcoma and normal osteoblastic cell lines. BMC Cancer10, 10.1186/1471-2407-10-206 (2010). PubMed PMC

Zhang Y, et al. Different expression of alternative lengthening of telomere (ALT)-associated proteins/mRNAs in osteosarcoma cell lines. Oncol. Lett. 2011;2:1327–1332. doi: 10.3892/ol.2011.403. PubMed DOI PMC

Pautke C, et al. Characterization of osteosarcoma cell lines MG-63, Saos-2 and U-2 OS in comparison to human osteoblasts. Anticancer Res. 2004;24:3743–3748. PubMed

Czekanska EM, Stoddart MJ, Ralphs JR, Richards RG, Hayes JS. A phenotypic comparison of osteoblast cell lines versus human primary osteoblasts for biomaterials testing. J. Biomed. Mater. Res. Part A. 2014;102:2636–2643. doi: 10.1002/jbm.a.34937. PubMed DOI

Ducy P, Schinke T, Karsenty G. The osteoblast: A sophisticated fibroblast under central surveillance. Science. 2000;289:1501–1504. doi: 10.1126/science.289.5484.1501. PubMed DOI

Al-Romaih K, et al. Chromosomal instability in osteosarcoma and its association with centrosome abnormalities. Cancer Genet. Cytogenet. 2003;144:91–99. doi: 10.1016/S0165-4608(02)00929-9. PubMed DOI

Zhang C, Ma K, Li WY. IL-6 promotes cancer stemness and oncogenicity in U2OS and MG-63 osteosarcoma cells by upregulating the OPN-STAT3 pathway. J. Cancer. 2019;10:6511–6525. doi: 10.7150/jca.29931. PubMed DOI PMC

Liu LF, et al. Inhibition of ERK1/2 signaling pathway is in melatonin’s antiproliferative effect on human MG-63 osteosarcoma cells. Cell. Physiol. Biochem. 2016;39:2297–2307. doi: 10.1159/000447922. PubMed DOI

Liu L, Zhu Y, Xu Y, Reiter RJ. Prevention of ERK activation involves melatonin-induced G1 and G2/M phase arrest in the human osteoblastic cell line hFOB 1.19. J. Pineal Res. 2012;53:60–66. doi: 10.1111/j.1600-079X.2011.00971.x. PubMed DOI

Kraus D, et al. In-vitro cytocompatibility of dental resin monomers on osteoblast-like cells. J. Dent. 2017;65:76–82. doi: 10.1016/j.jdent.2017.07.008. PubMed DOI

Onat, B., Tuncer, S., Ulusan, S., Banerjee, S. & Erel-Goktepe, I. Biodegradable polymer promotes osteogenic differentiation in immortalized and primary osteoblast-like cells. Biomed. Mater. 14, 10.1088/1748-605X/ab0e92 (2019). PubMed

Przekora, A. & Ginalska, G. Enhanced differentiation of osteoblastic cells on novel chitosan/beta-1,3-glucan/bioceramic scaffolds for bone tissue regeneration. Biomed. Mater. 10, 10.1088/1748-6041/10/1/015009 (2015). PubMed

Wilkesmann, S. et al. Primary osteoblasts, osteoblast precursor cells or osteoblast-like cell lines: Which human cell types are (most) suitable for characterizing 45S5-bioactive glass? J. Biomed. Mater. Res. Part A108, 10.1002/jbm.a.36846 (2019). PubMed

Ganji, Y., Kasra, M. & Asme. Comparison of mechanosensitivity of human primary-cultured osteoblast cells and human osteosarcoma cell line under hydrostatic pressure. ASME 2012 Summer Bioengineering Conference Proceedings, 10.1115/SBC2012-80030 (2012).

Bique AM, Kaivosoja E, Mikkonen M, Paulasto-Krockel M. Choice of osteoblast model critical for studying the effects of electromagnetic stimulation on osteogenesis in vitro. Electromagn. Biol. Med. 2016;35:353–364. doi: 10.3109/15368378.2016.1138124. PubMed DOI

Di Palma F, et al. Physiological strains induce differentiation in human osteoblasts cultured on orthopaedic biomaterial. Biomaterials. 2003;24:3139–3151. doi: 10.1016/S0142-9612(03)00152-2. PubMed DOI

Drwal E, Rak A, Grochowalski A, Milewicz T, Gregoraszczuk EL. Cell-specific and dose-dependent effects of PAHs on proliferation, cell cycle, and apoptosis protein expression and hormone secretion by placental cell lines. Toxicol. Lett. 2017;280:10–19. doi: 10.1016/j.toxlet.2017.08.002. PubMed DOI

Guo Y, Wu K, Huo X, Xu X. Sources, distribution, and toxicity of polycyclic aromatic hydrocarbons. J. Environ. Health. 2011;73:22–25. PubMed

Lin P-H, et al. Effects of naphthalene quinonoids on the induction of oxidative DNA damage and cytotoxicity in calf thymus DNA and in human cultured cells. Chem. Res. Toxicol. 2005;18:1262–1270. doi: 10.1021/tx050018t. PubMed DOI

Peng C, et al. Micronucleus formation by single and mixed heavy metals/loids and PAH compounds in HepG2 cells. Mutagenesis. 2015;30:593–602. doi: 10.1093/mutage/gev021. PubMed DOI

McCoull KD, Rindgen D, Blair IA, Penning TM. Synthesis and characterization of polycyclic aromatic hydrocarbon o-quinone depurinating N7-guanine adducts. Chem. Res. Toxicol. 1999;12:237–246. doi: 10.1021/tx980182z. PubMed DOI

Saeed M, Higginbotham S, Rogan E, Cavalieri E. Formation of depurinating N3adenine and N7guanine adducts after reaction of 1,2-naphthoquinone or enzyme-activated 1,2-dihydroxynaphthalene with DNA: Implications for the mechanism of tumor initiation by naphthalene. Chem. Biol. Interact. 2007;165:175–188. doi: 10.1016/j.cbi.2006.12.007. PubMed DOI

Hsu GW, Huang XW, Luneva NP, Geacintov NE, Beese LS. Structure of a high fidelity DNA polymerase bound to a benzo a pyrene adduct that blocks replication. J. Biol. Chem. 2005;280:3764–3770. doi: 10.1074/jbc.M411276200. PubMed DOI

Zhou GD, et al. Role of retinoic acid in the modulation of benzo(a)pyrene-DNA adducts in human hepatoma cells: implications for cancer prevention. Toxicol. Appl. Pharmacol. 2010;249:224–230. doi: 10.1016/j.taap.2010.09.019. PubMed DOI PMC

Wang ZB, Yan YS. Controlling crystal orientation in zeolite MFI thin films by direct in situ crystallization. Chem. Mat. 2001;13:1101–1107. doi: 10.1021/cm000849e. DOI

Scofield JH. Hartree-Slater subshell photoionization cross-sections at 1254 and 1487EV. J. Electron. Spectrosc. Relat. Phenom. 1976;8:129–137. doi: 10.1016/0368-2048(76)80015-1. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...