The Photodynamic Properties and the Genotoxicity of Heat-Treated Silicalite-1 Films

. 2019 Feb 14 ; 12 (4) : . [epub] 20190214

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid30769806

Grantová podpora
GA16-02681S Grantová Agentura České Republiky

We investigated the use of a supported silicalite-1 film (SF) as a promising coating for metallic materials used in the fabrication of prostheses. The role of carbonaceous residua present on high-temperature calcined-SF in generating singlet oxygen for future use as a sterilization method has also been addressed, and the potential genotoxicity of these residua in osteoblast-like cells has been investigated. Calcination of as-synthesized SF induced the appearance of a rather complicated mixture of aliphatic and aromatic species on its outer surface. A series of variously volatile polycyclic aromatic hydrocarbons (PAH), including naphthalene, fluorene, phenanthrene, anthracene, fluoranthene, and pyrene, were identified in micromole concentrations. Irradiation of these PAHs on calcined-SF immersed in air-saturated chloroform led to the formation of very low concentrations of singlet oxygen. However, an increased level of DNA damage was observed on calcined-SF by immunofluorescence staining of phosphorylated histone H2AX analyzed by flow cytometry.

Zobrazit více v PubMed

Raphel J., Holodniy M., Goodman S.B., Heilshorn S.C. Multifunctional coatings to simultaneously promote osseointegration and prevent infection of orthopaedic implants. Biomaterials. 2016;84:301–314. doi: 10.1016/j.biomaterials.2016.01.016. PubMed DOI PMC

Costerton J.W., Stewart P.S., Greenberg E.P. Bacterial Biofilms: A Common Cause of Persistent Infections. Science. 1999;284:1318–1322. doi: 10.1126/science.284.5418.1318. PubMed DOI

Jirka I., Vandrovcová M., Plšek J., Bouša M., Brabec L., Dragounová H., Bačáková L. Interaction of human osteoblast-like Saos-2 cells with stainless steel coated by silicalite−1 films. Mater. Sci. Eng. C. 2017;76:775–781. doi: 10.1016/j.msec.2017.03.067. PubMed DOI

Bacakova L., Vandrovcova M., Kopova I., Jirka I. Applications of zeolites in biotechnology and medicine—A review. Biomater. Sci. 2018;6:974–989. doi: 10.1039/C8BM00028J. PubMed DOI

Bačáková L., Starý V., Kofroňová O., Lisá V. Polishing and coating carbon fiber-reinforced carbon composites with a carbon-titanium layer enhances adhesion and growth of osteoblast-like MG63 cells and vascular smooth muscle cells in vitro. J. Biomed. Mater. Res. 2001;54:567–578. doi: 10.1002/1097-4636(20010315)54:4<567::AID-JBM140>3.0.CO;2-Y. PubMed DOI

Jirka I., Vandrovcová M., Frank O., Tolde Z., Plšek J., Luxbacher T., Bačáková L., Starý V. On the role of Nb-related sites of an oxidized β-TiNb alloy surface in its interaction with osteoblast-like MG-63 cells. Mater. Sci. Eng. C. 2013;33:1636–1645. doi: 10.1016/j.msec.2012.12.073. PubMed DOI

Havlikova J., Strasky J., Vandrovcova M., Harcuba P., Mhaede M., Janecek M., Bačáková L. Innovative surface modification of Ti–6Al–4V alloy with a positive effect on osteoblast proliferation and fatigue performance. Mater. Sci. Eng. C. 2014;39:371–379. doi: 10.1016/j.msec.2014.03.024. PubMed DOI

Vandrovcová M., Jirka I., Novotna K., Lisa V., Frank O., Kolska Z., Stary V., Bačáková L. Interaction of Human Osteoblast-Like Saos-2 and MG-63 Cells with Thermally Oxidized Surfaces of a Titanium-Niobium Alloy. PLOS ONE. 2014;9:e100475. doi: 10.1371/journal.pone.0100475. PubMed DOI PMC

Rihova Z., Stary V., Bačáková L. A study of the structure and surface properties of nanostructured biocompatible coatings on Ti alloys. Vacuum. 2012;86:630–633. doi: 10.1016/j.vacuum.2011.07.007. DOI

Chow G., Bedi R.S., Yan Y., Wang J. Zeolite as a wear-resistant coating. Micropor. Mesopor. Mater. 2012;151:346–351. doi: 10.1016/j.micromeso.2011.10.013. DOI

Bedi R.S., Zanello L.P., Yan Y. Osteoconductive and Osteoinductive Properties of Zeolite MFI Coatings on Titanium Alloys. Adv. Funct. Mater. 2009;19:3856–3861. doi: 10.1002/adfm.200901226. DOI

Bedi R.S., Beving D.E., Zanello L.P., Yan Y. Biocompatibility of corrosion- resistant zeolite coatings for titanium alloy biomedical implants. Acta Biomater. 2009;5:3265–3271. doi: 10.1016/j.actbio.2009.04.019. PubMed DOI

Jirka I., Vandrovcová M., Plšek J., Bouša M., Bačáková L. Interaction of silicalite- 1 film with human osteoblast-like Saos-2 cells: The role of micro-morphology. Mater. Lett. 2017;190:229–231. doi: 10.1016/j.matlet.2017.01.017. PubMed DOI

Li Y., Jiao Y., Li X., Guo Z. Improving the osteointegration of Ti6Al4V by zeolite MFI coating. Biochem. Biophys. Res. Commun. 2015;460:151–156. doi: 10.1016/j.bbrc.2015.02.157. PubMed DOI

Guo Y.P., Long T., Song Z.F., Zhu Z.A. Hydrothermal fabrication of ZSM-5 zeolites: Biocompatibility, drug delivery property, and bactericidal property. J. Biomed. Mater. Res. B Appl. Biomater. 2014;102:583–591. doi: 10.1002/jbm.b.33037. PubMed DOI

Flanigen E.M., Bennett J.M., Grose R.W., Cohen J.P., Patton R.L., Kirchner R.M., Smith J.V. Silicalite, a new hydrophobic crystalline silica molecular sieve. Nature. 1978;271:512–516. doi: 10.1038/271512a0. DOI

Caro J., Noack M. Zeolite membranes—Recent developments and progress. Micropor. Mesopor. Mater. 2008;115:215–233. doi: 10.1016/j.micromeso.2008.03.008. DOI

Wang Z., Yan Y. Controlling Crystal Orientation in Zeolite MFI Thin Films by Direct In Situ Crystallization. Chem. Mater. 2001;13:1101–1107. doi: 10.1021/cm000849e. DOI

Wang Z., Yan Y. Oriented zeolite MFI monolayer films on metal substrates by in situ crystallization. Micropor. Mesopor. Mater. 2001;48:229–238. doi: 10.1016/S1387-1811(01)00357-2. DOI

Cheng X., Wang Z., Yan Y. Corrosion-Resistant Zeolite Coatings by In Situ Crystallization. Electrochem. Solid-State Lett. 2001;4:B23–B26. doi: 10.1149/1.1359396. DOI

Valtchev V., Majano G., Mintova S., Perez-Ramirez J. Tailored crystalline microporous materials by post-synthesis modification. Chem. Soc. Rev. 2013;42:263–290. doi: 10.1039/C2CS35196J. PubMed DOI

Soulard M., Bilger S., Kessler H., Guth J.L. Thermoanalytical characterization of MFI-type zeolites prepared either in the presence of OH− or of F− ions. Zeolites. 1987;7:463–470. doi: 10.1016/0144-2449(87)90016-9. DOI

Soulard M., Bilger S., Kessler H., Guth J.L. DTA-GC-MS coupling for the characterization of the volatile products resulting from the decomposition of organic templates occluded in zeolites. Thermochim. Acta. 1992;204:167–178. doi: 10.1016/0040-6031(92)80325-Q. DOI

Karwacki L., Weckhuysen B.M. New insight in the template decomposition process of large zeolite ZSM-5 crystals: An in situ UV-Vis/fluorescence micro-spectroscopy study. Phys. Chem. Chem. Phys. 2011;13:3681–3685. doi: 10.1039/C0CP02220A. PubMed DOI

Jirka I., Sazama P., Zikanova A., Hrabanek P., Kocirik M. Low-temperature thermal removal of template from high silica ZSM-5 Catalytic effect of zeolitic framework. Microporous Mesoporous Mater. 2011;137:8–17. doi: 10.1016/j.micromeso.2010.08.015. DOI

Mores D., Stavitski E., Kox M.H.F., Kornatowski J., Olsbye U., Weckhuysen B.M. Space- and Time-Resolved In-situ Spectroscopy on the Coke Formation in Molecular Sieves: Methanol-to-Olefin Conversion over H-ZSM-5 and H-SAPO-34. Chem. Eur. J. 2008;14:11320–11327. doi: 10.1002/chem.200801293. PubMed DOI

Parker L.M., Bibby D.M., Patterson J.E. Thermal decomposition of ZSM—5 and silicalite precursors. Zeolites. 1984;4:168–174. doi: 10.1016/0144-2449(84)90056-3. DOI

Maisch T., Baier J., Franz B., Maier M., Landthaler M., Szeimies R.M., Baumler W. The role of singlet oxygen and oxygen concentration in photodynamic inactivation of bacteria. Proc. Natl. Acad. Sci. USA. 2007;104:7223–7228. doi: 10.1073/pnas.0611328104. PubMed DOI PMC

Hamblin M.R. Antimicrobial photodynamic inactivation: A bright new technique to kill resistant microbes. Curr. Opin. Microbiol. 2016;33:67–73. doi: 10.1016/j.mib.2016.06.008. PubMed DOI PMC

Mosinger J., Lang K., Kubát P. Photoactivatable Nanostructured Surfaces for Biomedical Applications. Top. Curr. Chem. 2016;370:135–168. PubMed

DeRosa M.C., Crutchley R.J. Photosensitized singlet oxygen and its applications. Coord. Chem. Rev. 2002;233–234:351–371. doi: 10.1016/S0010-8545(02)00034-6. DOI

Ogilby P.R. Singlet oxygen: There is indeed something new under the sun. Chem. Soc. Rev. 2010;39:3181–3209. doi: 10.1039/b926014p. PubMed DOI

Guo Y., Wu K., Huo X., Xu X. Sources, distribution, and toxicity of polycyclic aromatic hydrocarbons. J. Environ. Health. 2011;73:22–25. PubMed

Guengerich F.P. Metabolism of chemical carcinogens. Carcinogenesis. 2000;21:345–351. doi: 10.1093/carcin/21.3.345. PubMed DOI

Quinn A.M., Harvey R.G., Penning T.M. Oxidation of PAH trans-dihydrodiols by human aldo-keto reductase AKR1B10. Chem. Res. Toxicol. 2008;21:2207–2215. doi: 10.1021/tx8002005. PubMed DOI PMC

Ludewig G., Dogra S., Glatt H. Genotoxicity of 1,4-benzoquinone and 1,4- naphthoquinone in relation to effects on glutathione and NAD(P)H levels in V79 cells. Environ. Health Perspect. 1989;82:223–228. doi: 10.1289/ehp.8982223. PubMed DOI PMC

Wilson A.S., Davis C.D., Williams D.P., Buckpitt A.R., Pirmohamed M., Park B.K. Characterisation of the toxic metabolite(s) of naphthalene. Toxicology. 1996;114:233–242. doi: 10.1016/S0300-483X(96)03515-9. PubMed DOI

Di Monte D., Bellomo G., Thor H., Nicotera P., Orrenius S. Menadione-induced cytotoxicity is associated with protein thiol oxidation and alteration in intracellular Ca2+ homeostasis. Arch. Biochem. Biophys. 1984;235:343–350. doi: 10.1016/0003-9861(84)90207-8. PubMed DOI

Saeed M., Higginbotham S., Rogan E., Cavalieri E. Formation of depurinating N3adenine and N7guanine adducts after reaction of 1,2-naphthoquinone or enzyme-activated 1,2-dihydroxynaphthalene with DNA: Implications for the mechanism of tumor initiation by naphthalene. Chem. Biol. Interact. 2007;165:175–188. doi: 10.1016/j.cbi.2006.12.007. PubMed DOI

Saeed M., Higginbotham S., Gaikwad N., Chakravarti D., Rogan E., Cavalieri E. Depurinating naphthalene–DNA adducts in mouse skin related to cancer initiation. Free Radic. Biol. Med. 2009;47:1075–1081. doi: 10.1016/j.freeradbiomed.2009.07.020. PubMed DOI PMC

McCoull K.D., Rindgen D., Blair I.A., Penning T.M. Synthesis and characterization of polycyclic aromatic hydrocarbon o-quinone depurinating N7-guanine adducts. Chem. Res. Toxicol. 1999;12:237–246. doi: 10.1021/tx980182z. PubMed DOI

Hsu G.W., Huang X.W., Luneva N.P., Geacintov N.E., Beese L.S. Structure of a high fidelity DNA polymerase bound to a benzo [a] pyrene adduct that blocks replication. J. Biol. Chem. 2005;280:3764–3770. doi: 10.1074/jbc.M411276200. PubMed DOI

Zhou G.D., Richardson M., Fazili I.S., Wang J., Donnelly K.C., Wang F., Amendt B., Moorthy B. Role of retinoic acid in the modulation of benzo(a)pyrene-DNA adducts in human hepatoma cells: Implications for cancer prevention. Toxicol. Appl. Pharmacol. 2010;249:224–230. doi: 10.1016/j.taap.2010.09.019. PubMed DOI PMC

Mordukhovich I., Rossner P., Jr., Terry M.B., Santella R., Zhang Y.J., Hibshoosh H., Memeo L., Mansukhani M., Long C.M., Garbowski G., et al. Associations between polycyclic aromatic hydrocarbon-related exposures and p53 mutations in breast tumors. Environ. Health Perspect. 2010;118:511–518. doi: 10.1289/ehp.0901233. PubMed DOI PMC

Yoon J.H., Lee C.S., Pfeifer G.P. Simulated sunlight and benzo[a]pyrene diol epoxide induced mutagenesis in the human p53 gene evaluated by the yeast functional assay: Lack of correspondence to tumor mutation spectra. Carcinogenesis. 2003;24:113–119. doi: 10.1093/carcin/24.1.113. PubMed DOI

Bartsch H., Tomatis L. Comparison between carcinogenicity and mutagenicity based on chemicals evaluated in the IARC monographs. Environ. Health Perspect. 1983;47:305–317. doi: 10.1289/ehp.8347305. PubMed DOI PMC

Scofield J.H. Hartree-Slater subshell photoionization cross-sections at 1254 and 1487 eV. J. Electron. Spectrosc. Relat. Phenom. 1976;8:129–137. doi: 10.1016/0368-2048(76)80015-1. DOI

Kwok R.W.M. Hong Kong: 1999. [(accessed on 11 February 2019)]. XPSPeak, Version 4.1. Available online: http://www.phy.cuhk.edu.hk/surface/XPSPeak.

NIST X-ray Photoelectron Spectroscopy (XPS) Database Version 4.1. [(accessed on 11 February 2019)]; Available online: http://srdata.nist.gov/xps/Default.aspx.

Mosinger J., Lang K., Plístil L., Jesenská S., Hostomský J., Zelinger Z., Kubát P. Fluorescent polyurethane nanofabrics: A source of singlet oxygen and oxygen sensing. Langmuir. 2010;26:10050–10056. doi: 10.1021/la1001607. PubMed DOI

Goldfarb J.L., Suuberg E.M. Vapor Pressures and Enthalpies of Sublimation of Ten Polycyclic Aromatic Hydrocarbons Determined via the Knudsen Effusion Method. J. Chem. Eng. Data. 2008;53:670–676. doi: 10.1021/je7005133. DOI

Wilkinson F., Helman W.P., Ross A.B. Quantum yields for the photosensitized formation of the lowest electronically excited singlet-state of molecular oxygen in solution. J. Phys. Chem. Ref. Data. 1993;22:113–262. doi: 10.1063/1.555934. DOI

Tanaka F., Furuta T., Okamoto M., Hirayama S. Inverse correlation between efficiency of singlet oxygen production and rate constant for oxygen quenching in the S1 state of anthracene derivatives. Phys. Chem. Chem. Phys. 2004;6:1219–1226. doi: 10.1039/b312398g. DOI

Davydov A. Molecular Spectroscopy of Oxide Catalyst Surfaces. John Wiley & Sons; Hoboken, NJ, USA: 2003.

Bernauer M., Tabor E., Pashkova V., Kaucký D., Sobalík Z., Wichterlová B., Dedecek J. Proton proximity–New key parameter controlling adsorption, desorption and activity in propene oligomerization over H-ZSM-5 zeolites. J. Catal. 2016;344:157–172. doi: 10.1016/j.jcat.2016.09.025. DOI

Spoto S., Bordiga S., Ricchiardi G., Scarano D., Zecchina A., Borello E. IR study of ethene and propene oligomerization on H-ZSM-5: Hydrogen-bonded precursor formation, initiation and propagation mechanisms and structure of the entrapped oligomers. J. Chem. Soc. Faraday Trans. 1994;90:2827–2835. doi: 10.1039/ft9949002827. DOI

Geobaldo F., Spoto G., Bordiga S., Lamberti C., Zecchina A. Propene oligomerization on H-mordenite: Hydrogen-bondinginteraction, chain initiation, propagation and hydrogen transferstudied by temperature-programmed FTIR and UV–VIS spectroscopies. J. Chem. Soc. Faraday Trans. 1997;93:1243–1249. doi: 10.1039/a607052c. DOI

Bandiera J., Taarit Y.B. Elementary reactions and thermodynamic effects in the conversion of propene over an acidic A1MFI. Appl. Catal. A. 1995;132:157–167. doi: 10.1016/0926-860X(95)00156-5. DOI

Borges P., Pinto R.R., Lemos M.A.N.D.A., Lemos F., Vedrine J.C., Derouane E.G., Ribeiro F.R. Light olefin transformation over ZSM-5 zeolites: A kinetic model for olefin consumption. Appl. Catal. A. 2007;324:20–29. doi: 10.1016/j.apcata.2007.02.051. DOI

Farzaneh A., DeJaco R.F., Ohlin L., Holmgren A., Ilja Siepmann J., Grahn M. Comparative study of the effect of defects on selective adsorption of butanol from butanol/Water Binary Vapor Mixtures in Silicalite−1 Films. Langmuir. 2017;33:8420–8427. doi: 10.1021/acs.langmuir.7b02097. PubMed DOI

Dijkmans J., Dusselier M., Janssens W., Trekels M., Vantomme A., Breynaert E., Kirschhock C., Sels B.F. An Inner-/Outer-Sphere Stabilized Sn Active Site in β-Zeolite: Spectroscopic Evidence and Kinetic Consequences. ACS Catal. 2016;6:31–46. doi: 10.1021/acscatal.5b01822. DOI

Bare S.R., Knop-Gericke A., Teschner D., Hävacker M., Blume R., Rocha T., Schlögl R., Chan A.S.Y., Blackwell N., Charochak M.E., et al. Surface analysis of zeolites: An XPS, variable kinetic energy XPS, and low energy ion scattering study. Surface Sci. 2016;648:376–382. doi: 10.1016/j.susc.2015.10.048. DOI

Díaz J., Paolicelli G., Ferrer S., Comin F. Separation of the sp3 and sp2 components in the C1s photoemission spectra of amorphous carbon films. Phys. Rev. B. 1996;54:8064–8069. doi: 10.1103/PhysRevB.54.8064. PubMed DOI

Haerle R., Riedo E., Pasquarello A., Baldereschi A. sp2/sp3 hybridization ratio in amorphous carbon from C1s core-level shifts: X-ray photoelectron spectroscopy and first- principles calculation. Phys. Rev. B. 2001;65:045101. doi: 10.1103/PhysRevB.65.045101. DOI

Nardi G., Manet I., Monti S., Miranda S.A., Lhiaubet-Vallet V. Scope and limitations of the TEMPO/EPR method for singlet oxygen detection: The misleading role of electron transfer. Free Radic. Biol. Med. 2014;77:64–70. doi: 10.1016/j.freeradbiomed.2014.08.020. PubMed DOI

Ragas X., Jimenez-Banzo A., Sanchez-Garcia D., Batllori X., Nonell S. Singlet oxygen photosensitisation by the fluorescent probe Singlet Oxygen Sensor Green. Chem. Commun. 2009:2920–2922. doi: 10.1039/b822776d. PubMed DOI

Horiuchi N. Sensing: Singlet oxygen detection. Nat. Photon. 2013;7:343. doi: 10.1038/nphoton.2013.124. DOI

Bregnhøj M., Westberg M., Minaev B.F., Ogilby P.R. Singlet Oxygen Photophysics in Liquid Solvents: Converging on a Unified Picture. Acc. Chem. Res. 2017;50:1920–1927. doi: 10.1021/acs.accounts.7b00169. PubMed DOI

Filatov M.A., Senge M.O. Molecular devices based on reversible singlet oxygen binding optical and photomedical applications. Mol. Syst. Des. Eng. 2016;1:258–272. doi: 10.1039/C6ME00042H. DOI

Kovacova M., Markovic Z.M., Humpolicek P., Micusik M., Švajdlenkova H., Kleinova A., Danko M., Kubát P., Vajdak J., Capakova Z., et al. Carbon Quantum Dots Modified Polyurethane Nanocomposites as Effective Photocatalytic and Antibacterial Agents. ACS Biomater. Sci. Eng. 2018;4:3983–3993. doi: 10.1021/acsbiomaterials.8b00582. PubMed DOI

Hynek J., Zelenka J., Rathousky J., Kubát P., Ruml T., Demel J., Lang K. Designing porphyrinic covalent organic frameworks for the photodynamic inactivation of bacteria. ACS Appl. Mater. Interfaces. 2018;10:8527–8535. doi: 10.1021/acsami.7b19835. PubMed DOI

Oh K.T., Kim K.N. Ion release and cytotoxicity of stainless steel wires. Eur. J. Orthod. 2005;27:533–540. doi: 10.1093/ejo/cji047. PubMed DOI

Hwang C.J., Shin J.S., Cha J.Y. Metal release from simulated fixed orthodontic appliances. Am. J. Orthod. Dentofacial Orthop. 2001;120:383–391. doi: 10.1067/mod.2001.117911. PubMed DOI

Matos de Souza R., Macedo de Menezes L. Nickel, chromium and iron levels in the saliva of patients with simulated fixed orthodontic appliances. Angle Orthod. 2008;78:345–350. doi: 10.2319/111806-466.1. PubMed DOI

Ortiz A.J., Fernandez E., Vicente A., Calvo J.L., Ortiz C. Metallic ions released from stainless steel, nickel-free, and titanium orthodontic alloys: Toxicity and DNA damage. Am. J. Orthod. Dentofacial Orthop. 2011;140:e115–e122. doi: 10.1016/j.ajodo.2011.02.021. PubMed DOI

Bagchi M., Bagchi D., Balmoori J., Ye X., Stohs S.J. Naphthalene-induced oxidative stress and DNA damage in cultured macrophage J774A.1 cells. Free Radic. Biol. Med. 1998;25:137–143. doi: 10.1016/S0891-5849(98)00063-X. PubMed DOI

Bagchi M., Balmoori J., Ye X., Bagchi D., Ray S.D., Stohs S.J. Protective effect of melatonin on naphthalene-induced oxidative stress and DNA damage in cultured macrophage J774A.1 cells. Mol. Cell. Biochem. 2001;221:49–55. doi: 10.1023/A:1010946517651. PubMed DOI

Kim Y.J., Song M., Song M.K., Youk D.Y., Choi H.S., Sarma S.N., Ryu J.C. Differential Gene Expression Induced by Naphthalene in Two Human Cell Line, HepG2 and HL-60. Mol. Cell. Toxicol. 2009;5:99–107. doi: 10.1007/s10059-009-0010-6. PubMed DOI

Peng C., Muthusamy S., Xia Q., Lal V., Denison M.S., Ng J.C. Micronucleus formation by single and mixed heavy metals/loids and PAH compounds in HepG2 cells. Mutagenesis. 2015;30:593–602. doi: 10.1093/mutage/gev021. PubMed DOI

Lin P.H., Pan W.C., Kang Y.W., Chen Y.L., Lin C.H., Lee M.C., Chou Y.H., Nakamura J. Effects of naphthalene quinonoids on the induction of oxidative DNA damage and cytotoxicity in calf thymus DNA and in human cultured cells. Chem. Res. Toxicol. 2005;18:1262–1270. doi: 10.1021/tx050018t. PubMed DOI

Kapuci M., Ulker Z., Gurkan S., Alpsoy L. Determination of cytotoxic and genotoxic effects of naphthalene, 1-naphthol and 2-naphthol on human lymphocyte culture. Toxicol. Ind. Health. 2014;30:82–89. doi: 10.1177/0748233712451772. PubMed DOI

Drwal E., Rak A., Grochowalski A., Milewicz T., Gregoraszczuk E.L. Cell-specific and dose-dependent effects of PAHs on proliferation, cell cycle, and apoptosis protein expression and hormone secretion by placental cell lines. Toxicol. Lett. 2017;280:10–19. doi: 10.1016/j.toxlet.2017.08.002. PubMed DOI

Jacob J., Raab G., Soballa V., Schmalix W.A., Grimmer G., Greim H., Doehmer J., Seidel A. Cytochrome P450-mediated activation of phenanthrene in genetically engineered V79 Chinese hamster cells. Environ. Toxicol. Pharmacol. 1996;1:1–11. doi: 10.1016/1382-6689(95)00003-8. PubMed DOI

Peters Z.J., Nykamp J.A., Passaperuma K., Carlson J.C., DeWitte-Orr S.J., Greenberg B.M., Bols N.C. Effect of copper on the cytotoxicity of phenanthrene and 9,10- phenanthrenequinone to the human placental cell line, JEG-3. Reprod. Toxicol. 2007;23:513–520. doi: 10.1016/j.reprotox.2007.01.008. PubMed DOI

Grintzalis K., Georgiou C.D., Dailianis S. Total thiol redox status as a potent biomarker of PAH-mediated effects on mussels. Mar. Environ. Res. 2012;81:26–34. doi: 10.1016/j.marenvres.2012.08.004. PubMed DOI

Gianapas M., Karnis L., Dailianis S. Generation of free radicals in haemocytes of mussels after exposure to low molecular weight PAH components: Immune activation, oxidative and genotoxic effects. Comp. Biochem. Physiol. C-Toxicol. Pharmacol. 2012;155:182–189. doi: 10.1016/j.cbpc.2011.08.001. PubMed DOI

Martins M., Ferreira A.M., Costa M.H., Costa P.M. Comparing the Genotoxicity of a Potentially Carcinogenic and a Noncarcinogenic PAH, Singly, and in Binary Combination, on Peripheral Blood Cells of the European Sea Bass. Environ. Toxicol. 2016;31:1307–1318. doi: 10.1002/tox.22135. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace