The Photodynamic Properties and the Genotoxicity of Heat-Treated Silicalite-1 Films
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
GA16-02681S
Grantová Agentura České Republiky
PubMed
30769806
PubMed Central
PMC6416588
DOI
10.3390/ma12040567
PII: ma12040567
Knihovny.cz E-zdroje
- Klíčová slova
- genotoxicity, implant material, singlet oxygen, surface coating,
- Publikační typ
- časopisecké články MeSH
We investigated the use of a supported silicalite-1 film (SF) as a promising coating for metallic materials used in the fabrication of prostheses. The role of carbonaceous residua present on high-temperature calcined-SF in generating singlet oxygen for future use as a sterilization method has also been addressed, and the potential genotoxicity of these residua in osteoblast-like cells has been investigated. Calcination of as-synthesized SF induced the appearance of a rather complicated mixture of aliphatic and aromatic species on its outer surface. A series of variously volatile polycyclic aromatic hydrocarbons (PAH), including naphthalene, fluorene, phenanthrene, anthracene, fluoranthene, and pyrene, were identified in micromole concentrations. Irradiation of these PAHs on calcined-SF immersed in air-saturated chloroform led to the formation of very low concentrations of singlet oxygen. However, an increased level of DNA damage was observed on calcined-SF by immunofluorescence staining of phosphorylated histone H2AX analyzed by flow cytometry.
Zobrazit více v PubMed
Raphel J., Holodniy M., Goodman S.B., Heilshorn S.C. Multifunctional coatings to simultaneously promote osseointegration and prevent infection of orthopaedic implants. Biomaterials. 2016;84:301–314. doi: 10.1016/j.biomaterials.2016.01.016. PubMed DOI PMC
Costerton J.W., Stewart P.S., Greenberg E.P. Bacterial Biofilms: A Common Cause of Persistent Infections. Science. 1999;284:1318–1322. doi: 10.1126/science.284.5418.1318. PubMed DOI
Jirka I., Vandrovcová M., Plšek J., Bouša M., Brabec L., Dragounová H., Bačáková L. Interaction of human osteoblast-like Saos-2 cells with stainless steel coated by silicalite−1 films. Mater. Sci. Eng. C. 2017;76:775–781. doi: 10.1016/j.msec.2017.03.067. PubMed DOI
Bacakova L., Vandrovcova M., Kopova I., Jirka I. Applications of zeolites in biotechnology and medicine—A review. Biomater. Sci. 2018;6:974–989. doi: 10.1039/C8BM00028J. PubMed DOI
Bačáková L., Starý V., Kofroňová O., Lisá V. Polishing and coating carbon fiber-reinforced carbon composites with a carbon-titanium layer enhances adhesion and growth of osteoblast-like MG63 cells and vascular smooth muscle cells in vitro. J. Biomed. Mater. Res. 2001;54:567–578. doi: 10.1002/1097-4636(20010315)54:4<567::AID-JBM140>3.0.CO;2-Y. PubMed DOI
Jirka I., Vandrovcová M., Frank O., Tolde Z., Plšek J., Luxbacher T., Bačáková L., Starý V. On the role of Nb-related sites of an oxidized β-TiNb alloy surface in its interaction with osteoblast-like MG-63 cells. Mater. Sci. Eng. C. 2013;33:1636–1645. doi: 10.1016/j.msec.2012.12.073. PubMed DOI
Havlikova J., Strasky J., Vandrovcova M., Harcuba P., Mhaede M., Janecek M., Bačáková L. Innovative surface modification of Ti–6Al–4V alloy with a positive effect on osteoblast proliferation and fatigue performance. Mater. Sci. Eng. C. 2014;39:371–379. doi: 10.1016/j.msec.2014.03.024. PubMed DOI
Vandrovcová M., Jirka I., Novotna K., Lisa V., Frank O., Kolska Z., Stary V., Bačáková L. Interaction of Human Osteoblast-Like Saos-2 and MG-63 Cells with Thermally Oxidized Surfaces of a Titanium-Niobium Alloy. PLOS ONE. 2014;9:e100475. doi: 10.1371/journal.pone.0100475. PubMed DOI PMC
Rihova Z., Stary V., Bačáková L. A study of the structure and surface properties of nanostructured biocompatible coatings on Ti alloys. Vacuum. 2012;86:630–633. doi: 10.1016/j.vacuum.2011.07.007. DOI
Chow G., Bedi R.S., Yan Y., Wang J. Zeolite as a wear-resistant coating. Micropor. Mesopor. Mater. 2012;151:346–351. doi: 10.1016/j.micromeso.2011.10.013. DOI
Bedi R.S., Zanello L.P., Yan Y. Osteoconductive and Osteoinductive Properties of Zeolite MFI Coatings on Titanium Alloys. Adv. Funct. Mater. 2009;19:3856–3861. doi: 10.1002/adfm.200901226. DOI
Bedi R.S., Beving D.E., Zanello L.P., Yan Y. Biocompatibility of corrosion- resistant zeolite coatings for titanium alloy biomedical implants. Acta Biomater. 2009;5:3265–3271. doi: 10.1016/j.actbio.2009.04.019. PubMed DOI
Jirka I., Vandrovcová M., Plšek J., Bouša M., Bačáková L. Interaction of silicalite- 1 film with human osteoblast-like Saos-2 cells: The role of micro-morphology. Mater. Lett. 2017;190:229–231. doi: 10.1016/j.matlet.2017.01.017. PubMed DOI
Li Y., Jiao Y., Li X., Guo Z. Improving the osteointegration of Ti6Al4V by zeolite MFI coating. Biochem. Biophys. Res. Commun. 2015;460:151–156. doi: 10.1016/j.bbrc.2015.02.157. PubMed DOI
Guo Y.P., Long T., Song Z.F., Zhu Z.A. Hydrothermal fabrication of ZSM-5 zeolites: Biocompatibility, drug delivery property, and bactericidal property. J. Biomed. Mater. Res. B Appl. Biomater. 2014;102:583–591. doi: 10.1002/jbm.b.33037. PubMed DOI
Flanigen E.M., Bennett J.M., Grose R.W., Cohen J.P., Patton R.L., Kirchner R.M., Smith J.V. Silicalite, a new hydrophobic crystalline silica molecular sieve. Nature. 1978;271:512–516. doi: 10.1038/271512a0. DOI
Caro J., Noack M. Zeolite membranes—Recent developments and progress. Micropor. Mesopor. Mater. 2008;115:215–233. doi: 10.1016/j.micromeso.2008.03.008. DOI
Wang Z., Yan Y. Controlling Crystal Orientation in Zeolite MFI Thin Films by Direct In Situ Crystallization. Chem. Mater. 2001;13:1101–1107. doi: 10.1021/cm000849e. DOI
Wang Z., Yan Y. Oriented zeolite MFI monolayer films on metal substrates by in situ crystallization. Micropor. Mesopor. Mater. 2001;48:229–238. doi: 10.1016/S1387-1811(01)00357-2. DOI
Cheng X., Wang Z., Yan Y. Corrosion-Resistant Zeolite Coatings by In Situ Crystallization. Electrochem. Solid-State Lett. 2001;4:B23–B26. doi: 10.1149/1.1359396. DOI
Valtchev V., Majano G., Mintova S., Perez-Ramirez J. Tailored crystalline microporous materials by post-synthesis modification. Chem. Soc. Rev. 2013;42:263–290. doi: 10.1039/C2CS35196J. PubMed DOI
Soulard M., Bilger S., Kessler H., Guth J.L. Thermoanalytical characterization of MFI-type zeolites prepared either in the presence of OH− or of F− ions. Zeolites. 1987;7:463–470. doi: 10.1016/0144-2449(87)90016-9. DOI
Soulard M., Bilger S., Kessler H., Guth J.L. DTA-GC-MS coupling for the characterization of the volatile products resulting from the decomposition of organic templates occluded in zeolites. Thermochim. Acta. 1992;204:167–178. doi: 10.1016/0040-6031(92)80325-Q. DOI
Karwacki L., Weckhuysen B.M. New insight in the template decomposition process of large zeolite ZSM-5 crystals: An in situ UV-Vis/fluorescence micro-spectroscopy study. Phys. Chem. Chem. Phys. 2011;13:3681–3685. doi: 10.1039/C0CP02220A. PubMed DOI
Jirka I., Sazama P., Zikanova A., Hrabanek P., Kocirik M. Low-temperature thermal removal of template from high silica ZSM-5 Catalytic effect of zeolitic framework. Microporous Mesoporous Mater. 2011;137:8–17. doi: 10.1016/j.micromeso.2010.08.015. DOI
Mores D., Stavitski E., Kox M.H.F., Kornatowski J., Olsbye U., Weckhuysen B.M. Space- and Time-Resolved In-situ Spectroscopy on the Coke Formation in Molecular Sieves: Methanol-to-Olefin Conversion over H-ZSM-5 and H-SAPO-34. Chem. Eur. J. 2008;14:11320–11327. doi: 10.1002/chem.200801293. PubMed DOI
Parker L.M., Bibby D.M., Patterson J.E. Thermal decomposition of ZSM—5 and silicalite precursors. Zeolites. 1984;4:168–174. doi: 10.1016/0144-2449(84)90056-3. DOI
Maisch T., Baier J., Franz B., Maier M., Landthaler M., Szeimies R.M., Baumler W. The role of singlet oxygen and oxygen concentration in photodynamic inactivation of bacteria. Proc. Natl. Acad. Sci. USA. 2007;104:7223–7228. doi: 10.1073/pnas.0611328104. PubMed DOI PMC
Hamblin M.R. Antimicrobial photodynamic inactivation: A bright new technique to kill resistant microbes. Curr. Opin. Microbiol. 2016;33:67–73. doi: 10.1016/j.mib.2016.06.008. PubMed DOI PMC
Mosinger J., Lang K., Kubát P. Photoactivatable Nanostructured Surfaces for Biomedical Applications. Top. Curr. Chem. 2016;370:135–168. PubMed
DeRosa M.C., Crutchley R.J. Photosensitized singlet oxygen and its applications. Coord. Chem. Rev. 2002;233–234:351–371. doi: 10.1016/S0010-8545(02)00034-6. DOI
Ogilby P.R. Singlet oxygen: There is indeed something new under the sun. Chem. Soc. Rev. 2010;39:3181–3209. doi: 10.1039/b926014p. PubMed DOI
Guo Y., Wu K., Huo X., Xu X. Sources, distribution, and toxicity of polycyclic aromatic hydrocarbons. J. Environ. Health. 2011;73:22–25. PubMed
Guengerich F.P. Metabolism of chemical carcinogens. Carcinogenesis. 2000;21:345–351. doi: 10.1093/carcin/21.3.345. PubMed DOI
Quinn A.M., Harvey R.G., Penning T.M. Oxidation of PAH trans-dihydrodiols by human aldo-keto reductase AKR1B10. Chem. Res. Toxicol. 2008;21:2207–2215. doi: 10.1021/tx8002005. PubMed DOI PMC
Ludewig G., Dogra S., Glatt H. Genotoxicity of 1,4-benzoquinone and 1,4- naphthoquinone in relation to effects on glutathione and NAD(P)H levels in V79 cells. Environ. Health Perspect. 1989;82:223–228. doi: 10.1289/ehp.8982223. PubMed DOI PMC
Wilson A.S., Davis C.D., Williams D.P., Buckpitt A.R., Pirmohamed M., Park B.K. Characterisation of the toxic metabolite(s) of naphthalene. Toxicology. 1996;114:233–242. doi: 10.1016/S0300-483X(96)03515-9. PubMed DOI
Di Monte D., Bellomo G., Thor H., Nicotera P., Orrenius S. Menadione-induced cytotoxicity is associated with protein thiol oxidation and alteration in intracellular Ca2+ homeostasis. Arch. Biochem. Biophys. 1984;235:343–350. doi: 10.1016/0003-9861(84)90207-8. PubMed DOI
Saeed M., Higginbotham S., Rogan E., Cavalieri E. Formation of depurinating N3adenine and N7guanine adducts after reaction of 1,2-naphthoquinone or enzyme-activated 1,2-dihydroxynaphthalene with DNA: Implications for the mechanism of tumor initiation by naphthalene. Chem. Biol. Interact. 2007;165:175–188. doi: 10.1016/j.cbi.2006.12.007. PubMed DOI
Saeed M., Higginbotham S., Gaikwad N., Chakravarti D., Rogan E., Cavalieri E. Depurinating naphthalene–DNA adducts in mouse skin related to cancer initiation. Free Radic. Biol. Med. 2009;47:1075–1081. doi: 10.1016/j.freeradbiomed.2009.07.020. PubMed DOI PMC
McCoull K.D., Rindgen D., Blair I.A., Penning T.M. Synthesis and characterization of polycyclic aromatic hydrocarbon o-quinone depurinating N7-guanine adducts. Chem. Res. Toxicol. 1999;12:237–246. doi: 10.1021/tx980182z. PubMed DOI
Hsu G.W., Huang X.W., Luneva N.P., Geacintov N.E., Beese L.S. Structure of a high fidelity DNA polymerase bound to a benzo [a] pyrene adduct that blocks replication. J. Biol. Chem. 2005;280:3764–3770. doi: 10.1074/jbc.M411276200. PubMed DOI
Zhou G.D., Richardson M., Fazili I.S., Wang J., Donnelly K.C., Wang F., Amendt B., Moorthy B. Role of retinoic acid in the modulation of benzo(a)pyrene-DNA adducts in human hepatoma cells: Implications for cancer prevention. Toxicol. Appl. Pharmacol. 2010;249:224–230. doi: 10.1016/j.taap.2010.09.019. PubMed DOI PMC
Mordukhovich I., Rossner P., Jr., Terry M.B., Santella R., Zhang Y.J., Hibshoosh H., Memeo L., Mansukhani M., Long C.M., Garbowski G., et al. Associations between polycyclic aromatic hydrocarbon-related exposures and p53 mutations in breast tumors. Environ. Health Perspect. 2010;118:511–518. doi: 10.1289/ehp.0901233. PubMed DOI PMC
Yoon J.H., Lee C.S., Pfeifer G.P. Simulated sunlight and benzo[a]pyrene diol epoxide induced mutagenesis in the human p53 gene evaluated by the yeast functional assay: Lack of correspondence to tumor mutation spectra. Carcinogenesis. 2003;24:113–119. doi: 10.1093/carcin/24.1.113. PubMed DOI
Bartsch H., Tomatis L. Comparison between carcinogenicity and mutagenicity based on chemicals evaluated in the IARC monographs. Environ. Health Perspect. 1983;47:305–317. doi: 10.1289/ehp.8347305. PubMed DOI PMC
Scofield J.H. Hartree-Slater subshell photoionization cross-sections at 1254 and 1487 eV. J. Electron. Spectrosc. Relat. Phenom. 1976;8:129–137. doi: 10.1016/0368-2048(76)80015-1. DOI
Kwok R.W.M. Hong Kong: 1999. [(accessed on 11 February 2019)]. XPSPeak, Version 4.1. Available online: http://www.phy.cuhk.edu.hk/surface/XPSPeak.
NIST X-ray Photoelectron Spectroscopy (XPS) Database Version 4.1. [(accessed on 11 February 2019)]; Available online: http://srdata.nist.gov/xps/Default.aspx.
Mosinger J., Lang K., Plístil L., Jesenská S., Hostomský J., Zelinger Z., Kubát P. Fluorescent polyurethane nanofabrics: A source of singlet oxygen and oxygen sensing. Langmuir. 2010;26:10050–10056. doi: 10.1021/la1001607. PubMed DOI
Goldfarb J.L., Suuberg E.M. Vapor Pressures and Enthalpies of Sublimation of Ten Polycyclic Aromatic Hydrocarbons Determined via the Knudsen Effusion Method. J. Chem. Eng. Data. 2008;53:670–676. doi: 10.1021/je7005133. DOI
Wilkinson F., Helman W.P., Ross A.B. Quantum yields for the photosensitized formation of the lowest electronically excited singlet-state of molecular oxygen in solution. J. Phys. Chem. Ref. Data. 1993;22:113–262. doi: 10.1063/1.555934. DOI
Tanaka F., Furuta T., Okamoto M., Hirayama S. Inverse correlation between efficiency of singlet oxygen production and rate constant for oxygen quenching in the S1 state of anthracene derivatives. Phys. Chem. Chem. Phys. 2004;6:1219–1226. doi: 10.1039/b312398g. DOI
Davydov A. Molecular Spectroscopy of Oxide Catalyst Surfaces. John Wiley & Sons; Hoboken, NJ, USA: 2003.
Bernauer M., Tabor E., Pashkova V., Kaucký D., Sobalík Z., Wichterlová B., Dedecek J. Proton proximity–New key parameter controlling adsorption, desorption and activity in propene oligomerization over H-ZSM-5 zeolites. J. Catal. 2016;344:157–172. doi: 10.1016/j.jcat.2016.09.025. DOI
Spoto S., Bordiga S., Ricchiardi G., Scarano D., Zecchina A., Borello E. IR study of ethene and propene oligomerization on H-ZSM-5: Hydrogen-bonded precursor formation, initiation and propagation mechanisms and structure of the entrapped oligomers. J. Chem. Soc. Faraday Trans. 1994;90:2827–2835. doi: 10.1039/ft9949002827. DOI
Geobaldo F., Spoto G., Bordiga S., Lamberti C., Zecchina A. Propene oligomerization on H-mordenite: Hydrogen-bondinginteraction, chain initiation, propagation and hydrogen transferstudied by temperature-programmed FTIR and UV–VIS spectroscopies. J. Chem. Soc. Faraday Trans. 1997;93:1243–1249. doi: 10.1039/a607052c. DOI
Bandiera J., Taarit Y.B. Elementary reactions and thermodynamic effects in the conversion of propene over an acidic A1MFI. Appl. Catal. A. 1995;132:157–167. doi: 10.1016/0926-860X(95)00156-5. DOI
Borges P., Pinto R.R., Lemos M.A.N.D.A., Lemos F., Vedrine J.C., Derouane E.G., Ribeiro F.R. Light olefin transformation over ZSM-5 zeolites: A kinetic model for olefin consumption. Appl. Catal. A. 2007;324:20–29. doi: 10.1016/j.apcata.2007.02.051. DOI
Farzaneh A., DeJaco R.F., Ohlin L., Holmgren A., Ilja Siepmann J., Grahn M. Comparative study of the effect of defects on selective adsorption of butanol from butanol/Water Binary Vapor Mixtures in Silicalite−1 Films. Langmuir. 2017;33:8420–8427. doi: 10.1021/acs.langmuir.7b02097. PubMed DOI
Dijkmans J., Dusselier M., Janssens W., Trekels M., Vantomme A., Breynaert E., Kirschhock C., Sels B.F. An Inner-/Outer-Sphere Stabilized Sn Active Site in β-Zeolite: Spectroscopic Evidence and Kinetic Consequences. ACS Catal. 2016;6:31–46. doi: 10.1021/acscatal.5b01822. DOI
Bare S.R., Knop-Gericke A., Teschner D., Hävacker M., Blume R., Rocha T., Schlögl R., Chan A.S.Y., Blackwell N., Charochak M.E., et al. Surface analysis of zeolites: An XPS, variable kinetic energy XPS, and low energy ion scattering study. Surface Sci. 2016;648:376–382. doi: 10.1016/j.susc.2015.10.048. DOI
Díaz J., Paolicelli G., Ferrer S., Comin F. Separation of the sp3 and sp2 components in the C1s photoemission spectra of amorphous carbon films. Phys. Rev. B. 1996;54:8064–8069. doi: 10.1103/PhysRevB.54.8064. PubMed DOI
Haerle R., Riedo E., Pasquarello A., Baldereschi A. sp2/sp3 hybridization ratio in amorphous carbon from C1s core-level shifts: X-ray photoelectron spectroscopy and first- principles calculation. Phys. Rev. B. 2001;65:045101. doi: 10.1103/PhysRevB.65.045101. DOI
Nardi G., Manet I., Monti S., Miranda S.A., Lhiaubet-Vallet V. Scope and limitations of the TEMPO/EPR method for singlet oxygen detection: The misleading role of electron transfer. Free Radic. Biol. Med. 2014;77:64–70. doi: 10.1016/j.freeradbiomed.2014.08.020. PubMed DOI
Ragas X., Jimenez-Banzo A., Sanchez-Garcia D., Batllori X., Nonell S. Singlet oxygen photosensitisation by the fluorescent probe Singlet Oxygen Sensor Green. Chem. Commun. 2009:2920–2922. doi: 10.1039/b822776d. PubMed DOI
Horiuchi N. Sensing: Singlet oxygen detection. Nat. Photon. 2013;7:343. doi: 10.1038/nphoton.2013.124. DOI
Bregnhøj M., Westberg M., Minaev B.F., Ogilby P.R. Singlet Oxygen Photophysics in Liquid Solvents: Converging on a Unified Picture. Acc. Chem. Res. 2017;50:1920–1927. doi: 10.1021/acs.accounts.7b00169. PubMed DOI
Filatov M.A., Senge M.O. Molecular devices based on reversible singlet oxygen binding optical and photomedical applications. Mol. Syst. Des. Eng. 2016;1:258–272. doi: 10.1039/C6ME00042H. DOI
Kovacova M., Markovic Z.M., Humpolicek P., Micusik M., Švajdlenkova H., Kleinova A., Danko M., Kubát P., Vajdak J., Capakova Z., et al. Carbon Quantum Dots Modified Polyurethane Nanocomposites as Effective Photocatalytic and Antibacterial Agents. ACS Biomater. Sci. Eng. 2018;4:3983–3993. doi: 10.1021/acsbiomaterials.8b00582. PubMed DOI
Hynek J., Zelenka J., Rathousky J., Kubát P., Ruml T., Demel J., Lang K. Designing porphyrinic covalent organic frameworks for the photodynamic inactivation of bacteria. ACS Appl. Mater. Interfaces. 2018;10:8527–8535. doi: 10.1021/acsami.7b19835. PubMed DOI
Oh K.T., Kim K.N. Ion release and cytotoxicity of stainless steel wires. Eur. J. Orthod. 2005;27:533–540. doi: 10.1093/ejo/cji047. PubMed DOI
Hwang C.J., Shin J.S., Cha J.Y. Metal release from simulated fixed orthodontic appliances. Am. J. Orthod. Dentofacial Orthop. 2001;120:383–391. doi: 10.1067/mod.2001.117911. PubMed DOI
Matos de Souza R., Macedo de Menezes L. Nickel, chromium and iron levels in the saliva of patients with simulated fixed orthodontic appliances. Angle Orthod. 2008;78:345–350. doi: 10.2319/111806-466.1. PubMed DOI
Ortiz A.J., Fernandez E., Vicente A., Calvo J.L., Ortiz C. Metallic ions released from stainless steel, nickel-free, and titanium orthodontic alloys: Toxicity and DNA damage. Am. J. Orthod. Dentofacial Orthop. 2011;140:e115–e122. doi: 10.1016/j.ajodo.2011.02.021. PubMed DOI
Bagchi M., Bagchi D., Balmoori J., Ye X., Stohs S.J. Naphthalene-induced oxidative stress and DNA damage in cultured macrophage J774A.1 cells. Free Radic. Biol. Med. 1998;25:137–143. doi: 10.1016/S0891-5849(98)00063-X. PubMed DOI
Bagchi M., Balmoori J., Ye X., Bagchi D., Ray S.D., Stohs S.J. Protective effect of melatonin on naphthalene-induced oxidative stress and DNA damage in cultured macrophage J774A.1 cells. Mol. Cell. Biochem. 2001;221:49–55. doi: 10.1023/A:1010946517651. PubMed DOI
Kim Y.J., Song M., Song M.K., Youk D.Y., Choi H.S., Sarma S.N., Ryu J.C. Differential Gene Expression Induced by Naphthalene in Two Human Cell Line, HepG2 and HL-60. Mol. Cell. Toxicol. 2009;5:99–107. doi: 10.1007/s10059-009-0010-6. PubMed DOI
Peng C., Muthusamy S., Xia Q., Lal V., Denison M.S., Ng J.C. Micronucleus formation by single and mixed heavy metals/loids and PAH compounds in HepG2 cells. Mutagenesis. 2015;30:593–602. doi: 10.1093/mutage/gev021. PubMed DOI
Lin P.H., Pan W.C., Kang Y.W., Chen Y.L., Lin C.H., Lee M.C., Chou Y.H., Nakamura J. Effects of naphthalene quinonoids on the induction of oxidative DNA damage and cytotoxicity in calf thymus DNA and in human cultured cells. Chem. Res. Toxicol. 2005;18:1262–1270. doi: 10.1021/tx050018t. PubMed DOI
Kapuci M., Ulker Z., Gurkan S., Alpsoy L. Determination of cytotoxic and genotoxic effects of naphthalene, 1-naphthol and 2-naphthol on human lymphocyte culture. Toxicol. Ind. Health. 2014;30:82–89. doi: 10.1177/0748233712451772. PubMed DOI
Drwal E., Rak A., Grochowalski A., Milewicz T., Gregoraszczuk E.L. Cell-specific and dose-dependent effects of PAHs on proliferation, cell cycle, and apoptosis protein expression and hormone secretion by placental cell lines. Toxicol. Lett. 2017;280:10–19. doi: 10.1016/j.toxlet.2017.08.002. PubMed DOI
Jacob J., Raab G., Soballa V., Schmalix W.A., Grimmer G., Greim H., Doehmer J., Seidel A. Cytochrome P450-mediated activation of phenanthrene in genetically engineered V79 Chinese hamster cells. Environ. Toxicol. Pharmacol. 1996;1:1–11. doi: 10.1016/1382-6689(95)00003-8. PubMed DOI
Peters Z.J., Nykamp J.A., Passaperuma K., Carlson J.C., DeWitte-Orr S.J., Greenberg B.M., Bols N.C. Effect of copper on the cytotoxicity of phenanthrene and 9,10- phenanthrenequinone to the human placental cell line, JEG-3. Reprod. Toxicol. 2007;23:513–520. doi: 10.1016/j.reprotox.2007.01.008. PubMed DOI
Grintzalis K., Georgiou C.D., Dailianis S. Total thiol redox status as a potent biomarker of PAH-mediated effects on mussels. Mar. Environ. Res. 2012;81:26–34. doi: 10.1016/j.marenvres.2012.08.004. PubMed DOI
Gianapas M., Karnis L., Dailianis S. Generation of free radicals in haemocytes of mussels after exposure to low molecular weight PAH components: Immune activation, oxidative and genotoxic effects. Comp. Biochem. Physiol. C-Toxicol. Pharmacol. 2012;155:182–189. doi: 10.1016/j.cbpc.2011.08.001. PubMed DOI
Martins M., Ferreira A.M., Costa M.H., Costa P.M. Comparing the Genotoxicity of a Potentially Carcinogenic and a Noncarcinogenic PAH, Singly, and in Binary Combination, on Peripheral Blood Cells of the European Sea Bass. Environ. Toxicol. 2016;31:1307–1318. doi: 10.1002/tox.22135. PubMed DOI