Silicalite-1 Layers as a Biocompatible Nano- and Micro-Structured Coating: An In Vitro Study on MG-63 Cells
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
16-02681S
Grantová Agentura České Republiky
19-02891S
Grantová Agentura České Republiky
PubMed
31683581
PubMed Central
PMC6862472
DOI
10.3390/ma12213583
PII: ma12213583
Knihovny.cz E-zdroje
- Klíčová slova
- MG-63 cells, biocompatibility, coating, osteoblasts, silicalite-1, zeolite,
- Publikační typ
- časopisecké články MeSH
Silicalite-1 is a purely siliceous form of zeolite, which does not contain potentially harmful aluminum in its structure as opposed to ZSM-5 aluminosilicate types of zeolite. This paper reports on a study of a silicalite-1 film, deposited on a silicon Si(100) substrate, as a potential anti-corrosive and biocompatible coating for orthopaedic implants. Silicalite-1 film was prepared in situ on the surface of Si(100) wafers using a reaction mixture of tetrapropyl-ammonium hydroxide (TPAOH), tetraethyl-orthosilicate (TEOS), and diH2O. The physico-chemical properties of the obtained surface were characterized by means of X-ray photoelectron spectroscopy, water contact angle measurement, atomic force microscopy, and scanning electron microscopy. The biocompatibility was assessed by interaction with the MG-63 cell line (human osteosarcoma) in terms of cell adhesion, morphology, proliferation, and viability. The synthesized silicalite-1 film consisted of two layers (b- and a, b-oriented crystals) creating a combination of micro- and nano-scale surface morphology suitable for cell growth. Despite its hydrophobicity, the silicalite-1 film increased the number of initially adhered human osteoblast-like MG-63 cells and the proliferation rate of these cells. The silicalite-1 film also improved the cell viability in comparison with the reference Si(100) substrate. It is therefore a promising candidate for coating of orthopaedic implants.
Zobrazit více v PubMed
Sansone V., Pagani D., Melato M. The effects on bone cells of metal ions released from orthopaedic implants. A review. Clin. Cases Miner. Bone Metab. 2013;10:34–40. doi: 10.11138/ccmbm/2013.10.1.034. PubMed DOI PMC
Vermes C., Chandrasekaran R., Jacobs J.J., Galante J.O., Roebuck K.A., Glant T.T. The effects of particulate wear debris, cytokines, and growth factors on the functions of MG-63 osteoblasts. J. Bone Joint Surg. Am. 2001;83:201–211. doi: 10.2106/00004623-200102000-00007. PubMed DOI
Demnati I., Grossin D., Combes C., Rey C. Plasma-Sprayed Apatite Coatings: Review of Physical-Chemical Characteristics and Their Biological Consequences. J. Med. Biol. Eng. 2013;34:1–7. doi: 10.5405/jmbe.1459. DOI
Pattanayak D.K., Yamaguchi S., Matsushita T., Nakamura T., Kokubo T. Apatite-forming ability of titanium in terms of pH of the exposed solution. J. R. Soc. Interface. 2012;9:2145. doi: 10.1098/rsif.2012.0107. PubMed DOI PMC
Kim H.-G., Ahn S.-H., Kim J.-G., Jun Park S., Lee K.-R. Corrosion performance of diamond-like carbon (DLC)-coated Ti alloy in the simulated body fluid environment. Diam. Relat. Mater. 2005;14:35–41. doi: 10.1016/j.diamond.2004.06.034. DOI
Kopova I., Kronek J., Bacakova L., Fencl J. A cytotoxicity and wear analysis of trapeziometacarpal total joint replacement implant consisting of DLC-coated Co-Cr-Mo alloy with the use of titanium gradient interlayer. Diam. Relat. Mater. 2019;97:107456. doi: 10.1016/j.diamond.2019.107456. DOI
Laurenti J.B., Zazeri G., Povinelli A.P.R., de Godoy M.F., Braile D.M., da Rocha T.R.F., D’Amico É.A., Nery J.G. Enhanced pro-coagulant hemostatic agents based on nanometric zeolites. Microporous Mesoporous Mater. 2017;239:263–271. doi: 10.1016/j.micromeso.2016.10.020. DOI
Vilaça N., Amorim R., Machado A.F., Parpot P., Pereira M.F., Sardo M., Rocha J., Fonseca A.M., Neves I.C., Baltazar F. Potentiation of 5-fluorouracil encapsulated in zeolites as drug delivery systems for in vitro models of colorectal carcinoma. Colloids Surf. B Biointerfaces. 2013;112:237–244. doi: 10.1016/j.colsurfb.2013.07.042. PubMed DOI
Khatamian M., Yavari A., Akbarzadeh A., Alizadeh E. Synthesis and characterization of MFI-type borosilicate zeolites and evaluation of their efficiency as drug delivery systems. Mater. Sci. Eng. C. 2017;78:1212–1221. doi: 10.1016/j.msec.2017.03.008. PubMed DOI
Wu J., Li X., Yan Y., Hu Y., Zhang Y., Tang Y. Protein adsorption onto nanozeolite: Effect of micropore openings. J. Colloid Interface Sci. 2013;406:130–138. doi: 10.1016/j.jcis.2013.05.073. PubMed DOI
Demirci S., Ustaoğlu Z., Yılmazer G.A., Sahin F., Baç N. Antimicrobial Properties of Zeolite-X and Zeolite-A Ion-Exchanged with Silver, Copper, and Zinc against a Broad Range of Microorganisms. Appl. Biochem. Biotechnol. 2014;172:1652–1662. doi: 10.1007/s12010-013-0647-7. PubMed DOI
Bedi R.S., Beving D.E., Zanello L.P., Yan Y. Biocompatibility of corrosion-resistant zeolite coatings for titanium alloy biomedical implants. Acta Biomater. 2009;5:3265–3271. doi: 10.1016/j.actbio.2009.04.019. PubMed DOI
Bacakova L., Vandrovcova M., Kopova I., Jirka I. Applications of zeolites in biotechnology and medicine—A review. Biomater. Sci. 2018;6:974–989. doi: 10.1039/C8BM00028J. PubMed DOI
Purnomo, Setyarini P.H., Sulistyaningsih D. Zeolite-based biomaterials for biomedical application: A review. AIP Conf. Proc. 2018;1997:030013. doi: 10.1063/1.5042933. DOI
Szostak R. Handbook of Molecular Sieves: Structures. Springer; Dordrecht, The Netherlands: 1992.
Novitskaya E., Chen P.-Y., Hamed E., Jun L., Lubarda V., Jasiuk I., Mckittrick J. Recent advances on the measurement and calculation of the elastic moduli of cortical and trabecular bone: A review. Theor. Appl. Mech. 2011;38:209–297. doi: 10.2298/TAM1103209N. DOI
Baimpos T., Nikolakis V., Kouzoudis D. Studies in Surface Science and Catalysis. Volume 174. Elsevier; Amsterdam, The Netherlands: 2008. Measurement of the elastic properties of zeolite films using Metglas-zeolite composite sensors; pp. 665–668.
Brabec L., Bohac P., Stranyanek M., Ctvrtlik R., Kocirik M. Hardness and elastic modulus of silicalite-1 crystal twins. Microporous Mesoporous Mater. 2006;94:226–233. doi: 10.1016/j.micromeso.2006.03.030. DOI
Li Z., Johnson M.C., Sun M., Ryan E.T., Earl D.J., Maichen W., Martin J.I., Li S., Lew C.M., Wang J., et al. Mechanical and Dielectric Properties of Pure-Silica-Zeolite Low-k Materials. Angew. Chem. Int. Ed. 2006;45:6329–6332. doi: 10.1002/anie.200602036. PubMed DOI
Chow G., Bedi R.S., Yan Y., Wang J. Zeolite as a wear-resistant coating. Microporous Mesoporous Mater. 2012;151:346–351. doi: 10.1016/j.micromeso.2011.10.013. DOI
Sumner D.R. Long-term implant fixation and stress-shielding in total hip replacement. J. Biomech. 2015;48:797–800. doi: 10.1016/j.jbiomech.2014.12.021. PubMed DOI
Bedi R.S., Zanello L.P., Yan Y. Osteoconductive and Osteoinductive Properties of Zeolite MFI Coatings on Titanium Alloys. Adv. Funct. Mater. 2009;19:3856–3861. doi: 10.1002/adfm.200901226. DOI
Bedi R.S., Chow G., Wang J., Zanello L., Yan Y.S. Bioactive Materials for Regenerative Medicine: Zeolite-Hydroxyapatite Bone Mimetic Coatings. Adv. Eng. Mater. 2012;14:200–206. doi: 10.1002/adem.201100170. DOI
Wang Z., Yan Y. Oriented zeolite MFI monolayer films on metal substrates by in situ crystallization. Microporous Mesoporous Mater. 2001;48:229–238. doi: 10.1016/S1387-1811(01)00357-2. DOI
Jirka I., Vandrovcová M., Plšek J., Bouša M., Brabec L., Dragounová H., Bačáková L. Interaction of human osteoblast-like Saos-2 cells with stainless steel coated by silicalite-1 films. Mater. Sci. Eng. C Mater. Biol. Appl. 2017;76:775–781. doi: 10.1016/j.msec.2017.03.067. PubMed DOI
Nečas D., Klapetek P. Gwyddion: An open-source software for SPM data analysis. Cent. Eur. J. Phys. 2012;10:181–188. doi: 10.2478/s11534-011-0096-2. DOI
Schindelin J., Arganda-Carreras I., Frise E., Kaynig V., Longair M., Pietzsch T., Preibisch S., Rueden C., Saalfeld S., Schmid B., et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods. 2012;9:676–682. doi: 10.1038/nmeth.2019. PubMed DOI PMC
Scofield J.H. Hartree-Slater subshell photoionization cross-sections at 1254 and 1487 eV. J. Electron Spectrosc. Relat. Phenom. 1976;8:129–137. doi: 10.1016/0368-2048(76)80015-1. DOI
Flanigen E.M., Bennett J.M., Grose R.W., Cohen J.P., Patton R.L., Kirchner R.M., Smith J.V. Silicalite, a new hydrophobic crystalline silica molecular sieve. Nature. 1978;271:512–516. doi: 10.1038/271512a0. DOI
Jirka I., Kopova I., Kubat P., Tabor E., Bacakova L., Bousa M., Sajdl P. The photodynamic properties and the genotoxicity of heat-treated silicalite-1 films. Materials. 2019;12:567. doi: 10.3390/ma12040567. PubMed DOI PMC
Anselme K., Bigerelle M. On the relation between surface roughness of metallic substrates and adhesion of human primary bone cells: Relation surface roughness/cell adhesion. Scanning. 2014;36:11–20. doi: 10.1002/sca.21067. PubMed DOI
Bacakova L., Filova E., Parizek M., Ruml T., Svorcik V. Modulation of cell adhesion, proliferation and differentiation on materials designed for body implants. Biotechnol. Adv. 2011;29:739–767. doi: 10.1016/j.biotechadv.2011.06.004. PubMed DOI
Nebe J.G.B., Luethen F., Lange R., Beck U. Interface Interactions of Osteoblasts with Structured Titanium and the Correlation between Physicochemical Characteristics and Cell Biological Parameters. Macromol. Biosci. 2007;7:567–578. doi: 10.1002/mabi.200600293. PubMed DOI
Liu X., Lim J.Y., Donahue H.J., Dhurjati R., Mastro A.M., Vogler E.A. Influence of substratum surface chemistry/energy and topography on the human fetal osteoblastic cell line hFOB 1.19: Phenotypic and genotypic responses observed in vitro. Biomaterials. 2007;28:4535–4550. doi: 10.1016/j.biomaterials.2007.06.016. PubMed DOI PMC
Li D., Li K., Shan H. Improving biocompatibility of titanium alloy scaffolds by calcium incorporated silicalite-1 coatings. Inorg. Chem. Commun. 2019;102:61–65. doi: 10.1016/j.inoche.2019.02.004. DOI
Jirka I., Vandrovcová M., Plšek J., Bouša M., Bačáková L. Interaction of silicalite-1 film with human osteoblast-like Saos-2 cells: The role of micro-morphology. Mater. Lett. 2017;190:229–231. doi: 10.1016/j.matlet.2017.01.017. PubMed DOI
Li Y., Jiao Y., Li X., Guo Z. Improving the osteointegration of Ti6Al4V by zeolite MFI coating. Biochem. Biophys. Res. Commun. 2015;460:151–156. doi: 10.1016/j.bbrc.2015.02.157. PubMed DOI
Exley C., Mold M.J. Aluminium in human brain tissue: How much is too much? JBIC J. Biol. Inorg. Chem. 2019:1–4. doi: 10.1007/s00775-019-01710-0. PubMed DOI