Applications of Nanocellulose/Nanocarbon Composites: Focus on Biotechnology and Medicine

. 2020 Jan 23 ; 10 (2) : . [epub] 20200123

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid31979245

Grantová podpora
17-00885S Grantová Agentura České Republiky

Nanocellulose/nanocarbon composites are newly emerging smart hybrid materials containing cellulose nanoparticles, such as nanofibrils and nanocrystals, and carbon nanoparticles, such as "classical" carbon allotropes (fullerenes, graphene, nanotubes and nanodiamonds), or other carbon nanostructures (carbon nanofibers, carbon quantum dots, activated carbon and carbon black). The nanocellulose component acts as a dispersing agent and homogeneously distributes the carbon nanoparticles in an aqueous environment. Nanocellulose/nanocarbon composites can be prepared with many advantageous properties, such as high mechanical strength, flexibility, stretchability, tunable thermal and electrical conductivity, tunable optical transparency, photodynamic and photothermal activity, nanoporous character and high adsorption capacity. They are therefore promising for a wide range of industrial applications, such as energy generation, storage and conversion, water purification, food packaging, construction of fire retardants and shape memory devices. They also hold great promise for biomedical applications, such as radical scavenging, photodynamic and photothermal therapy of tumors and microbial infections, drug delivery, biosensorics, isolation of various biomolecules, electrical stimulation of damaged tissues (e.g., cardiac, neural), neural and bone tissue engineering, engineering of blood vessels and advanced wound dressing, e.g., with antimicrobial and antitumor activity. However, the potential cytotoxicity and immunogenicity of the composites and their components must also be taken into account.

Zobrazit více v PubMed

Zhang H., Dou C., Pal L., Hubbe M.A. Review of Electrically Conductive Composites and Films Containing Cellulosic Fibers or Nanocellulose. Bioresources. 2019:14.

Bacakova L., Pajorova J., Bacakova M., Skogberg A., Kallio P., Kolarova K., Svorcik V. Versatile Application of Nanocellulose: From Industry to Skin Tissue Engineering and Wound Healing. Nanomaterials (Basel) 2019;9:164. doi: 10.3390/nano9020164. PubMed DOI PMC

Zhang Y.X., Nypelo T., Salas C., Arboleda J., Hoeger I.C., Rojas O.J. Cellulose Nanofibrils: From Strong Materials to Bioactive Surfaces. J Renew Mater. 2013;1:195–211. doi: 10.7569/JRM.2013.634115. DOI

Lin N., Dufresne A. Nanocellulose in biomedicine: Current status and future prospect. Eur Polym J. 2014;59:302–325. doi: 10.1016/j.eurpolymj.2014.07.025. DOI

Bhattacharya M., Malinen M.M., Lauren P., Lou Y.R., Kuisma S.W., Kanninen L., Lille M., Corlu A., GuGuen-Guillouzo C., Ikkala O., et al. Nanofibrillar cellulose hydrogel promotes three-dimensional liver cell culture. J Control Release. 2012;164:291–298. doi: 10.1016/j.jconrel.2012.06.039. PubMed DOI

Lou Y.R., Kanninen L., Kuisma T., Niklander J., Noon L.A., Burks D., Urtti A., Yliperttula M. The Use of Nanofibrillar Cellulose Hydrogel As a Flexible Three-Dimensional Model to Culture Human Pluripotent Stem Cells. Stem Cells Dev. 2014;23:380–392. doi: 10.1089/scd.2013.0314. PubMed DOI PMC

Julkapli N.M., Bagheri S. Nanocellulose as a green and sustainable emerging material in energy applications: a review. Polym Advan Technol. 2017;28:1583–1594. doi: 10.1002/pat.4074. DOI

Nanotechnologies — Standard terms and their definition for cellulose nanomaterial. ISO/TS 20477:2017(E) 1st ed. ISO; Vernier, Switzerland: Geneva, Switzerland: 2017. ISO/TS 20477:2017.

Habibi Y., Lucia L.A., Rojas O.J. Cellulose Nanocrystals: Chemistry, Self-Assembly, and Applications. Chem Rev. 2010;110:3479–3500. doi: 10.1021/cr900339w. PubMed DOI

Bacakova L., Grausova L., Vandrovcova M., Vacik J., Frazcek A., Blazewicz S., Kromka A., Vanecek M., Nesladek M., Svorcik V., et al. Carbon nanoparticles as substrates for cell adhesion and growth. In: Lombardi S.L., editor. Nanoparticles: New Research. Nova Science Publishers, Inc.; Hauppauge, NY, USA: 2008. pp. 39–107.

Bacakova L., Grausova L., Vacik J., Kromka A., Biederman H., Choukourov A., Stary V. Nanocomposite and nanostructured carbon-based films as growth substrates for bone cells. In: Reddy B., editor. Advances in Diverse Industrial Applications of Nanocomposites. IntechOpen; London, UK: 2011. pp. 399–435.

Bacakova L., Kopova I., Vacik J., Lavrentiev V. Interaction of fullerenes and metal-fullerene composites with cells. In: Ellis S.B., editor. Fullerenes: Chemistry, Natural Sources and Technological Applications. Nova Science Publishers, Inc.; Hauppauge, NY, USA: 2014. pp. 1–33.

Bacakova L., Kopova I., Stankova L., Liskova J., Vacik J., Lavrentiev V., Kromka A., Potocky S., Stranska D. Bone cells in cultures on nanocarbon-based materials for potential bone tissue engineering: A review. Phys Status Solidi A. 2014;211:2688–2702. doi: 10.1002/pssa.201431402. DOI

Bacakova L., Filova E., Liskova J., Kopova I., Vandrovcova M., Havlikova J. Nanostructured materials as substrates for the adhesion, growth, and osteogenic differentiation of bone cells. 978-0-323-42862-0Appl Nanobiomater. 2016;4:103–153. doi: 10.1016/B978-0-323-42862-0.00004-3. DOI

Bacakova L., Broz A., Liskova J., Stankova L., Potocky S., Kromka A. Application of nanodiamond in biotechnology and tissue engineering. In: Aliofkhazraei M., editor. Diamond and Carbon Composites and Nanocomposites. IntechOpen; London, UK: 2016. pp. 59–88. DOI

Wong B.S., Yoong S.L., Jagusiak A., Panczyk T., Ho H.K., Ang W.H., Pastorin G. Carbon nanotubes for delivery of small molecule drugs. Adv Drug Deliv Rev. 2013;65:1964–2015. doi: 10.1016/j.addr.2013.08.005. PubMed DOI

Wang M., Anoshkin I.V., Nasibulin A.G., Korhonen J.T., Seitsonen J., Pere J., Kauppinen E.I., Ras R.H., Ikkala O. Modifying native nanocellulose aerogels with carbon nanotubes for mechanoresponsive conductivity and pressure sensing. Adv Mater. 2013;25:2428–2432. doi: 10.1002/adma.201300256. PubMed DOI

Yin R., Agrawal T., Khan U., Gupta G.K., Rai V., Huang Y.Y., Hamblin M.R. Antimicrobial photodynamic inactivation in nanomedicine: small light strides against bad bugs. Nanomedicine (Lond) 2015;10:2379–2404. doi: 10.2217/nnm.15.67. PubMed DOI PMC

Liao C., Li Y., Tjong S.C. Graphene Nanomaterials: Synthesis, Biocompatibility, and Cytotoxicity. Int J Mol Sci. 2018;19:3564. doi: 10.3390/ijms19113564. PubMed DOI PMC

Placha D., Jampilek J. Graphenic Materials for Biomedical Applications. Nanomaterials (Basel) 2019;9:1758. doi: 10.3390/nano9121758. PubMed DOI PMC

Ma L., Liu R., Niu H., Xing L., Liu L., Huang Y. Flexible and Freestanding Supercapacitor Electrodes Based on Nitrogen-Doped Carbon Networks/Graphene/Bacterial Cellulose with Ultrahigh Areal Capacitance. ACS Appl Mater Interfaces. 2016;8:33608–33618. doi: 10.1021/acsami.6b11034. PubMed DOI

Xu Z., Zhou H., Tan S., Jiang X., Wu W., Shi J., Chen P. Ultralight super-hydrophobic carbon aerogels based on cellulose nanofibers/poly(vinyl alcohol)/graphene oxide (CNFs/PVA/GO) for highly effective oil-water separation. Beilstein J Nanotechnol. 2018;9:508–519. doi: 10.3762/bjnano.9.49. PubMed DOI PMC

Li W., Islam N., Ren G., Li S., Fan Z. AC-Filtering Supercapacitors Based on Edge Oriented Vertical Graphene and Cross-Linked Carbon Nanofiber. Materials (Basel) 2019;12:604. doi: 10.3390/ma12040604. PubMed DOI PMC

Shi Q., Liu D., Wang Y., Zhao Y., Yang X., Huang J. High-Performance Sodium-Ion Battery Anode via Rapid Microwave Carbonization of Natural Cellulose Nanofibers with Graphene Initiator. Small. 2019;15:e1901724. doi: 10.1002/smll.201901724. PubMed DOI

Price R.L., Ellison K., Haberstroh K.M., Webster T.J. Nanometer surface roughness increases select osteoblast adhesion on carbon nanofiber compacts. J Biomed Mater Res A. 2004;70:129–138. doi: 10.1002/jbm.a.30073. PubMed DOI

Abbasi-Moayed S., Golmohammadi H., Bigdeli A., Hormozi-Nezhad M.R. A rainbow ratiometric fluorescent sensor array on bacterial nanocellulose for visual discrimination of biothiols. Analyst. 2018;143:3415–3424. doi: 10.1039/C8AN00637G. PubMed DOI

Li L., Wang F., Lv Y., Liu J., Bian H., Wang W., Li Y., Shao Z. CQDs-Doped Magnetic Electrospun Nanofibers: Fluorescence Self-Display and Adsorption Removal of Mercury(II) ACS Omega. 2018;3:4220–4230. doi: 10.1021/acsomega.7b01969. PubMed DOI PMC

Shamsipour M., Mansouri A.M., Moradipour P. Temozolomide Conjugated Carbon Quantum Dots Embedded in Core/Shell Nanofibers Prepared by Coaxial Electrospinning as an Implantable Delivery System for Cell Imaging and Sustained Drug Release. AAPS PharmSciTech. 2019;20:259. doi: 10.1208/s12249-019-1466-0. PubMed DOI

Hassan M., Abou-Zeid R., Hassan E., Berglund L., Aitomaki Y., Oksman K. Membranes Based on Cellulose Nanofibers and Activated Carbon for Removal of Escherichia coli Bacteria from Water. Polymers (Basel) 2017;9:335. doi: 10.3390/polym9080335. PubMed DOI PMC

Ashfaq M., Verma N., Khan S. Highly effective Cu/Zn-carbon micro/nanofiber-polymer nanocomposite-based wound dressing biomaterial against the P. aeruginosa multi- and extensively drug-resistant strains. Mater Sci Eng C Mater Biol Appl. 2017;77:630–641. doi: 10.1016/j.msec.2017.03.187. PubMed DOI

Santhiago M., Correa C.C., Bernardes J.S., Pereira M.P., Oliveira L.J.M., Strauss M., Bufon C.C.B. Flexible and Foldable Fully-Printed Carbon Black Conductive Nanostructures on Paper for High-Performance Electronic, Electrochemical, and Wearable Devices. ACS Appl Mater Interfaces. 2017;9:24365–24372. doi: 10.1021/acsami.7b06598. PubMed DOI

Ranjbar S., Shahrokhian S. Design and fabrication of an electrochemical aptasensor using Au nanoparticles/carbon nanoparticles/cellulose nanofibers nanocomposite for rapid and sensitive detection of Staphylococcus aureus. Bioelectrochemistry. 2018;123:70–76. doi: 10.1016/j.bioelechem.2018.04.018. PubMed DOI

Li Q.M., Liu H., Zhang S.D., Zhang D.B., Liu X.H., He Y.X., Mi L.W., Zhang J.X., Liu C.T., Shen C.Y., et al. Superhydrophobic Electrically Conductive Paper for Ultrasensitive Strain Sensor with Excellent Anticorrosion and Self-Cleaning Property. Acs Appl Mater Inter. 2019;11:21904–21914. doi: 10.1021/acsami.9b03421. PubMed DOI

Lin J., Zhong Z., Li Q., Tan Z., Lin T., Quan Y., Zhang D. Facile Low-Temperature Synthesis of Cellulose Nanocrystals Carrying Buckminsterfullerene and Its Radical Scavenging Property in Vitro. Biomacromolecules. 2017;18:4034–4040. doi: 10.1021/acs.biomac.7b01095. PubMed DOI

Herreros-Lopez A., Carini M., Da Ros T., Carofiglio T., Marega C., La Parola V., Rapozzi V., Xodo L.E., Alshatwi A.A., Hadad C., et al. Nanocrystalline cellulose-fullerene: Novel conjugates. Carbohydr Polym. 2017;164:92–101. doi: 10.1016/j.carbpol.2017.01.068. PubMed DOI

Kim Y., Kim H.S., Yun Y.S., Bak H., Jin H.J. Ag-doped multiwalled carbon nanotube/polymer composite electrodes. J Nanosci Nanotechnol. 2010;10:3571–3575. doi: 10.1166/jnn.2010.2232. PubMed DOI

Jin L., Zeng Z., Kuddannaya S., Wu D., Zhang Y., Wang Z. Biocompatible, Free-Standing Film Composed of Bacterial Cellulose Nanofibers-Graphene Composite. ACS Appl Mater Interfaces. 2016;8:1011–1018. doi: 10.1021/acsami.5b11241. PubMed DOI

Kim S., Xiong R., Tsukruk V.V. Probing Flexural Properties of Cellulose Nanocrystal-Graphene Nanomembranes with Force Spectroscopy and Bulging Test. Langmuir. 2016;32:5383–5393. doi: 10.1021/acs.langmuir.6b01079. PubMed DOI

Siljander S., Keinanen P., Raty A., Ramakrishnan K.R., Tuukkanen S., Kunnari V., Harlin A., Vuorinen J., Kanerva M. Effect of Surfactant Type and Sonication Energy on the Electrical Conductivity Properties of Nanocellulose-CNT Nanocomposite Films. Int J Mol Sci. 2018;19:1819. doi: 10.3390/ijms19061819. PubMed DOI PMC

Han J., Wang S., Zhu S., Huang C., Yue Y., Mei C., Xu X., Xia C. Electrospun Core-Shell Nanofibrous Membranes with Nanocellulose-Stabilized Carbon Nanotubes for Use as High-Performance Flexible Supercapacitor Electrodes with Enhanced Water Resistance, Thermal Stability, and Mechanical Toughness. ACS Appl Mater Interfaces. 2019;11:44624–44635. doi: 10.1021/acsami.9b16458. PubMed DOI

Nguyen H.K., Bae J., Hur J., Park S.J., Park M.S., Kim I.T. Tailoring of Aqueous-Based Carbon Nanotube(-)Nanocellulose Films as Self-Standing Flexible Anodes for Lithium-Ion Storage. Nanomaterials (Basel) 2019;9:655. doi: 10.3390/nano9040655. PubMed DOI PMC

Jiang M., Seney R., Bayliss P.C., Kitchens C.L. Carbon Nanotube and Cellulose Nanocrystal Hybrid Films. Molecules. 2019;24:2662. doi: 10.3390/molecules24142662. PubMed DOI PMC

Liu P., Zhu C., Mathew A.P. Mechanically robust high flux graphene oxide - nanocellulose membranes for dye removal from water. J Hazard Mater. 2019;371:484–493. doi: 10.1016/j.jhazmat.2019.03.009. PubMed DOI

Hasan M.Q., Yuen J., Slaughter G. Carbon Nanotube-Cellulose Pellicle for Glucose Biofuel Cell. Conf Proc IEEE Eng Med Biol Soc. 2018;2018:1–4. doi: 10.1109/EMBC.2018.8513229. PubMed DOI

Hamedi M.M., Hajian A., Fall A.B., Hakansson K., Salajkova M., Lundell F., Wagberg L., Berglund L.A. Highly conducting, strong nanocomposites based on nanocellulose-assisted aqueous dispersions of single-wall carbon nanotubes. ACS Nano. 2014;8:2467–2476. doi: 10.1021/nn4060368. PubMed DOI

Hajian A., Lindstrom S.B., Pettersson T., Hamedi M.M., Wagberg L. Understanding the Dispersive Action of Nanocellulose for Carbon Nanomaterials. Nano Lett. 2017;17:1439–1447. doi: 10.1021/acs.nanolett.6b04405. PubMed DOI

Hamedi M., Karabulut E., Marais A., Herland A., Nystrom G., Wagberg L. Nanocellulose aerogels functionalized by rapid layer-by-layer assembly for high charge storage and beyond. Angew Chem Int Ed Engl. 2013;52:12038–12042. doi: 10.1002/anie.201305137. PubMed DOI

Wicklein B., Kocjan A., Salazar-Alvarez G., Carosio F., Camino G., Antonietti M., Bergstrom L. Thermally insulating and fire-retardant lightweight anisotropic foams based on nanocellulose and graphene oxide. Nat Nanotechnol. 2015;10:277–283. doi: 10.1038/nnano.2014.248. PubMed DOI

Yousefi N., Wong K.K.W., Hosseinidoust Z., Sorensen H.O., Bruns S., Zheng Y., Tufenkji N. Hierarchically porous, ultra-strong reduced graphene oxide-cellulose nanocrystal sponges for exceptional adsorption of water contaminants. Nanoscale. 2018;10:7171–7184. doi: 10.1039/C7NR09037D. PubMed DOI

Siljander S., Keinanen P., Ivanova A., Lehmonen J., Tuukkanen S., Kanerva M., Bjorkqvist T. Conductive Cellulose based Foam Formed 3D Shapes-From Innovation to Designed Prototype. Materials (Basel) 2019;12:430. doi: 10.3390/ma12030430. PubMed DOI PMC

Kuzmenko V., Karabulut E., Pernevik E., Enoksson P., Gatenholm P. Tailor-made conductive inks from cellulose nanofibrils for 3D printing of neural guidelines. Carbohydr Polym. 2018;189:22–30. doi: 10.1016/j.carbpol.2018.01.097. PubMed DOI

Pedrotty D.M., Kuzmenko V., Karabulut E., Sugrue A.M., Livia C., Vaidya V.R., McLeod C.J., Asirvatham S.J., Gatenholm P., Kapa S. Three-Dimensional Printed Biopatches With Conductive Ink Facilitate Cardiac Conduction When Applied to Disrupted Myocardium. Circ Arrhythm Electrophysiol. 2019;12:e006920. doi: 10.1161/CIRCEP.118.006920. PubMed DOI

Shah N., Ul-Islam M., Khattak W.A., Park J.K. Overview of bacterial cellulose composites: a multipurpose advanced material. Carbohydr Polym. 2013;98:1585–1598. doi: 10.1016/j.carbpol.2013.08.018. PubMed DOI

Xu T., Jiang Q., Ghim D., Liu K.K., Sun H., Derami H.G., Wang Z., Tadepalli S., Jun Y.S., Zhang Q., et al. Catalytically Active Bacterial Nanocellulose-Based Ultrafiltration Membrane. Small. 2018;14:e1704006. doi: 10.1002/smll.201704006. PubMed DOI

Jun Y.S., Wu X., Ghim D., Jiang Q., Cao S., Singamaneni S. Photothermal Membrane Water Treatment for Two Worlds. Acc Chem Res. 2019;52:1215–1225. doi: 10.1021/acs.accounts.9b00012. PubMed DOI

Jiang Q., Ghim D., Cao S., Tadepalli S., Liu K.K., Kwon H., Luan J., Min Y., Jun Y.S., Singamaneni S. Photothermally Active Reduced Graphene Oxide/Bacterial Nanocellulose Composites as Biofouling-Resistant Ultrafiltration Membranes. Environ Sci Technol. 2019;53:412–421. doi: 10.1021/acs.est.8b02772. PubMed DOI

Abol-Fotouh D., Dorling B., Zapata-Arteaga O., Rodriguez-Martinez X., Gomez A., Reparaz J.S., Laromaine A., Roig A., Campoy-Quiles M. Farming thermoelectric paper. Energy Environ Sci. 2019;12:716–726. doi: 10.1039/C8EE03112F. PubMed DOI PMC

Mahdavi M., Mahmoudi N., Rezaie Anaran F., Simchi A. Electrospinning of Nanodiamond-Modified Polysaccharide Nanofibers with Physico-Mechanical Properties Close to Natural Skins. Mar Drugs. 2016;14:128. doi: 10.3390/md14070128. PubMed DOI PMC

Liu X., Shen H., Song S., Chen W., Zhang Z. Accelerated biomineralization of graphene oxide - incorporated cellulose acetate nanofibrous scaffolds for mesenchymal stem cell osteogenesis. Colloids Surf B Biointerfaces. 2017;159:251–258. doi: 10.1016/j.colsurfb.2017.07.078. PubMed DOI

Cho S.Y., Yu H., Choi J., Kang H., Park S., Jang J.S., Hong H.J., Kim I.D., Lee S.K., Jeong H.S., et al. Continuous Meter-Scale Synthesis of Weavable Tunicate Cellulose/Carbon Nanotube Fibers for High-Performance Wearable Sensors. ACS Nano. 2019;13:9332–9341. doi: 10.1021/acsnano.9b03971. PubMed DOI

Zhu C., Liu P., Mathew A.P. Self-Assembled TEMPO Cellulose Nanofibers: Graphene Oxide-Based Biohybrids for Water Purification. ACS Appl Mater Interfaces. 2017;9:21048–21058. doi: 10.1021/acsami.7b06358. PubMed DOI

Ostadhossein F., Mahmoudi N., Morales-Cid G., Tamjid E., Navas-Martos F.J., Soriano-Cuadrado B., Paniza J.M.L., Simchi A. Development of Chitosan/Bacterial Cellulose Composite Films Containing Nanodiamonds as a Potential Flexible Platform for Wound Dressing. Materials (Basel) 2015;8:6401–6418. doi: 10.3390/ma8095309. PubMed DOI PMC

Zheng C., Yue Y., Gan L., Xu X., Mei C., Han J. Highly Stretchable and Self-Healing Strain Sensors Based on Nanocellulose-Supported Graphene Dispersed in Electro-Conductive Hydrogels. Nanomaterials (Basel) 2019;9:937. doi: 10.3390/nano9070937. PubMed DOI PMC

Xing J., Tao P., Wu Z., Xing C., Liao X., Nie S. Nanocellulose-graphene composites: A promising nanomaterial for flexible supercapacitors. Carbohydr Polym. 2019;207:447–459. doi: 10.1016/j.carbpol.2018.12.010. PubMed DOI

Shi Z., Phillips G.O., Yang G. Nanocellulose electroconductive composites. Nanoscale. 2013;5:3194–3201. doi: 10.1039/c3nr00408b. PubMed DOI

Buzid A., Hayes P.E., Glennon J.D., Luong J.H.T. Captavidin as a regenerable biorecognition element on boron-doped diamond for biotin sensing. Anal Chim Acta. 2019;1059:42–48. doi: 10.1016/j.aca.2019.01.058. PubMed DOI

Li F., Yu H.Y., Wang Y.Y., Zhou Y., Zhang H., Yao J.M., Abdalkarim S.Y.H., Tam K.C. Natural Biodegradable Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Nanocomposites with Multifunctional Cellulose Nanocrystals/Graphene Oxide Hybrids for High-Performance Food Packaging. J Agric Food Chem. 2019;67:10954–10967. doi: 10.1021/acs.jafc.9b03110. PubMed DOI

Pal N., Banerjee S., Roy P., Pal K. Melt-blending of unmodified and modified cellulose nanocrystals with reduced graphene oxide into PLA matrix for biomedical application. Polym Advan Technol. 2019;30:3049–3060. doi: 10.1002/pat.4736. DOI

Pal N., Banerjee S., Roy P., Pal K. Reduced graphene oxide and PEG-grafted TEMPO-oxidized cellulose nanocrystal reinforced poly-lactic acid nanocomposite film for biomedical application. Mater Sci Eng C Mater Biol Appl. 2019;104:109956. doi: 10.1016/j.msec.2019.109956. PubMed DOI

Song N., Cui S., Hou X., Ding P., Shi L. Significant Enhancement of Thermal Conductivity in Nanofibrillated Cellulose Films with Low Mass Fraction of Nanodiamond. ACS Appl Mater Interfaces. 2017;9:40766–40773. doi: 10.1021/acsami.7b09240. PubMed DOI

Ruiz-Palomero C., Benitez-Martinez S., Soriano M.L., Valcarcel M. Fluorescent nanocellulosic hydrogels based on graphene quantum dots for sensing laccase. Anal Chim Acta. 2017;974:93–99. doi: 10.1016/j.aca.2017.04.018. PubMed DOI

Javanbakht S., Namazi H. Doxorubicin loaded carboxymethyl cellulose/graphene quantum dot nanocomposite hydrogel films as a potential anticancer drug delivery system. Mater Sci Eng C Mater Biol Appl. 2018;87:50–59. doi: 10.1016/j.msec.2018.02.010. PubMed DOI

Anirudhan T.S., Deepa J.R. Nano-zinc oxide incorporated graphene oxide/nanocellulose composite for the adsorption and photo catalytic degradation of ciprofloxacin hydrochloride from aqueous solutions. J Colloid Interface Sci. 2017;490:343–356. doi: 10.1016/j.jcis.2016.11.042. PubMed DOI

Xu Z., Zhou H., Jiang X., Li J., Huang F. Facile synthesis of reduced graphene oxide/trimethyl chlorosilane-coated cellulose nanofibres aerogel for oil absorption. IET Nanobiotechnol. 2017;11:929–934. doi: 10.1049/iet-nbt.2017.0063. PubMed DOI PMC

Yao Q., Fan B., Xiong Y., Jin C., Sun Q., Sheng C. 3D assembly based on 2D structure of Cellulose Nanofibril/Graphene Oxide Hybrid Aerogel for Adsorptive Removal of Antibiotics in Water. Sci Rep. 2017;7:45914. doi: 10.1038/srep45914. PubMed DOI PMC

Alizadehgiashi M., Khuu N., Khabibullin A., Henry A., Tebbe M., Suzuki T., Kumacheva E. Nanocolloidal Hydrogel for Heavy Metal Scavenging. ACS Nano. 2018;12:8160–8168. doi: 10.1021/acsnano.8b03202. PubMed DOI

Liang Y., Liu J., Wang L., Wan Y., Shen J., Bai Q. Metal affinity-carboxymethyl cellulose functionalized magnetic graphene composite for highly selective isolation of histidine-rich proteins. Talanta. 2019;195:381–389. doi: 10.1016/j.talanta.2018.11.074. PubMed DOI

Sun H.X., Ma C., Wang T., Xu Y.Y., Yuan B.B., Li P., Kong Y. Preparation and Characterization of C60-Filled Ethyl Cellulose Mixed-Matrix Membranes for Gas Separation of Propylene/Propane. Chem Eng Technol. 2014;37:611–619. doi: 10.1002/ceat.201300667. DOI

Vetrivel S., Saraswathi M.S.A., Rana D., Nagendran A. Fabrication of cellulose acetate nanocomposite membranes using 2D layered nanomaterials for macromolecular separation. Int J Biol Macromol. 2018;107:1607–1612. doi: 10.1016/j.ijbiomac.2017.10.027. PubMed DOI

Blomquist N., Wells T., Andres B., Backstrom J., Forsberg S., Olin H. Metal-free supercapacitor with aqueous electrolyte and low-cost carbon materials. Sci Rep. 2017;7:39836. doi: 10.1038/srep39836. PubMed DOI PMC

Xu X., Hsieh Y.L. Aqueous exfoliated graphene by amphiphilic nanocellulose and its application in moisture-responsive foldable actuators. Nanoscale. 2019;11:11719–11729. doi: 10.1039/C9NR01602C. PubMed DOI

Jiang Q., Tian L., Liu K.K., Tadepalli S., Raliya R., Biswas P., Naik R.R., Singamaneni S. Bilayered Biofoam for Highly Efficient Solar Steam Generation. Adv Mater. 2016;28:9400–9407. doi: 10.1002/adma.201601819. PubMed DOI

Li X., Shao C., Zhuo B., Yang S., Zhu Z., Su C., Yuan Q. The use of nanofibrillated cellulose to fabricate a homogeneous and flexible graphene-based electric heating membrane. Int J Biol Macromol. 2019;139:1103–1116. doi: 10.1016/j.ijbiomac.2019.08.081. PubMed DOI

Kizling M., Draminska S., Stolarczyk K., Tammela P., Wang Z., Nyholm L., Bilewicz R. Biosupercapacitors for powering oxygen sensing devices. Bioelectrochemistry. 2015;106:34–40. doi: 10.1016/j.bioelechem.2015.04.012. PubMed DOI

Generalov A.A., Anoshkin I.V., Erdmanis M., Lioubtchenko D.V., Ovchinnikov V., Nasibulin A.G., Raisanen A.V. Carbon nanotube network varactor. Nanotechnology. 2015;26:045201. doi: 10.1088/0957-4484/26/4/045201. PubMed DOI

Asmat S., Husain Q. Exquisite stability and catalytic performance of immobilized lipase on novel fabricated nanocellulose fused polypyrrole/graphene oxide nanocomposite: Characterization and application. Int J Biol Macromol. 2018;117:331–341. doi: 10.1016/j.ijbiomac.2018.05.216. PubMed DOI

Pal N., Dubey P., Gopinath P., Pal K. Combined effect of cellulose nanocrystal and reduced graphene oxide into poly-lactic acid matrix nanocomposite as a scaffold and its anti-bacterial activity. Int J Biol Macromol. 2017;95:94–105. doi: 10.1016/j.ijbiomac.2016.11.041. PubMed DOI

Valentini L., Cardinali M., Fortunati E., Kenny J.M. Nonvolatile memory behavior of nanocrystalline cellulose/graphene oxide composite films. Appl Phys Lett. 2014;105 doi: 10.1063/1.4898601. DOI

Song L., Li Y., Xiong Z., Pan L., Luo Q., Xu X., Lu S. Water-Induced shape memory effect of nanocellulose papers from sisal cellulose nanofibers with graphene oxide. Carbohydr Polym. 2018;179:110–117. doi: 10.1016/j.carbpol.2017.09.078. PubMed DOI

Wu G., Gu Y., Hou X., Li R., Ke H., Xiao X. Hybrid Nanocomposites of Cellulose/Carbon-Nanotubes/Polyurethane with Rapidly Water Sensitive Shape Memory Effect and Strain Sensing Performance. Polymers (Basel) 2019;11:1586. doi: 10.3390/polym11101586. PubMed DOI PMC

Zhu L., Zhou X., Liu Y., Fu Q. Highly Sensitive, Ultrastretchable Strain Sensors Prepared by Pumping Hybrid Fillers of Carbon Nanotubes/Cellulose Nanocrystal into Electrospun Polyurethane Membranes. ACS Appl Mater Interfaces. 2019;11:12968–12977. doi: 10.1021/acsami.9b00136. PubMed DOI

Awan F., Bulger E., Berry R.M., Tam K.C. Enhanced radical scavenging activity of polyhydroxylated C-60 functionalized cellulose nanocrystals. Cellulose. 2016;23:3589–3599. doi: 10.1007/s10570-016-1057-0. DOI

Luo J., Deng W., Yang F., Wu Z., Huang M., Gu M. Gold nanoparticles decorated graphene oxide/nanocellulose paper for NIR laser-induced photothermal ablation of pathogenic bacteria. Carbohydr Polym. 2018;198:206–214. doi: 10.1016/j.carbpol.2018.06.074. PubMed DOI

Anirudhan T.S., Sekhar V.C., Shainy F., Thomas J.P. Effect of dual stimuli responsive dextran/nanocellulose polyelectrolyte complexes for chemophotothermal synergistic cancer therapy. International Journal of Biological Macromolecules. 2019;135:776–789. doi: 10.1016/j.ijbiomac.2019.05.218. PubMed DOI

Rasoulzadeh M., Namazi H. Carboxymethyl cellulose/graphene oxide bio-nanocomposite hydrogel beads as anticancer drug carrier agent. Carbohydr Polym. 2017;168:320–326. doi: 10.1016/j.carbpol.2017.03.014. PubMed DOI

Wang X.D., Yu K.X., An R., Han L.L., Zhang Y.L., Shi L.Y., Ran R. Self-assembling GO/modified HEC hybrid stabilized pickering emulsions and template polymerization for biomedical hydrogels. Carbohyd Polym. 2019;207:694–703. doi: 10.1016/j.carbpol.2018.12.034. PubMed DOI

Luo X., Zhang H., Cao Z., Cai N., Xue Y., Yu F. A simple route to develop transparent doxorubicin-loaded nanodiamonds/cellulose nanocomposite membranes as potential wound dressings. Carbohydr Polym. 2016;143:231–238. doi: 10.1016/j.carbpol.2016.01.076. PubMed DOI

Anirudhan T.S., Deepa J.R., Binussreejayan Electrochemical sensing of cholesterol by molecularly imprinted polymer of silylated graphene oxide and chemically modified nanocellulose polymer. Mater Sci Eng C Mater Biol Appl. 2018;92:942–956. doi: 10.1016/j.msec.2018.07.041. PubMed DOI

Fu W., Dai Y., Meng X., Xu W., Zhou J., Liu Z., Lu W., Wang S., Huang C., Sun Y. Electronic textiles based on aligned electrospun belt-like cellulose acetate nanofibers and graphene sheets: portable, scalable and eco-friendly strain sensor. Nanotechnology. 2019;30:045602. doi: 10.1088/1361-6528/aaed99. PubMed DOI

Zou Y., Zhang Y., Xu Y., Chen Y., Huang S., Lyu Y., Duan H., Chen Z., Tan W. Portable and Label-Free Detection of Blood Bilirubin with Graphene-Isolated-Au-Nanocrystals Paper Strip. Anal Chem. 2018;90:13687–13694. doi: 10.1021/acs.analchem.8b04058. PubMed DOI

Jia Y., Yu H., Zhang Y., Dong F., Li Z. Cellulose acetate nanofibers coated layer-by-layer with polyethylenimine and graphene oxide on a quartz crystal microbalance for use as a highly sensitive ammonia sensor. Colloids Surf B Biointerfaces. 2016;148:263–269. doi: 10.1016/j.colsurfb.2016.09.007. PubMed DOI

Xue T., Sheng Y.Y., Xu J.K., Li Y.Y., Lu X.Y., Zhu Y.F., Duan X.M., Wen Y.P. In-situ reduction of Ag+ on black phosphorene and its NH2-MWCNT nanohybrid with high stability and dispersibility as nanozyme sensor for three ATP metabolites. Biosens Bioelectron. 2019;145 doi: 10.1016/j.bios.2019.111716. PubMed DOI

Jung M., Kim K., Kim B., Lee K.J., Kang J.W., Jeon S. Vertically stacked nanocellulose tactile sensor. Nanoscale. 2017;9:17212–17219. doi: 10.1039/C7NR03685J. PubMed DOI

Zhu P., Liu Y., Fang Z., Kuang Y., Zhang Y., Peng C., Chen G. Flexible and Highly Sensitive Humidity Sensor Based on Cellulose Nanofibers and Carbon Nanotube Composite Film. Langmuir. 2019;35:4834–4842. doi: 10.1021/acs.langmuir.8b04259. PubMed DOI

Chen C., Zhang T., Zhang Q., Chen X., Zhu C., Xu Y., Yang J., Liu J., Sun D. Biointerface by Cell Growth on Graphene Oxide Doped Bacterial Cellulose/Poly(3,4-ethylenedioxythiophene) Nanofibers. ACS Appl Mater Interfaces. 2016;8:10183–10192. doi: 10.1021/acsami.6b01243. PubMed DOI

Sun Y., Quan Q., Meng H., Zheng Y., Peng J., Hu Y., Feng Z., Sang X., Qiao K., He W., et al. Enhanced Neurite Outgrowth on a Multiblock Conductive Nerve Scaffold with Self-Powered Electrical Stimulation. Adv Healthc Mater. 2019;8:e1900127. doi: 10.1002/adhm.201900127. PubMed DOI

Chakraborty S., Ponrasu T., Chandel S., Dixit M., Muthuvijayan V. Reduced graphene oxide-loaded nanocomposite scaffolds for enhancing angiogenesis in tissue engineering applications. R Soc Open Sci. 2018;5:172017. doi: 10.1098/rsos.172017. PubMed DOI PMC

Chen X.Y., Low H.R., Loi X.Y., Merel L., Mohd Cairul Iqbal M.A. Fabrication and evaluation of bacterial nanocellulose/poly(acrylic acid)/graphene oxide composite hydrogel: Characterizations and biocompatibility studies for wound dressing. J Biomed Mater Res B Appl Biomater. 2019;107:2140–2151. doi: 10.1002/jbm.b.34309. PubMed DOI

Wang Y., Shi L., Wu H., Li Q., Hu W., Zhang Z., Huang L., Zhang J., Chen D., Deng S., et al. Graphene Oxide-IPDI-Ag/ZnO@Hydroxypropyl Cellulose Nanocomposite Films for Biological Wound-Dressing Applications. ACS Omega. 2019;4:15373–15381. doi: 10.1021/acsomega.9b01291. PubMed DOI PMC

Burrs S.L., Bhargava M., Sidhu R., Kiernan-Lewis J., Gomes C., Claussen J.C., McLamore E.S. A paper based graphene-nanocauliflower hybrid composite for point of care biosensing. Biosens Bioelectron. 2016;85:479–487. doi: 10.1016/j.bios.2016.05.037. PubMed DOI

Liu C., Dong J., Waterhouse G.I.N., Cheng Z.Q., Ai S.Y. Electrochemical immunosensor with nanocellulose-Au composite assisted multiple signal amplification for detection of avian leukosis virus subgroup J. Biosens Bioelectron. 2018;101:110–115. doi: 10.1016/j.bios.2017.10.007. PubMed DOI

Cao J., Zhang X.X., Wu X.D., Wang S.M., Lu C.H. Cellulose nanocrystals mediated assembly of graphene in rubber composites for chemical sensing applications. Carbohyd Polym. 2016;140:88–95. doi: 10.1016/j.carbpol.2015.12.042. PubMed DOI

Yan C.Y., Wang J.X., Kang W.B., Cui M.Q., Wang X., Foo C.Y., Chee K.J., Lee P.S. Highly Stretchable Piezoresistive Graphene-Nanocellulose Nanopaper for Strain Sensors. Advanced Materials. 2014;26:2022–2027. doi: 10.1002/adma.201304742. PubMed DOI

Wang S., Zhang X., Wu X., Lu C. Tailoring percolating conductive networks of natural rubber composites for flexible strain sensors via a cellulose nanocrystal templated assembly. Soft Matter. 2016;12:845–852. doi: 10.1039/C5SM01958C. PubMed DOI

Baleizao C., Nagl S., Schaferling M., Berberan-Santos M.N., Wolfbeis O.S. Dual fluorescence sensor for trace oxygen and temperature with unmatched range and sensitivity. Anal Chem. 2008;80:6449–6457. doi: 10.1021/ac801034p. PubMed DOI

Kochmann S., Baleizao C., Berberan-Santos M.N., Wolfbeis O.S. Sensing and imaging of oxygen with parts per billion limits of detection and based on the quenching of the delayed fluorescence of (13)C70 fullerene in polymer hosts. Anal Chem. 2013;85:1300–1304. doi: 10.1021/ac303486f. PubMed DOI

Luo Y., Wang S., Shen M., Qi R., Fang Y., Guo R., Cai H., Cao X., Tomas H., Zhu M., et al. Carbon nanotube-incorporated multilayered cellulose acetate nanofibers for tissue engineering applications. Carbohydr Polym. 2013;91:419–427. doi: 10.1016/j.carbpol.2012.08.069. PubMed DOI

Duri S., Harkins A.L., Frazier A.J., Tran C.D. Composites Containing Fullerenes and Polysaccharides: Green and Facile Synthesis, Biocompatibility, and Antimicrobial Activity. Acs Sustain Chem Eng. 2017;5:5408–5417. doi: 10.1021/acssuschemeng.7b00715. DOI

Kopova I., Bacakova L., Lavrentiev V., Vacik J. Growth and potential damage of human bone-derived cells on fresh and aged fullerene c60 films. Int J Mol Sci. 2013;14:9182–9204. doi: 10.3390/ijms14059182. PubMed DOI PMC

Kopova I., Lavrentiev V., Vacik J., Bacakova L. Growth and potential damage of human bone-derived cells cultured on fresh and aged C60/Ti films. PLoS One. 2015;10:e0123680. doi: 10.1371/journal.pone.0123680. PubMed DOI PMC

Sheka E.F. In: Chapter 1: Concepts and grounds. In Fullerenes: Nanochemistry, Nanomagnetism, Nanomedicine, Nanophotonics. Sheka E.F., editor. CRC Press Taylor and Francis Group; Boca Raton, FL, USA: 2011. pp. 1–14.

Sheka E.F. Chapter 9: Nanomedicine of fullerene C60. In: Sheka E.F., editor. Fullerenes: Nanochemistry, Nanomagnetism, Nanomedicine, Nanophotonics. 1st ed. CRC Press Taylor and Francis Group; Boca Raton, FL, USA: 2011. pp. 175–191.

Li J., Kee C.D., Vadahanambi S., Oh I.K. A Novel Biocompatible Actuator based on Electrospun Cellulose Acetate. Adv Mater Res-Switz. 2011;214:359. doi: 10.4028/www.scientific.net/AMR.214.359. DOI

Alekseeva O.V., Bagrovskaya N.A., Noskov A.V. The Sorption Activity of a Cellulose-Fullerene Composite Relative to Heavy Metal Ions. Prot Met Phys Chem+ 2019;55:15–20. doi: 10.1134/S2070205119010027. DOI

Shams S.S., Zhang R.Y., Zhu J. Graphene synthesis: a Review. Mater Sci-Poland. 2015;33:566–578. doi: 10.1515/msp-2015-0079. DOI

Coros M., Pogacean F., Magerusan L., Socaci C., Pruneanu S. A brief overview on synthesis and applications of graphene and graphene-based nanomaterials. Front Mater Sci. 2019;13:23–32. doi: 10.1007/s11706-019-0452-5. DOI

Malho J.M., Laaksonen P., Walther A., Ikkala O., Linder M.B. Facile Method for Stiff, Tough, and Strong Nanocomposites by Direct Exfoliation of Multilayered Graphene into Native Nanocellulose Matrix. Biomacromolecules. 2012;13:1093–1099. doi: 10.1021/bm2018189. PubMed DOI

Zhang X.F., Lu Z.X., Zhao J.Q., Li Q.Y., Zhang W., Lu C.H. Exfoliation/dispersion of low-temperature expandable graphite in nanocellulose matrix by wet co-milling. Carbohyd Polym. 2017;157:1434–1441. doi: 10.1016/j.carbpol.2016.11.023. PubMed DOI

Zhang G.Q., Lv J.L., Yang F.L. Optimized anti-biofouling performance of bactericides/cellulose nanocrystals composites modified PVDF ultrafiltration membrane for micro-polluted source water purification. Water Sci Technol. 2019;79:1437–1446. doi: 10.2166/wst.2019.137. PubMed DOI

Yuan H., Pan H., Meng X., Zhu C.L., Liu S.Y., Chen Z.X., Ma J., Zhu S.M. Assembly of MnO/CNC/rGO fibers from colloidal liquid crystal for flexible supercapacitors via a continuous one-process method. Nanotechnology. 2019;30 doi: 10.1088/1361-6528/ab3aaf. PubMed DOI

Dhar P., Gaur S.S., Kumar A., Katiyar V. Cellulose Nanocrystal Templated Graphene Nanoscrolls for High Performance Supercapacitors and Hydrogen Storage: An Experimental and Molecular Simulation Study. Sci Rep-Uk. 2018;8 doi: 10.1038/s41598-018-22123-0. PubMed DOI PMC

Li G.X., Yu J.Y., Zhou Z.Q., Li R.K., Xiang Z.H., Cao Q., Zhao L.L., Peng X.W., Liu H., Zhou W.J. N-Doped Mo2C Nanobelts/Graphene Nanosheets Bonded with Hydroxy Nanocellulose as Flexible and Editable Electrode for Hydrogen Evolution Reaction. Iscience. 2019;19:1090. doi: 10.1016/j.isci.2019.08.055. PubMed DOI PMC

Zhou X.M., Liu Y., Du C.Y., Ren Y., Li X.L., Zuo P.J., Yin G.P., Ma Y.L., Cheng X.Q., Gao Y.Z. Free-Standing Sandwich-Type Graphene/Nanocellulose/Silicon Laminar Anode for Flexible Rechargeable Lithium Ion Batteries. Acs Appl Mater Inter. 2018;10:29638–29646. doi: 10.1021/acsami.8b10066. PubMed DOI

Wang Z.H., Tammela P., Stromme M., Nyholm L. Nanocellulose coupled flexible polypyrrole@graphene oxide composite paper electrodes with high volumetric capacitance. Nanoscale. 2015;7:3418–3423. doi: 10.1039/C4NR07251K. PubMed DOI

Kumar A., Rao K.M., Han S.S. Mechanically viscoelastic nanoreinforced hybrid hydrogels composed of polyacrylamide, sodium carboxymethylcellulose, graphene oxide, and cellulose nanocrystals. Carbohyd Polym. 2018;193:228–238. doi: 10.1016/j.carbpol.2018.04.004. PubMed DOI

Laaksonen P., Walther A., Malho J.M., Kainlauri M., Ikkala O., Linder M.B. Genetic Engineering of Biomimetic Nanocomposites: Diblock Proteins, Graphene, and Nanofibrillated Cellulose. Angew Chem Int Edit. 2011;50:8688–8691. doi: 10.1002/anie.201102973. PubMed DOI

Jia L.L., Huang X.Y., Liang H.E., Tao Q. Enhanced hydrophilic and antibacterial efficiencies by the synergetic effect TiO2 nanofiber and graphene oxide in cellulose acetate nanofibers. International Journal of Biological Macromolecules. 2019;132:1039–1043. doi: 10.1016/j.ijbiomac.2019.03.204. PubMed DOI

Iijima S. Helical Microtubules of Graphitic Carbon. Nature. 1991;354:56–58. doi: 10.1038/354056a0. DOI

Stankova L., Fraczek-Szczypta A., Blazewicz M., Filova E., Blazewicz S., Lisa V., Bacakova L. Human osteoblast-like MG 63 cells on polysulfone modified with carbon nanotubes or carbon nanohorns. Carbon. 2014;67:578–591. doi: 10.1016/j.carbon.2013.10.031. DOI

Saito T., Kuramae R., Wohlert J., Berglund L.A., Isogai A. An Ultrastrong Nanofibrillar Biomaterial: The Strength of Single Cellulose Nanofibrils Revealed via Sonication-Induced Fragmentation. Biomacromolecules. 2013;14:248–253. doi: 10.1021/bm301674e. PubMed DOI

Koga H., Saito T., Kitaoka T., Nogi M., Suganuma K., Isogai A. Transparent, Conductive, and Printable Composites Consisting of TEMPO-Oxidized Nanocellulose and Carbon Nanotube. Biomacromolecules. 2013;14:1160–1165. doi: 10.1021/bm400075f. PubMed DOI

Fang W., Linder M.B., Laaksonen P. Modification of carbon nanotubes by amphiphilic glycosylated proteins. J Colloid Interf Sci. 2018;512:318–324. doi: 10.1016/j.jcis.2017.10.034. PubMed DOI

Mougel J.B., Bertoncini P., Cathala B., Chauvet O., Capron I. Macroporous hybrid Pickering foams based on carbon nanotubes and cellulose nanocrystals. J Colloid Interf Sci. 2019;544:78–87. doi: 10.1016/j.jcis.2019.01.127. PubMed DOI

Trigueiro J.P.C., Silva G.G., Pereira F.V., Lavall R.L. Layer-by-layer assembled films of multi-walled carbon nanotubes with chitosan and cellulose nanocrystals. J Colloid Interf Sci. 2014;432:214–220. doi: 10.1016/j.jcis.2014.07.001. PubMed DOI

Yang X., Shi K.Y., Zhitomirsky I., Cranston E.D. Cellulose Nanocrystal Aerogels as Universal 3D Lightweight Substrates for Supercapacitor Materials. Advanced Materials. 2015;27:6104–6109. doi: 10.1002/adma.201502284. PubMed DOI

ZabihiSahebi A., Koushkbaghi S., Pishnamazi M., Askari A., Khosravi R., Irani M. Synthesis of cellulose acetate/chitosan/SWCNT/Fe3O4/TiO2 composite nanofibers for the removal of Cr(VI), As(V), Methylene blue and Congo red from aqueous solutions. Int J Biol Macromol. 2019;140:1296–1304. doi: 10.1016/j.ijbiomac.2019.08.214. PubMed DOI

Kang Y.J., Chun S.J., Lee S.S., Kim B.Y., Kim J.H., Chung H., Lee S.Y., Kim W. All-solid-state flexible supercapacitors fabricated with bacterial nanocellulose papers, carbon nanotubes, and triblock-copolymer ion gels. ACS Nano. 2012;6:6400–6406. doi: 10.1021/nn301971r. PubMed DOI

Zhou Y., Lee Y., Sun H., Wallas J.M., George S.M., Xie M. Coating Solution for High-Voltage Cathode: AlF3 Atomic Layer Deposition for Freestanding LiCoO2 Electrodes with High Energy Density and Excellent Flexibility. ACS Appl Mater Interfaces. 2017;9:9614–9619. doi: 10.1021/acsami.6b15628. PubMed DOI

Gonzalez-Dominguez J.M., Anson-Casaos A., Grasa L., Abenia L., Salvador A., Colom E., Mesonero J.E., Garcia-Bordeje J.E., Benito A.M., Maser W.K. Unique Properties and Behavior of Nonmercerized Type-II Cellulose Nanocrystals as Carbon Nanotube Biocompatible Dispersants. Biomacromolecules. 2019;20:3147–3160. doi: 10.1021/acs.biomac.9b00722. PubMed DOI

Zhang H., Sun X., Hubbe M.A., Pal L. Highly conductive carbon nanotubes and flexible cellulose nanofibers composite membranes with semi-interpenetrating networks structure. Carbohydr Polym. 2019;222:115013. doi: 10.1016/j.carbpol.2019.115013. PubMed DOI

Zhai Y., Wang D., Liu H., Zeng Y., Yin Z., Li L. Electrochemical Molecular Imprinted Sensors Based on Electrospun Nanofiber and Determination of Ascorbic Acid. Anal Sci. 2015;31:793–798. doi: 10.2116/analsci.31.793. PubMed DOI

Broz A., Bacakova L., Stenclova P., Kromka A., Potocky S. Uptake and intracellular accumulation of diamond nanoparticles - a metabolic and cytotoxic study. Beilstein J Nanotechnol. 2017;8:1649–1657. doi: 10.3762/bjnano.8.165. PubMed DOI PMC

Williams O.A. Ultrananocrystalline diamond for electronic applications. Semicond Sci Tech. 2006;21:R49–R56. doi: 10.1088/0268-1242/21/8/R01. DOI

Shenderova O.A., Gruen D.M. In: Ultrananocrystalline Diamond: Synthesis, Properties and Applications of UNCD. 2nd ed. Shenderova O.A., Gruen D.M., editors. William Andrew Publishing; Oxford, UK: 2012. p. 584.

Mochalin V.N., Shenderova O., Ho D., Gogotsi Y. The properties and applications of nanodiamonds. Nat Nanotechnol. 2011;7:11–23. doi: 10.1038/nnano.2011.209. PubMed DOI

Stankova L., Musilkova J., Broz A., Potocky S., Kromka A., Kozak H., Izak T., Artemenko A., Stranska D., Bacakova L. Alterations to the adhesion, growth and osteogenic differentiation of human osteoblast-like cells on nanofibrous polylactide scaffolds with diamond nanoparticles. Diam Relat Mater. 2019;97 doi: 10.1016/j.diamond.2019.05.007. DOI

Grausova L., Kromka A., Burdikova Z., Eckhardt A., Rezek B., Vacik J., Haenen K., Lisa V., Bacakova L. Enhanced Growth and Osteogenic Differentiation of Human Osteoblast-Like Cells on Boron-Doped Nanocrystalline Diamond Thin Films. PLoS ONE. 2011;6 doi: 10.1371/journal.pone.0020943. PubMed DOI PMC

Liskova J., Babchenko O., Varga M., Kromka A., Hadraba D., Svindrych Z., Burdikova Z., Bacakova L. Osteogenic cell differentiation on H-terminated and O-terminated nanocrystalline diamond films. Int J Nanomed. 2015;10:869–884. doi: 10.2147/IJN.S73628. PubMed DOI PMC

Morimune-Moriya S., Salajkova M., Zhou Q., Nishino T., Berglund L.A. Reinforcement Effects from Nanodiamond in Cellulose Nanofibril Films. Biomacromolecules. 2018;19:2423–2431. doi: 10.1021/acs.biomac.8b00010. PubMed DOI

Juknius T., Ruzauskas M., Tamulevicius T., Siugzdiniene R., Jukniene I., Vasiliauskas A., Jurkeviciute A., Tamulevicius S. Antimicrobial Properties of Diamond-Like Carbon/Silver Nanocomposite Thin Films Deposited on Textiles: Towards Smart Bandages. Materials. 2016;9:371. doi: 10.3390/ma9050371. PubMed DOI PMC

Yuan F.S., Huang Y., Fan M.M., Chen C.T., Qian J.S., Hao Q.L., Yang J.Z., Sun D.P. N-Doped Carbon Nanofibrous Network Derived from Bacterial Cellulose for the Loading of Pt Nanoparticles for Methanol Oxidation Reaction. Chem-Eur J. 2018;24:1844–1852. doi: 10.1002/chem.201704266. PubMed DOI

Li S., Wang M.Y., Luo Y., Huang J.G. Bio-Inspired Hierarchical Nanofibrous Fe3O4-TiO2-Carbon Composite as a High-Performance Anode Material for Lithium-Ion Batteries. Acs Appl Mater Inter. 2016;8:17343–17351. doi: 10.1021/acsami.6b05206. PubMed DOI

Celik K.B., Cengiz E.C., Sar T., Dursun B., Ozturk O., Akbas M.Y., Demir-Cakan R. In-situ wrapping of tin oxide nanoparticles by bacterial cellulose derived carbon nanofibers and its application as freestanding interlayer in lithium sulfide based lithium-sulfur batteries. J Colloid Interf Sci. 2018;530:137–145. doi: 10.1016/j.jcis.2018.06.054. PubMed DOI

Xu J.C., Rong J., Qiu F.X., Zhu Y., Mao K.L., Fang Y.Y., Yang D.Y., Zhang T. Highly dispersive NiCo2S4 nanoparticles anchored on nitrogen-doped carbon nanofibers for efficient hydrogen evolution reaction. J Colloid Interf Sci. 2019;555:294–303. doi: 10.1016/j.jcis.2019.07.104. PubMed DOI

d’Amora M., Giordani S. Carbon Nanomaterials for Nanomedicine. In: Ciofani G., editor. Micro and Nano Technologies. Elsevier; Amsterdam, The Netherlands: 2018. pp. 103–113. DOI

Chaudhuri I., Fruijtier-Polloth C., Ngiewih Y., Levy L. Evaluating the evidence on genotoxicity and reproductive toxicity of carbon black: a critical review. Crit Rev Toxicol. 2018;48:143–169. doi: 10.1080/10408444.2017.1391746. PubMed DOI

Niranjan R., Thakur A.K. The Toxicological Mechanisms of Environmental Soot (Black Carbon) and Carbon Black: Focus on Oxidative Stress and Inflammatory Pathways. Front Immunol. 2017;8 doi: 10.3389/fimmu.2017.00763. PubMed DOI PMC

Zhu Y., Li W.X., Zhang Y., Li J., Liang L., Zhang X.Z., Chen N., Sun Y.H., Chen W., Tai R.Z., et al. Excessive Sodium Ions Delivered into Cells by Nanodiamonds: Implications for Tumor Therapy. Small. 2012;8:1771–1779. doi: 10.1002/smll.201102539. PubMed DOI

Kovacs T., Naish V., O’Connor B., Blaise C., Gagne F., Hall L., Trudeau V., Martel P. An ecotoxicological characterization of nanocrystalline cellulose (NCC) Nanotoxicology. 2010;4:255–270. doi: 10.3109/17435391003628713. PubMed DOI

Shvedova A.A., Kisin E.R., Yanamala N., Farcas M.T., Menas A.L., Williams A., Fournier P.M., Reynolds J.S., Gutkin D.W., Star A., et al. Gender differences in murine pulmonary responses elicited by cellulose nanocrystals. Part Fibre Toxicol. 2016;13 doi: 10.1186/s12989-016-0140-x. PubMed DOI PMC

Sunasee R., Araoye E., Pyram D., Hemraz U.D., Boluk Y., Ckless K. Cellulose nanocrystal cationic derivative induces NLRP3 inflammasome-dependent IL-1beta secretion associated with mitochondrial ROS production. Biochem Biophys Rep. 2015;4:1–9. doi: 10.1016/j.bbrep.2015.08.008. PubMed DOI PMC

Ede J.D., Ong K.J., Goergen M., Rudie A., Pomeroy-Carter C.A., Shatkin J.A. Risk Analysis of Cellulose Nanomaterials by Inhalation: Current State of Science. Nanomaterials (Basel) 2019;9:337. doi: 10.3390/nano9030337. PubMed DOI PMC

Przekora A., Vandrovcova M., Travnickova M., Pajorova J., Molitor M., Ginalska G., Bacakova L. Evaluation of the potential of chitosan/beta-1,3-glucan/hydroxyapatite material as a scaffold for living bone graft production in vitro by comparison of ADSC and BMDSC behaviour on its surface. Biomed Mater. 2017;12:015030. doi: 10.1088/1748-605X/aa56f9. PubMed DOI

Bacakova L., Zarubova J., Travnickova M., Musilkova J., Pajorova J., Slepicka P., Kasalkova N.S., Svorcik V., Kolska Z., Motarjemi H., et al. Stem cells: their source, potency and use in regenerative therapies with focus on adipose-derived stem cells - a review. Biotechnol Adv. 2018;36:1111–1126. doi: 10.1016/j.biotechadv.2018.03.011. PubMed DOI

Filova E., Bullett N.A., Bacakova L., Grausova L., Haycock J.W., Hlucilova J., Klima J., Shard A. Regionally-selective cell colonization of micropatterned surfaces prepared by plasma polymerization of acrylic acid and 1,7-octadiene. Physiol Res. 2009;58:669–684. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...