Applications of Nanocellulose/Nanocarbon Composites: Focus on Biotechnology and Medicine
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
17-00885S
Grantová Agentura České Republiky
PubMed
31979245
PubMed Central
PMC7074939
DOI
10.3390/nano10020196
PII: nano10020196
Knihovny.cz E-zdroje
- Klíčová slova
- carbon nanotubes, cellulose nanocrystals, diamond nanoparticles, drug delivery, fullerenes, graphene, nanofibrillated cellulose, sensors, tissue engineering, wound dressing,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Nanocellulose/nanocarbon composites are newly emerging smart hybrid materials containing cellulose nanoparticles, such as nanofibrils and nanocrystals, and carbon nanoparticles, such as "classical" carbon allotropes (fullerenes, graphene, nanotubes and nanodiamonds), or other carbon nanostructures (carbon nanofibers, carbon quantum dots, activated carbon and carbon black). The nanocellulose component acts as a dispersing agent and homogeneously distributes the carbon nanoparticles in an aqueous environment. Nanocellulose/nanocarbon composites can be prepared with many advantageous properties, such as high mechanical strength, flexibility, stretchability, tunable thermal and electrical conductivity, tunable optical transparency, photodynamic and photothermal activity, nanoporous character and high adsorption capacity. They are therefore promising for a wide range of industrial applications, such as energy generation, storage and conversion, water purification, food packaging, construction of fire retardants and shape memory devices. They also hold great promise for biomedical applications, such as radical scavenging, photodynamic and photothermal therapy of tumors and microbial infections, drug delivery, biosensorics, isolation of various biomolecules, electrical stimulation of damaged tissues (e.g., cardiac, neural), neural and bone tissue engineering, engineering of blood vessels and advanced wound dressing, e.g., with antimicrobial and antitumor activity. However, the potential cytotoxicity and immunogenicity of the composites and their components must also be taken into account.
Zobrazit více v PubMed
Zhang H., Dou C., Pal L., Hubbe M.A. Review of Electrically Conductive Composites and Films Containing Cellulosic Fibers or Nanocellulose. Bioresources. 2019:14.
Bacakova L., Pajorova J., Bacakova M., Skogberg A., Kallio P., Kolarova K., Svorcik V. Versatile Application of Nanocellulose: From Industry to Skin Tissue Engineering and Wound Healing. Nanomaterials (Basel) 2019;9:164. doi: 10.3390/nano9020164. PubMed DOI PMC
Zhang Y.X., Nypelo T., Salas C., Arboleda J., Hoeger I.C., Rojas O.J. Cellulose Nanofibrils: From Strong Materials to Bioactive Surfaces. J Renew Mater. 2013;1:195–211. doi: 10.7569/JRM.2013.634115. DOI
Lin N., Dufresne A. Nanocellulose in biomedicine: Current status and future prospect. Eur Polym J. 2014;59:302–325. doi: 10.1016/j.eurpolymj.2014.07.025. DOI
Bhattacharya M., Malinen M.M., Lauren P., Lou Y.R., Kuisma S.W., Kanninen L., Lille M., Corlu A., GuGuen-Guillouzo C., Ikkala O., et al. Nanofibrillar cellulose hydrogel promotes three-dimensional liver cell culture. J Control Release. 2012;164:291–298. doi: 10.1016/j.jconrel.2012.06.039. PubMed DOI
Lou Y.R., Kanninen L., Kuisma T., Niklander J., Noon L.A., Burks D., Urtti A., Yliperttula M. The Use of Nanofibrillar Cellulose Hydrogel As a Flexible Three-Dimensional Model to Culture Human Pluripotent Stem Cells. Stem Cells Dev. 2014;23:380–392. doi: 10.1089/scd.2013.0314. PubMed DOI PMC
Julkapli N.M., Bagheri S. Nanocellulose as a green and sustainable emerging material in energy applications: a review. Polym Advan Technol. 2017;28:1583–1594. doi: 10.1002/pat.4074. DOI
Nanotechnologies — Standard terms and their definition for cellulose nanomaterial. ISO/TS 20477:2017(E) 1st ed. ISO; Vernier, Switzerland: Geneva, Switzerland: 2017. ISO/TS 20477:2017.
Habibi Y., Lucia L.A., Rojas O.J. Cellulose Nanocrystals: Chemistry, Self-Assembly, and Applications. Chem Rev. 2010;110:3479–3500. doi: 10.1021/cr900339w. PubMed DOI
Bacakova L., Grausova L., Vandrovcova M., Vacik J., Frazcek A., Blazewicz S., Kromka A., Vanecek M., Nesladek M., Svorcik V., et al. Carbon nanoparticles as substrates for cell adhesion and growth. In: Lombardi S.L., editor. Nanoparticles: New Research. Nova Science Publishers, Inc.; Hauppauge, NY, USA: 2008. pp. 39–107.
Bacakova L., Grausova L., Vacik J., Kromka A., Biederman H., Choukourov A., Stary V. Nanocomposite and nanostructured carbon-based films as growth substrates for bone cells. In: Reddy B., editor. Advances in Diverse Industrial Applications of Nanocomposites. IntechOpen; London, UK: 2011. pp. 399–435.
Bacakova L., Kopova I., Vacik J., Lavrentiev V. Interaction of fullerenes and metal-fullerene composites with cells. In: Ellis S.B., editor. Fullerenes: Chemistry, Natural Sources and Technological Applications. Nova Science Publishers, Inc.; Hauppauge, NY, USA: 2014. pp. 1–33.
Bacakova L., Kopova I., Stankova L., Liskova J., Vacik J., Lavrentiev V., Kromka A., Potocky S., Stranska D. Bone cells in cultures on nanocarbon-based materials for potential bone tissue engineering: A review. Phys Status Solidi A. 2014;211:2688–2702. doi: 10.1002/pssa.201431402. DOI
Bacakova L., Filova E., Liskova J., Kopova I., Vandrovcova M., Havlikova J. Nanostructured materials as substrates for the adhesion, growth, and osteogenic differentiation of bone cells. 978-0-323-42862-0Appl Nanobiomater. 2016;4:103–153. doi: 10.1016/B978-0-323-42862-0.00004-3. DOI
Bacakova L., Broz A., Liskova J., Stankova L., Potocky S., Kromka A. Application of nanodiamond in biotechnology and tissue engineering. In: Aliofkhazraei M., editor. Diamond and Carbon Composites and Nanocomposites. IntechOpen; London, UK: 2016. pp. 59–88. DOI
Wong B.S., Yoong S.L., Jagusiak A., Panczyk T., Ho H.K., Ang W.H., Pastorin G. Carbon nanotubes for delivery of small molecule drugs. Adv Drug Deliv Rev. 2013;65:1964–2015. doi: 10.1016/j.addr.2013.08.005. PubMed DOI
Wang M., Anoshkin I.V., Nasibulin A.G., Korhonen J.T., Seitsonen J., Pere J., Kauppinen E.I., Ras R.H., Ikkala O. Modifying native nanocellulose aerogels with carbon nanotubes for mechanoresponsive conductivity and pressure sensing. Adv Mater. 2013;25:2428–2432. doi: 10.1002/adma.201300256. PubMed DOI
Yin R., Agrawal T., Khan U., Gupta G.K., Rai V., Huang Y.Y., Hamblin M.R. Antimicrobial photodynamic inactivation in nanomedicine: small light strides against bad bugs. Nanomedicine (Lond) 2015;10:2379–2404. doi: 10.2217/nnm.15.67. PubMed DOI PMC
Liao C., Li Y., Tjong S.C. Graphene Nanomaterials: Synthesis, Biocompatibility, and Cytotoxicity. Int J Mol Sci. 2018;19:3564. doi: 10.3390/ijms19113564. PubMed DOI PMC
Placha D., Jampilek J. Graphenic Materials for Biomedical Applications. Nanomaterials (Basel) 2019;9:1758. doi: 10.3390/nano9121758. PubMed DOI PMC
Ma L., Liu R., Niu H., Xing L., Liu L., Huang Y. Flexible and Freestanding Supercapacitor Electrodes Based on Nitrogen-Doped Carbon Networks/Graphene/Bacterial Cellulose with Ultrahigh Areal Capacitance. ACS Appl Mater Interfaces. 2016;8:33608–33618. doi: 10.1021/acsami.6b11034. PubMed DOI
Xu Z., Zhou H., Tan S., Jiang X., Wu W., Shi J., Chen P. Ultralight super-hydrophobic carbon aerogels based on cellulose nanofibers/poly(vinyl alcohol)/graphene oxide (CNFs/PVA/GO) for highly effective oil-water separation. Beilstein J Nanotechnol. 2018;9:508–519. doi: 10.3762/bjnano.9.49. PubMed DOI PMC
Li W., Islam N., Ren G., Li S., Fan Z. AC-Filtering Supercapacitors Based on Edge Oriented Vertical Graphene and Cross-Linked Carbon Nanofiber. Materials (Basel) 2019;12:604. doi: 10.3390/ma12040604. PubMed DOI PMC
Shi Q., Liu D., Wang Y., Zhao Y., Yang X., Huang J. High-Performance Sodium-Ion Battery Anode via Rapid Microwave Carbonization of Natural Cellulose Nanofibers with Graphene Initiator. Small. 2019;15:e1901724. doi: 10.1002/smll.201901724. PubMed DOI
Price R.L., Ellison K., Haberstroh K.M., Webster T.J. Nanometer surface roughness increases select osteoblast adhesion on carbon nanofiber compacts. J Biomed Mater Res A. 2004;70:129–138. doi: 10.1002/jbm.a.30073. PubMed DOI
Abbasi-Moayed S., Golmohammadi H., Bigdeli A., Hormozi-Nezhad M.R. A rainbow ratiometric fluorescent sensor array on bacterial nanocellulose for visual discrimination of biothiols. Analyst. 2018;143:3415–3424. doi: 10.1039/C8AN00637G. PubMed DOI
Li L., Wang F., Lv Y., Liu J., Bian H., Wang W., Li Y., Shao Z. CQDs-Doped Magnetic Electrospun Nanofibers: Fluorescence Self-Display and Adsorption Removal of Mercury(II) ACS Omega. 2018;3:4220–4230. doi: 10.1021/acsomega.7b01969. PubMed DOI PMC
Shamsipour M., Mansouri A.M., Moradipour P. Temozolomide Conjugated Carbon Quantum Dots Embedded in Core/Shell Nanofibers Prepared by Coaxial Electrospinning as an Implantable Delivery System for Cell Imaging and Sustained Drug Release. AAPS PharmSciTech. 2019;20:259. doi: 10.1208/s12249-019-1466-0. PubMed DOI
Hassan M., Abou-Zeid R., Hassan E., Berglund L., Aitomaki Y., Oksman K. Membranes Based on Cellulose Nanofibers and Activated Carbon for Removal of Escherichia coli Bacteria from Water. Polymers (Basel) 2017;9:335. doi: 10.3390/polym9080335. PubMed DOI PMC
Ashfaq M., Verma N., Khan S. Highly effective Cu/Zn-carbon micro/nanofiber-polymer nanocomposite-based wound dressing biomaterial against the P. aeruginosa multi- and extensively drug-resistant strains. Mater Sci Eng C Mater Biol Appl. 2017;77:630–641. doi: 10.1016/j.msec.2017.03.187. PubMed DOI
Santhiago M., Correa C.C., Bernardes J.S., Pereira M.P., Oliveira L.J.M., Strauss M., Bufon C.C.B. Flexible and Foldable Fully-Printed Carbon Black Conductive Nanostructures on Paper for High-Performance Electronic, Electrochemical, and Wearable Devices. ACS Appl Mater Interfaces. 2017;9:24365–24372. doi: 10.1021/acsami.7b06598. PubMed DOI
Ranjbar S., Shahrokhian S. Design and fabrication of an electrochemical aptasensor using Au nanoparticles/carbon nanoparticles/cellulose nanofibers nanocomposite for rapid and sensitive detection of Staphylococcus aureus. Bioelectrochemistry. 2018;123:70–76. doi: 10.1016/j.bioelechem.2018.04.018. PubMed DOI
Li Q.M., Liu H., Zhang S.D., Zhang D.B., Liu X.H., He Y.X., Mi L.W., Zhang J.X., Liu C.T., Shen C.Y., et al. Superhydrophobic Electrically Conductive Paper for Ultrasensitive Strain Sensor with Excellent Anticorrosion and Self-Cleaning Property. Acs Appl Mater Inter. 2019;11:21904–21914. doi: 10.1021/acsami.9b03421. PubMed DOI
Lin J., Zhong Z., Li Q., Tan Z., Lin T., Quan Y., Zhang D. Facile Low-Temperature Synthesis of Cellulose Nanocrystals Carrying Buckminsterfullerene and Its Radical Scavenging Property in Vitro. Biomacromolecules. 2017;18:4034–4040. doi: 10.1021/acs.biomac.7b01095. PubMed DOI
Herreros-Lopez A., Carini M., Da Ros T., Carofiglio T., Marega C., La Parola V., Rapozzi V., Xodo L.E., Alshatwi A.A., Hadad C., et al. Nanocrystalline cellulose-fullerene: Novel conjugates. Carbohydr Polym. 2017;164:92–101. doi: 10.1016/j.carbpol.2017.01.068. PubMed DOI
Kim Y., Kim H.S., Yun Y.S., Bak H., Jin H.J. Ag-doped multiwalled carbon nanotube/polymer composite electrodes. J Nanosci Nanotechnol. 2010;10:3571–3575. doi: 10.1166/jnn.2010.2232. PubMed DOI
Jin L., Zeng Z., Kuddannaya S., Wu D., Zhang Y., Wang Z. Biocompatible, Free-Standing Film Composed of Bacterial Cellulose Nanofibers-Graphene Composite. ACS Appl Mater Interfaces. 2016;8:1011–1018. doi: 10.1021/acsami.5b11241. PubMed DOI
Kim S., Xiong R., Tsukruk V.V. Probing Flexural Properties of Cellulose Nanocrystal-Graphene Nanomembranes with Force Spectroscopy and Bulging Test. Langmuir. 2016;32:5383–5393. doi: 10.1021/acs.langmuir.6b01079. PubMed DOI
Siljander S., Keinanen P., Raty A., Ramakrishnan K.R., Tuukkanen S., Kunnari V., Harlin A., Vuorinen J., Kanerva M. Effect of Surfactant Type and Sonication Energy on the Electrical Conductivity Properties of Nanocellulose-CNT Nanocomposite Films. Int J Mol Sci. 2018;19:1819. doi: 10.3390/ijms19061819. PubMed DOI PMC
Han J., Wang S., Zhu S., Huang C., Yue Y., Mei C., Xu X., Xia C. Electrospun Core-Shell Nanofibrous Membranes with Nanocellulose-Stabilized Carbon Nanotubes for Use as High-Performance Flexible Supercapacitor Electrodes with Enhanced Water Resistance, Thermal Stability, and Mechanical Toughness. ACS Appl Mater Interfaces. 2019;11:44624–44635. doi: 10.1021/acsami.9b16458. PubMed DOI
Nguyen H.K., Bae J., Hur J., Park S.J., Park M.S., Kim I.T. Tailoring of Aqueous-Based Carbon Nanotube(-)Nanocellulose Films as Self-Standing Flexible Anodes for Lithium-Ion Storage. Nanomaterials (Basel) 2019;9:655. doi: 10.3390/nano9040655. PubMed DOI PMC
Jiang M., Seney R., Bayliss P.C., Kitchens C.L. Carbon Nanotube and Cellulose Nanocrystal Hybrid Films. Molecules. 2019;24:2662. doi: 10.3390/molecules24142662. PubMed DOI PMC
Liu P., Zhu C., Mathew A.P. Mechanically robust high flux graphene oxide - nanocellulose membranes for dye removal from water. J Hazard Mater. 2019;371:484–493. doi: 10.1016/j.jhazmat.2019.03.009. PubMed DOI
Hasan M.Q., Yuen J., Slaughter G. Carbon Nanotube-Cellulose Pellicle for Glucose Biofuel Cell. Conf Proc IEEE Eng Med Biol Soc. 2018;2018:1–4. doi: 10.1109/EMBC.2018.8513229. PubMed DOI
Hamedi M.M., Hajian A., Fall A.B., Hakansson K., Salajkova M., Lundell F., Wagberg L., Berglund L.A. Highly conducting, strong nanocomposites based on nanocellulose-assisted aqueous dispersions of single-wall carbon nanotubes. ACS Nano. 2014;8:2467–2476. doi: 10.1021/nn4060368. PubMed DOI
Hajian A., Lindstrom S.B., Pettersson T., Hamedi M.M., Wagberg L. Understanding the Dispersive Action of Nanocellulose for Carbon Nanomaterials. Nano Lett. 2017;17:1439–1447. doi: 10.1021/acs.nanolett.6b04405. PubMed DOI
Hamedi M., Karabulut E., Marais A., Herland A., Nystrom G., Wagberg L. Nanocellulose aerogels functionalized by rapid layer-by-layer assembly for high charge storage and beyond. Angew Chem Int Ed Engl. 2013;52:12038–12042. doi: 10.1002/anie.201305137. PubMed DOI
Wicklein B., Kocjan A., Salazar-Alvarez G., Carosio F., Camino G., Antonietti M., Bergstrom L. Thermally insulating and fire-retardant lightweight anisotropic foams based on nanocellulose and graphene oxide. Nat Nanotechnol. 2015;10:277–283. doi: 10.1038/nnano.2014.248. PubMed DOI
Yousefi N., Wong K.K.W., Hosseinidoust Z., Sorensen H.O., Bruns S., Zheng Y., Tufenkji N. Hierarchically porous, ultra-strong reduced graphene oxide-cellulose nanocrystal sponges for exceptional adsorption of water contaminants. Nanoscale. 2018;10:7171–7184. doi: 10.1039/C7NR09037D. PubMed DOI
Siljander S., Keinanen P., Ivanova A., Lehmonen J., Tuukkanen S., Kanerva M., Bjorkqvist T. Conductive Cellulose based Foam Formed 3D Shapes-From Innovation to Designed Prototype. Materials (Basel) 2019;12:430. doi: 10.3390/ma12030430. PubMed DOI PMC
Kuzmenko V., Karabulut E., Pernevik E., Enoksson P., Gatenholm P. Tailor-made conductive inks from cellulose nanofibrils for 3D printing of neural guidelines. Carbohydr Polym. 2018;189:22–30. doi: 10.1016/j.carbpol.2018.01.097. PubMed DOI
Pedrotty D.M., Kuzmenko V., Karabulut E., Sugrue A.M., Livia C., Vaidya V.R., McLeod C.J., Asirvatham S.J., Gatenholm P., Kapa S. Three-Dimensional Printed Biopatches With Conductive Ink Facilitate Cardiac Conduction When Applied to Disrupted Myocardium. Circ Arrhythm Electrophysiol. 2019;12:e006920. doi: 10.1161/CIRCEP.118.006920. PubMed DOI
Shah N., Ul-Islam M., Khattak W.A., Park J.K. Overview of bacterial cellulose composites: a multipurpose advanced material. Carbohydr Polym. 2013;98:1585–1598. doi: 10.1016/j.carbpol.2013.08.018. PubMed DOI
Xu T., Jiang Q., Ghim D., Liu K.K., Sun H., Derami H.G., Wang Z., Tadepalli S., Jun Y.S., Zhang Q., et al. Catalytically Active Bacterial Nanocellulose-Based Ultrafiltration Membrane. Small. 2018;14:e1704006. doi: 10.1002/smll.201704006. PubMed DOI
Jun Y.S., Wu X., Ghim D., Jiang Q., Cao S., Singamaneni S. Photothermal Membrane Water Treatment for Two Worlds. Acc Chem Res. 2019;52:1215–1225. doi: 10.1021/acs.accounts.9b00012. PubMed DOI
Jiang Q., Ghim D., Cao S., Tadepalli S., Liu K.K., Kwon H., Luan J., Min Y., Jun Y.S., Singamaneni S. Photothermally Active Reduced Graphene Oxide/Bacterial Nanocellulose Composites as Biofouling-Resistant Ultrafiltration Membranes. Environ Sci Technol. 2019;53:412–421. doi: 10.1021/acs.est.8b02772. PubMed DOI
Abol-Fotouh D., Dorling B., Zapata-Arteaga O., Rodriguez-Martinez X., Gomez A., Reparaz J.S., Laromaine A., Roig A., Campoy-Quiles M. Farming thermoelectric paper. Energy Environ Sci. 2019;12:716–726. doi: 10.1039/C8EE03112F. PubMed DOI PMC
Mahdavi M., Mahmoudi N., Rezaie Anaran F., Simchi A. Electrospinning of Nanodiamond-Modified Polysaccharide Nanofibers with Physico-Mechanical Properties Close to Natural Skins. Mar Drugs. 2016;14:128. doi: 10.3390/md14070128. PubMed DOI PMC
Liu X., Shen H., Song S., Chen W., Zhang Z. Accelerated biomineralization of graphene oxide - incorporated cellulose acetate nanofibrous scaffolds for mesenchymal stem cell osteogenesis. Colloids Surf B Biointerfaces. 2017;159:251–258. doi: 10.1016/j.colsurfb.2017.07.078. PubMed DOI
Cho S.Y., Yu H., Choi J., Kang H., Park S., Jang J.S., Hong H.J., Kim I.D., Lee S.K., Jeong H.S., et al. Continuous Meter-Scale Synthesis of Weavable Tunicate Cellulose/Carbon Nanotube Fibers for High-Performance Wearable Sensors. ACS Nano. 2019;13:9332–9341. doi: 10.1021/acsnano.9b03971. PubMed DOI
Zhu C., Liu P., Mathew A.P. Self-Assembled TEMPO Cellulose Nanofibers: Graphene Oxide-Based Biohybrids for Water Purification. ACS Appl Mater Interfaces. 2017;9:21048–21058. doi: 10.1021/acsami.7b06358. PubMed DOI
Ostadhossein F., Mahmoudi N., Morales-Cid G., Tamjid E., Navas-Martos F.J., Soriano-Cuadrado B., Paniza J.M.L., Simchi A. Development of Chitosan/Bacterial Cellulose Composite Films Containing Nanodiamonds as a Potential Flexible Platform for Wound Dressing. Materials (Basel) 2015;8:6401–6418. doi: 10.3390/ma8095309. PubMed DOI PMC
Zheng C., Yue Y., Gan L., Xu X., Mei C., Han J. Highly Stretchable and Self-Healing Strain Sensors Based on Nanocellulose-Supported Graphene Dispersed in Electro-Conductive Hydrogels. Nanomaterials (Basel) 2019;9:937. doi: 10.3390/nano9070937. PubMed DOI PMC
Xing J., Tao P., Wu Z., Xing C., Liao X., Nie S. Nanocellulose-graphene composites: A promising nanomaterial for flexible supercapacitors. Carbohydr Polym. 2019;207:447–459. doi: 10.1016/j.carbpol.2018.12.010. PubMed DOI
Shi Z., Phillips G.O., Yang G. Nanocellulose electroconductive composites. Nanoscale. 2013;5:3194–3201. doi: 10.1039/c3nr00408b. PubMed DOI
Buzid A., Hayes P.E., Glennon J.D., Luong J.H.T. Captavidin as a regenerable biorecognition element on boron-doped diamond for biotin sensing. Anal Chim Acta. 2019;1059:42–48. doi: 10.1016/j.aca.2019.01.058. PubMed DOI
Li F., Yu H.Y., Wang Y.Y., Zhou Y., Zhang H., Yao J.M., Abdalkarim S.Y.H., Tam K.C. Natural Biodegradable Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Nanocomposites with Multifunctional Cellulose Nanocrystals/Graphene Oxide Hybrids for High-Performance Food Packaging. J Agric Food Chem. 2019;67:10954–10967. doi: 10.1021/acs.jafc.9b03110. PubMed DOI
Pal N., Banerjee S., Roy P., Pal K. Melt-blending of unmodified and modified cellulose nanocrystals with reduced graphene oxide into PLA matrix for biomedical application. Polym Advan Technol. 2019;30:3049–3060. doi: 10.1002/pat.4736. DOI
Pal N., Banerjee S., Roy P., Pal K. Reduced graphene oxide and PEG-grafted TEMPO-oxidized cellulose nanocrystal reinforced poly-lactic acid nanocomposite film for biomedical application. Mater Sci Eng C Mater Biol Appl. 2019;104:109956. doi: 10.1016/j.msec.2019.109956. PubMed DOI
Song N., Cui S., Hou X., Ding P., Shi L. Significant Enhancement of Thermal Conductivity in Nanofibrillated Cellulose Films with Low Mass Fraction of Nanodiamond. ACS Appl Mater Interfaces. 2017;9:40766–40773. doi: 10.1021/acsami.7b09240. PubMed DOI
Ruiz-Palomero C., Benitez-Martinez S., Soriano M.L., Valcarcel M. Fluorescent nanocellulosic hydrogels based on graphene quantum dots for sensing laccase. Anal Chim Acta. 2017;974:93–99. doi: 10.1016/j.aca.2017.04.018. PubMed DOI
Javanbakht S., Namazi H. Doxorubicin loaded carboxymethyl cellulose/graphene quantum dot nanocomposite hydrogel films as a potential anticancer drug delivery system. Mater Sci Eng C Mater Biol Appl. 2018;87:50–59. doi: 10.1016/j.msec.2018.02.010. PubMed DOI
Anirudhan T.S., Deepa J.R. Nano-zinc oxide incorporated graphene oxide/nanocellulose composite for the adsorption and photo catalytic degradation of ciprofloxacin hydrochloride from aqueous solutions. J Colloid Interface Sci. 2017;490:343–356. doi: 10.1016/j.jcis.2016.11.042. PubMed DOI
Xu Z., Zhou H., Jiang X., Li J., Huang F. Facile synthesis of reduced graphene oxide/trimethyl chlorosilane-coated cellulose nanofibres aerogel for oil absorption. IET Nanobiotechnol. 2017;11:929–934. doi: 10.1049/iet-nbt.2017.0063. PubMed DOI PMC
Yao Q., Fan B., Xiong Y., Jin C., Sun Q., Sheng C. 3D assembly based on 2D structure of Cellulose Nanofibril/Graphene Oxide Hybrid Aerogel for Adsorptive Removal of Antibiotics in Water. Sci Rep. 2017;7:45914. doi: 10.1038/srep45914. PubMed DOI PMC
Alizadehgiashi M., Khuu N., Khabibullin A., Henry A., Tebbe M., Suzuki T., Kumacheva E. Nanocolloidal Hydrogel for Heavy Metal Scavenging. ACS Nano. 2018;12:8160–8168. doi: 10.1021/acsnano.8b03202. PubMed DOI
Liang Y., Liu J., Wang L., Wan Y., Shen J., Bai Q. Metal affinity-carboxymethyl cellulose functionalized magnetic graphene composite for highly selective isolation of histidine-rich proteins. Talanta. 2019;195:381–389. doi: 10.1016/j.talanta.2018.11.074. PubMed DOI
Sun H.X., Ma C., Wang T., Xu Y.Y., Yuan B.B., Li P., Kong Y. Preparation and Characterization of C60-Filled Ethyl Cellulose Mixed-Matrix Membranes for Gas Separation of Propylene/Propane. Chem Eng Technol. 2014;37:611–619. doi: 10.1002/ceat.201300667. DOI
Vetrivel S., Saraswathi M.S.A., Rana D., Nagendran A. Fabrication of cellulose acetate nanocomposite membranes using 2D layered nanomaterials for macromolecular separation. Int J Biol Macromol. 2018;107:1607–1612. doi: 10.1016/j.ijbiomac.2017.10.027. PubMed DOI
Blomquist N., Wells T., Andres B., Backstrom J., Forsberg S., Olin H. Metal-free supercapacitor with aqueous electrolyte and low-cost carbon materials. Sci Rep. 2017;7:39836. doi: 10.1038/srep39836. PubMed DOI PMC
Xu X., Hsieh Y.L. Aqueous exfoliated graphene by amphiphilic nanocellulose and its application in moisture-responsive foldable actuators. Nanoscale. 2019;11:11719–11729. doi: 10.1039/C9NR01602C. PubMed DOI
Jiang Q., Tian L., Liu K.K., Tadepalli S., Raliya R., Biswas P., Naik R.R., Singamaneni S. Bilayered Biofoam for Highly Efficient Solar Steam Generation. Adv Mater. 2016;28:9400–9407. doi: 10.1002/adma.201601819. PubMed DOI
Li X., Shao C., Zhuo B., Yang S., Zhu Z., Su C., Yuan Q. The use of nanofibrillated cellulose to fabricate a homogeneous and flexible graphene-based electric heating membrane. Int J Biol Macromol. 2019;139:1103–1116. doi: 10.1016/j.ijbiomac.2019.08.081. PubMed DOI
Kizling M., Draminska S., Stolarczyk K., Tammela P., Wang Z., Nyholm L., Bilewicz R. Biosupercapacitors for powering oxygen sensing devices. Bioelectrochemistry. 2015;106:34–40. doi: 10.1016/j.bioelechem.2015.04.012. PubMed DOI
Generalov A.A., Anoshkin I.V., Erdmanis M., Lioubtchenko D.V., Ovchinnikov V., Nasibulin A.G., Raisanen A.V. Carbon nanotube network varactor. Nanotechnology. 2015;26:045201. doi: 10.1088/0957-4484/26/4/045201. PubMed DOI
Asmat S., Husain Q. Exquisite stability and catalytic performance of immobilized lipase on novel fabricated nanocellulose fused polypyrrole/graphene oxide nanocomposite: Characterization and application. Int J Biol Macromol. 2018;117:331–341. doi: 10.1016/j.ijbiomac.2018.05.216. PubMed DOI
Pal N., Dubey P., Gopinath P., Pal K. Combined effect of cellulose nanocrystal and reduced graphene oxide into poly-lactic acid matrix nanocomposite as a scaffold and its anti-bacterial activity. Int J Biol Macromol. 2017;95:94–105. doi: 10.1016/j.ijbiomac.2016.11.041. PubMed DOI
Valentini L., Cardinali M., Fortunati E., Kenny J.M. Nonvolatile memory behavior of nanocrystalline cellulose/graphene oxide composite films. Appl Phys Lett. 2014;105 doi: 10.1063/1.4898601. DOI
Song L., Li Y., Xiong Z., Pan L., Luo Q., Xu X., Lu S. Water-Induced shape memory effect of nanocellulose papers from sisal cellulose nanofibers with graphene oxide. Carbohydr Polym. 2018;179:110–117. doi: 10.1016/j.carbpol.2017.09.078. PubMed DOI
Wu G., Gu Y., Hou X., Li R., Ke H., Xiao X. Hybrid Nanocomposites of Cellulose/Carbon-Nanotubes/Polyurethane with Rapidly Water Sensitive Shape Memory Effect and Strain Sensing Performance. Polymers (Basel) 2019;11:1586. doi: 10.3390/polym11101586. PubMed DOI PMC
Zhu L., Zhou X., Liu Y., Fu Q. Highly Sensitive, Ultrastretchable Strain Sensors Prepared by Pumping Hybrid Fillers of Carbon Nanotubes/Cellulose Nanocrystal into Electrospun Polyurethane Membranes. ACS Appl Mater Interfaces. 2019;11:12968–12977. doi: 10.1021/acsami.9b00136. PubMed DOI
Awan F., Bulger E., Berry R.M., Tam K.C. Enhanced radical scavenging activity of polyhydroxylated C-60 functionalized cellulose nanocrystals. Cellulose. 2016;23:3589–3599. doi: 10.1007/s10570-016-1057-0. DOI
Luo J., Deng W., Yang F., Wu Z., Huang M., Gu M. Gold nanoparticles decorated graphene oxide/nanocellulose paper for NIR laser-induced photothermal ablation of pathogenic bacteria. Carbohydr Polym. 2018;198:206–214. doi: 10.1016/j.carbpol.2018.06.074. PubMed DOI
Anirudhan T.S., Sekhar V.C., Shainy F., Thomas J.P. Effect of dual stimuli responsive dextran/nanocellulose polyelectrolyte complexes for chemophotothermal synergistic cancer therapy. International Journal of Biological Macromolecules. 2019;135:776–789. doi: 10.1016/j.ijbiomac.2019.05.218. PubMed DOI
Rasoulzadeh M., Namazi H. Carboxymethyl cellulose/graphene oxide bio-nanocomposite hydrogel beads as anticancer drug carrier agent. Carbohydr Polym. 2017;168:320–326. doi: 10.1016/j.carbpol.2017.03.014. PubMed DOI
Wang X.D., Yu K.X., An R., Han L.L., Zhang Y.L., Shi L.Y., Ran R. Self-assembling GO/modified HEC hybrid stabilized pickering emulsions and template polymerization for biomedical hydrogels. Carbohyd Polym. 2019;207:694–703. doi: 10.1016/j.carbpol.2018.12.034. PubMed DOI
Luo X., Zhang H., Cao Z., Cai N., Xue Y., Yu F. A simple route to develop transparent doxorubicin-loaded nanodiamonds/cellulose nanocomposite membranes as potential wound dressings. Carbohydr Polym. 2016;143:231–238. doi: 10.1016/j.carbpol.2016.01.076. PubMed DOI
Anirudhan T.S., Deepa J.R., Binussreejayan Electrochemical sensing of cholesterol by molecularly imprinted polymer of silylated graphene oxide and chemically modified nanocellulose polymer. Mater Sci Eng C Mater Biol Appl. 2018;92:942–956. doi: 10.1016/j.msec.2018.07.041. PubMed DOI
Fu W., Dai Y., Meng X., Xu W., Zhou J., Liu Z., Lu W., Wang S., Huang C., Sun Y. Electronic textiles based on aligned electrospun belt-like cellulose acetate nanofibers and graphene sheets: portable, scalable and eco-friendly strain sensor. Nanotechnology. 2019;30:045602. doi: 10.1088/1361-6528/aaed99. PubMed DOI
Zou Y., Zhang Y., Xu Y., Chen Y., Huang S., Lyu Y., Duan H., Chen Z., Tan W. Portable and Label-Free Detection of Blood Bilirubin with Graphene-Isolated-Au-Nanocrystals Paper Strip. Anal Chem. 2018;90:13687–13694. doi: 10.1021/acs.analchem.8b04058. PubMed DOI
Jia Y., Yu H., Zhang Y., Dong F., Li Z. Cellulose acetate nanofibers coated layer-by-layer with polyethylenimine and graphene oxide on a quartz crystal microbalance for use as a highly sensitive ammonia sensor. Colloids Surf B Biointerfaces. 2016;148:263–269. doi: 10.1016/j.colsurfb.2016.09.007. PubMed DOI
Xue T., Sheng Y.Y., Xu J.K., Li Y.Y., Lu X.Y., Zhu Y.F., Duan X.M., Wen Y.P. In-situ reduction of Ag+ on black phosphorene and its NH2-MWCNT nanohybrid with high stability and dispersibility as nanozyme sensor for three ATP metabolites. Biosens Bioelectron. 2019;145 doi: 10.1016/j.bios.2019.111716. PubMed DOI
Jung M., Kim K., Kim B., Lee K.J., Kang J.W., Jeon S. Vertically stacked nanocellulose tactile sensor. Nanoscale. 2017;9:17212–17219. doi: 10.1039/C7NR03685J. PubMed DOI
Zhu P., Liu Y., Fang Z., Kuang Y., Zhang Y., Peng C., Chen G. Flexible and Highly Sensitive Humidity Sensor Based on Cellulose Nanofibers and Carbon Nanotube Composite Film. Langmuir. 2019;35:4834–4842. doi: 10.1021/acs.langmuir.8b04259. PubMed DOI
Chen C., Zhang T., Zhang Q., Chen X., Zhu C., Xu Y., Yang J., Liu J., Sun D. Biointerface by Cell Growth on Graphene Oxide Doped Bacterial Cellulose/Poly(3,4-ethylenedioxythiophene) Nanofibers. ACS Appl Mater Interfaces. 2016;8:10183–10192. doi: 10.1021/acsami.6b01243. PubMed DOI
Sun Y., Quan Q., Meng H., Zheng Y., Peng J., Hu Y., Feng Z., Sang X., Qiao K., He W., et al. Enhanced Neurite Outgrowth on a Multiblock Conductive Nerve Scaffold with Self-Powered Electrical Stimulation. Adv Healthc Mater. 2019;8:e1900127. doi: 10.1002/adhm.201900127. PubMed DOI
Chakraborty S., Ponrasu T., Chandel S., Dixit M., Muthuvijayan V. Reduced graphene oxide-loaded nanocomposite scaffolds for enhancing angiogenesis in tissue engineering applications. R Soc Open Sci. 2018;5:172017. doi: 10.1098/rsos.172017. PubMed DOI PMC
Chen X.Y., Low H.R., Loi X.Y., Merel L., Mohd Cairul Iqbal M.A. Fabrication and evaluation of bacterial nanocellulose/poly(acrylic acid)/graphene oxide composite hydrogel: Characterizations and biocompatibility studies for wound dressing. J Biomed Mater Res B Appl Biomater. 2019;107:2140–2151. doi: 10.1002/jbm.b.34309. PubMed DOI
Wang Y., Shi L., Wu H., Li Q., Hu W., Zhang Z., Huang L., Zhang J., Chen D., Deng S., et al. Graphene Oxide-IPDI-Ag/ZnO@Hydroxypropyl Cellulose Nanocomposite Films for Biological Wound-Dressing Applications. ACS Omega. 2019;4:15373–15381. doi: 10.1021/acsomega.9b01291. PubMed DOI PMC
Burrs S.L., Bhargava M., Sidhu R., Kiernan-Lewis J., Gomes C., Claussen J.C., McLamore E.S. A paper based graphene-nanocauliflower hybrid composite for point of care biosensing. Biosens Bioelectron. 2016;85:479–487. doi: 10.1016/j.bios.2016.05.037. PubMed DOI
Liu C., Dong J., Waterhouse G.I.N., Cheng Z.Q., Ai S.Y. Electrochemical immunosensor with nanocellulose-Au composite assisted multiple signal amplification for detection of avian leukosis virus subgroup J. Biosens Bioelectron. 2018;101:110–115. doi: 10.1016/j.bios.2017.10.007. PubMed DOI
Cao J., Zhang X.X., Wu X.D., Wang S.M., Lu C.H. Cellulose nanocrystals mediated assembly of graphene in rubber composites for chemical sensing applications. Carbohyd Polym. 2016;140:88–95. doi: 10.1016/j.carbpol.2015.12.042. PubMed DOI
Yan C.Y., Wang J.X., Kang W.B., Cui M.Q., Wang X., Foo C.Y., Chee K.J., Lee P.S. Highly Stretchable Piezoresistive Graphene-Nanocellulose Nanopaper for Strain Sensors. Advanced Materials. 2014;26:2022–2027. doi: 10.1002/adma.201304742. PubMed DOI
Wang S., Zhang X., Wu X., Lu C. Tailoring percolating conductive networks of natural rubber composites for flexible strain sensors via a cellulose nanocrystal templated assembly. Soft Matter. 2016;12:845–852. doi: 10.1039/C5SM01958C. PubMed DOI
Baleizao C., Nagl S., Schaferling M., Berberan-Santos M.N., Wolfbeis O.S. Dual fluorescence sensor for trace oxygen and temperature with unmatched range and sensitivity. Anal Chem. 2008;80:6449–6457. doi: 10.1021/ac801034p. PubMed DOI
Kochmann S., Baleizao C., Berberan-Santos M.N., Wolfbeis O.S. Sensing and imaging of oxygen with parts per billion limits of detection and based on the quenching of the delayed fluorescence of (13)C70 fullerene in polymer hosts. Anal Chem. 2013;85:1300–1304. doi: 10.1021/ac303486f. PubMed DOI
Luo Y., Wang S., Shen M., Qi R., Fang Y., Guo R., Cai H., Cao X., Tomas H., Zhu M., et al. Carbon nanotube-incorporated multilayered cellulose acetate nanofibers for tissue engineering applications. Carbohydr Polym. 2013;91:419–427. doi: 10.1016/j.carbpol.2012.08.069. PubMed DOI
Duri S., Harkins A.L., Frazier A.J., Tran C.D. Composites Containing Fullerenes and Polysaccharides: Green and Facile Synthesis, Biocompatibility, and Antimicrobial Activity. Acs Sustain Chem Eng. 2017;5:5408–5417. doi: 10.1021/acssuschemeng.7b00715. DOI
Kopova I., Bacakova L., Lavrentiev V., Vacik J. Growth and potential damage of human bone-derived cells on fresh and aged fullerene c60 films. Int J Mol Sci. 2013;14:9182–9204. doi: 10.3390/ijms14059182. PubMed DOI PMC
Kopova I., Lavrentiev V., Vacik J., Bacakova L. Growth and potential damage of human bone-derived cells cultured on fresh and aged C60/Ti films. PLoS One. 2015;10:e0123680. doi: 10.1371/journal.pone.0123680. PubMed DOI PMC
Sheka E.F. In: Chapter 1: Concepts and grounds. In Fullerenes: Nanochemistry, Nanomagnetism, Nanomedicine, Nanophotonics. Sheka E.F., editor. CRC Press Taylor and Francis Group; Boca Raton, FL, USA: 2011. pp. 1–14.
Sheka E.F. Chapter 9: Nanomedicine of fullerene C60. In: Sheka E.F., editor. Fullerenes: Nanochemistry, Nanomagnetism, Nanomedicine, Nanophotonics. 1st ed. CRC Press Taylor and Francis Group; Boca Raton, FL, USA: 2011. pp. 175–191.
Li J., Kee C.D., Vadahanambi S., Oh I.K. A Novel Biocompatible Actuator based on Electrospun Cellulose Acetate. Adv Mater Res-Switz. 2011;214:359. doi: 10.4028/www.scientific.net/AMR.214.359. DOI
Alekseeva O.V., Bagrovskaya N.A., Noskov A.V. The Sorption Activity of a Cellulose-Fullerene Composite Relative to Heavy Metal Ions. Prot Met Phys Chem+ 2019;55:15–20. doi: 10.1134/S2070205119010027. DOI
Shams S.S., Zhang R.Y., Zhu J. Graphene synthesis: a Review. Mater Sci-Poland. 2015;33:566–578. doi: 10.1515/msp-2015-0079. DOI
Coros M., Pogacean F., Magerusan L., Socaci C., Pruneanu S. A brief overview on synthesis and applications of graphene and graphene-based nanomaterials. Front Mater Sci. 2019;13:23–32. doi: 10.1007/s11706-019-0452-5. DOI
Malho J.M., Laaksonen P., Walther A., Ikkala O., Linder M.B. Facile Method for Stiff, Tough, and Strong Nanocomposites by Direct Exfoliation of Multilayered Graphene into Native Nanocellulose Matrix. Biomacromolecules. 2012;13:1093–1099. doi: 10.1021/bm2018189. PubMed DOI
Zhang X.F., Lu Z.X., Zhao J.Q., Li Q.Y., Zhang W., Lu C.H. Exfoliation/dispersion of low-temperature expandable graphite in nanocellulose matrix by wet co-milling. Carbohyd Polym. 2017;157:1434–1441. doi: 10.1016/j.carbpol.2016.11.023. PubMed DOI
Zhang G.Q., Lv J.L., Yang F.L. Optimized anti-biofouling performance of bactericides/cellulose nanocrystals composites modified PVDF ultrafiltration membrane for micro-polluted source water purification. Water Sci Technol. 2019;79:1437–1446. doi: 10.2166/wst.2019.137. PubMed DOI
Yuan H., Pan H., Meng X., Zhu C.L., Liu S.Y., Chen Z.X., Ma J., Zhu S.M. Assembly of MnO/CNC/rGO fibers from colloidal liquid crystal for flexible supercapacitors via a continuous one-process method. Nanotechnology. 2019;30 doi: 10.1088/1361-6528/ab3aaf. PubMed DOI
Dhar P., Gaur S.S., Kumar A., Katiyar V. Cellulose Nanocrystal Templated Graphene Nanoscrolls for High Performance Supercapacitors and Hydrogen Storage: An Experimental and Molecular Simulation Study. Sci Rep-Uk. 2018;8 doi: 10.1038/s41598-018-22123-0. PubMed DOI PMC
Li G.X., Yu J.Y., Zhou Z.Q., Li R.K., Xiang Z.H., Cao Q., Zhao L.L., Peng X.W., Liu H., Zhou W.J. N-Doped Mo2C Nanobelts/Graphene Nanosheets Bonded with Hydroxy Nanocellulose as Flexible and Editable Electrode for Hydrogen Evolution Reaction. Iscience. 2019;19:1090. doi: 10.1016/j.isci.2019.08.055. PubMed DOI PMC
Zhou X.M., Liu Y., Du C.Y., Ren Y., Li X.L., Zuo P.J., Yin G.P., Ma Y.L., Cheng X.Q., Gao Y.Z. Free-Standing Sandwich-Type Graphene/Nanocellulose/Silicon Laminar Anode for Flexible Rechargeable Lithium Ion Batteries. Acs Appl Mater Inter. 2018;10:29638–29646. doi: 10.1021/acsami.8b10066. PubMed DOI
Wang Z.H., Tammela P., Stromme M., Nyholm L. Nanocellulose coupled flexible polypyrrole@graphene oxide composite paper electrodes with high volumetric capacitance. Nanoscale. 2015;7:3418–3423. doi: 10.1039/C4NR07251K. PubMed DOI
Kumar A., Rao K.M., Han S.S. Mechanically viscoelastic nanoreinforced hybrid hydrogels composed of polyacrylamide, sodium carboxymethylcellulose, graphene oxide, and cellulose nanocrystals. Carbohyd Polym. 2018;193:228–238. doi: 10.1016/j.carbpol.2018.04.004. PubMed DOI
Laaksonen P., Walther A., Malho J.M., Kainlauri M., Ikkala O., Linder M.B. Genetic Engineering of Biomimetic Nanocomposites: Diblock Proteins, Graphene, and Nanofibrillated Cellulose. Angew Chem Int Edit. 2011;50:8688–8691. doi: 10.1002/anie.201102973. PubMed DOI
Jia L.L., Huang X.Y., Liang H.E., Tao Q. Enhanced hydrophilic and antibacterial efficiencies by the synergetic effect TiO2 nanofiber and graphene oxide in cellulose acetate nanofibers. International Journal of Biological Macromolecules. 2019;132:1039–1043. doi: 10.1016/j.ijbiomac.2019.03.204. PubMed DOI
Iijima S. Helical Microtubules of Graphitic Carbon. Nature. 1991;354:56–58. doi: 10.1038/354056a0. DOI
Stankova L., Fraczek-Szczypta A., Blazewicz M., Filova E., Blazewicz S., Lisa V., Bacakova L. Human osteoblast-like MG 63 cells on polysulfone modified with carbon nanotubes or carbon nanohorns. Carbon. 2014;67:578–591. doi: 10.1016/j.carbon.2013.10.031. DOI
Saito T., Kuramae R., Wohlert J., Berglund L.A., Isogai A. An Ultrastrong Nanofibrillar Biomaterial: The Strength of Single Cellulose Nanofibrils Revealed via Sonication-Induced Fragmentation. Biomacromolecules. 2013;14:248–253. doi: 10.1021/bm301674e. PubMed DOI
Koga H., Saito T., Kitaoka T., Nogi M., Suganuma K., Isogai A. Transparent, Conductive, and Printable Composites Consisting of TEMPO-Oxidized Nanocellulose and Carbon Nanotube. Biomacromolecules. 2013;14:1160–1165. doi: 10.1021/bm400075f. PubMed DOI
Fang W., Linder M.B., Laaksonen P. Modification of carbon nanotubes by amphiphilic glycosylated proteins. J Colloid Interf Sci. 2018;512:318–324. doi: 10.1016/j.jcis.2017.10.034. PubMed DOI
Mougel J.B., Bertoncini P., Cathala B., Chauvet O., Capron I. Macroporous hybrid Pickering foams based on carbon nanotubes and cellulose nanocrystals. J Colloid Interf Sci. 2019;544:78–87. doi: 10.1016/j.jcis.2019.01.127. PubMed DOI
Trigueiro J.P.C., Silva G.G., Pereira F.V., Lavall R.L. Layer-by-layer assembled films of multi-walled carbon nanotubes with chitosan and cellulose nanocrystals. J Colloid Interf Sci. 2014;432:214–220. doi: 10.1016/j.jcis.2014.07.001. PubMed DOI
Yang X., Shi K.Y., Zhitomirsky I., Cranston E.D. Cellulose Nanocrystal Aerogels as Universal 3D Lightweight Substrates for Supercapacitor Materials. Advanced Materials. 2015;27:6104–6109. doi: 10.1002/adma.201502284. PubMed DOI
ZabihiSahebi A., Koushkbaghi S., Pishnamazi M., Askari A., Khosravi R., Irani M. Synthesis of cellulose acetate/chitosan/SWCNT/Fe3O4/TiO2 composite nanofibers for the removal of Cr(VI), As(V), Methylene blue and Congo red from aqueous solutions. Int J Biol Macromol. 2019;140:1296–1304. doi: 10.1016/j.ijbiomac.2019.08.214. PubMed DOI
Kang Y.J., Chun S.J., Lee S.S., Kim B.Y., Kim J.H., Chung H., Lee S.Y., Kim W. All-solid-state flexible supercapacitors fabricated with bacterial nanocellulose papers, carbon nanotubes, and triblock-copolymer ion gels. ACS Nano. 2012;6:6400–6406. doi: 10.1021/nn301971r. PubMed DOI
Zhou Y., Lee Y., Sun H., Wallas J.M., George S.M., Xie M. Coating Solution for High-Voltage Cathode: AlF3 Atomic Layer Deposition for Freestanding LiCoO2 Electrodes with High Energy Density and Excellent Flexibility. ACS Appl Mater Interfaces. 2017;9:9614–9619. doi: 10.1021/acsami.6b15628. PubMed DOI
Gonzalez-Dominguez J.M., Anson-Casaos A., Grasa L., Abenia L., Salvador A., Colom E., Mesonero J.E., Garcia-Bordeje J.E., Benito A.M., Maser W.K. Unique Properties and Behavior of Nonmercerized Type-II Cellulose Nanocrystals as Carbon Nanotube Biocompatible Dispersants. Biomacromolecules. 2019;20:3147–3160. doi: 10.1021/acs.biomac.9b00722. PubMed DOI
Zhang H., Sun X., Hubbe M.A., Pal L. Highly conductive carbon nanotubes and flexible cellulose nanofibers composite membranes with semi-interpenetrating networks structure. Carbohydr Polym. 2019;222:115013. doi: 10.1016/j.carbpol.2019.115013. PubMed DOI
Zhai Y., Wang D., Liu H., Zeng Y., Yin Z., Li L. Electrochemical Molecular Imprinted Sensors Based on Electrospun Nanofiber and Determination of Ascorbic Acid. Anal Sci. 2015;31:793–798. doi: 10.2116/analsci.31.793. PubMed DOI
Broz A., Bacakova L., Stenclova P., Kromka A., Potocky S. Uptake and intracellular accumulation of diamond nanoparticles - a metabolic and cytotoxic study. Beilstein J Nanotechnol. 2017;8:1649–1657. doi: 10.3762/bjnano.8.165. PubMed DOI PMC
Williams O.A. Ultrananocrystalline diamond for electronic applications. Semicond Sci Tech. 2006;21:R49–R56. doi: 10.1088/0268-1242/21/8/R01. DOI
Shenderova O.A., Gruen D.M. In: Ultrananocrystalline Diamond: Synthesis, Properties and Applications of UNCD. 2nd ed. Shenderova O.A., Gruen D.M., editors. William Andrew Publishing; Oxford, UK: 2012. p. 584.
Mochalin V.N., Shenderova O., Ho D., Gogotsi Y. The properties and applications of nanodiamonds. Nat Nanotechnol. 2011;7:11–23. doi: 10.1038/nnano.2011.209. PubMed DOI
Stankova L., Musilkova J., Broz A., Potocky S., Kromka A., Kozak H., Izak T., Artemenko A., Stranska D., Bacakova L. Alterations to the adhesion, growth and osteogenic differentiation of human osteoblast-like cells on nanofibrous polylactide scaffolds with diamond nanoparticles. Diam Relat Mater. 2019;97 doi: 10.1016/j.diamond.2019.05.007. DOI
Grausova L., Kromka A., Burdikova Z., Eckhardt A., Rezek B., Vacik J., Haenen K., Lisa V., Bacakova L. Enhanced Growth and Osteogenic Differentiation of Human Osteoblast-Like Cells on Boron-Doped Nanocrystalline Diamond Thin Films. PLoS ONE. 2011;6 doi: 10.1371/journal.pone.0020943. PubMed DOI PMC
Liskova J., Babchenko O., Varga M., Kromka A., Hadraba D., Svindrych Z., Burdikova Z., Bacakova L. Osteogenic cell differentiation on H-terminated and O-terminated nanocrystalline diamond films. Int J Nanomed. 2015;10:869–884. doi: 10.2147/IJN.S73628. PubMed DOI PMC
Morimune-Moriya S., Salajkova M., Zhou Q., Nishino T., Berglund L.A. Reinforcement Effects from Nanodiamond in Cellulose Nanofibril Films. Biomacromolecules. 2018;19:2423–2431. doi: 10.1021/acs.biomac.8b00010. PubMed DOI
Juknius T., Ruzauskas M., Tamulevicius T., Siugzdiniene R., Jukniene I., Vasiliauskas A., Jurkeviciute A., Tamulevicius S. Antimicrobial Properties of Diamond-Like Carbon/Silver Nanocomposite Thin Films Deposited on Textiles: Towards Smart Bandages. Materials. 2016;9:371. doi: 10.3390/ma9050371. PubMed DOI PMC
Yuan F.S., Huang Y., Fan M.M., Chen C.T., Qian J.S., Hao Q.L., Yang J.Z., Sun D.P. N-Doped Carbon Nanofibrous Network Derived from Bacterial Cellulose for the Loading of Pt Nanoparticles for Methanol Oxidation Reaction. Chem-Eur J. 2018;24:1844–1852. doi: 10.1002/chem.201704266. PubMed DOI
Li S., Wang M.Y., Luo Y., Huang J.G. Bio-Inspired Hierarchical Nanofibrous Fe3O4-TiO2-Carbon Composite as a High-Performance Anode Material for Lithium-Ion Batteries. Acs Appl Mater Inter. 2016;8:17343–17351. doi: 10.1021/acsami.6b05206. PubMed DOI
Celik K.B., Cengiz E.C., Sar T., Dursun B., Ozturk O., Akbas M.Y., Demir-Cakan R. In-situ wrapping of tin oxide nanoparticles by bacterial cellulose derived carbon nanofibers and its application as freestanding interlayer in lithium sulfide based lithium-sulfur batteries. J Colloid Interf Sci. 2018;530:137–145. doi: 10.1016/j.jcis.2018.06.054. PubMed DOI
Xu J.C., Rong J., Qiu F.X., Zhu Y., Mao K.L., Fang Y.Y., Yang D.Y., Zhang T. Highly dispersive NiCo2S4 nanoparticles anchored on nitrogen-doped carbon nanofibers for efficient hydrogen evolution reaction. J Colloid Interf Sci. 2019;555:294–303. doi: 10.1016/j.jcis.2019.07.104. PubMed DOI
d’Amora M., Giordani S. Carbon Nanomaterials for Nanomedicine. In: Ciofani G., editor. Micro and Nano Technologies. Elsevier; Amsterdam, The Netherlands: 2018. pp. 103–113. DOI
Chaudhuri I., Fruijtier-Polloth C., Ngiewih Y., Levy L. Evaluating the evidence on genotoxicity and reproductive toxicity of carbon black: a critical review. Crit Rev Toxicol. 2018;48:143–169. doi: 10.1080/10408444.2017.1391746. PubMed DOI
Niranjan R., Thakur A.K. The Toxicological Mechanisms of Environmental Soot (Black Carbon) and Carbon Black: Focus on Oxidative Stress and Inflammatory Pathways. Front Immunol. 2017;8 doi: 10.3389/fimmu.2017.00763. PubMed DOI PMC
Zhu Y., Li W.X., Zhang Y., Li J., Liang L., Zhang X.Z., Chen N., Sun Y.H., Chen W., Tai R.Z., et al. Excessive Sodium Ions Delivered into Cells by Nanodiamonds: Implications for Tumor Therapy. Small. 2012;8:1771–1779. doi: 10.1002/smll.201102539. PubMed DOI
Kovacs T., Naish V., O’Connor B., Blaise C., Gagne F., Hall L., Trudeau V., Martel P. An ecotoxicological characterization of nanocrystalline cellulose (NCC) Nanotoxicology. 2010;4:255–270. doi: 10.3109/17435391003628713. PubMed DOI
Shvedova A.A., Kisin E.R., Yanamala N., Farcas M.T., Menas A.L., Williams A., Fournier P.M., Reynolds J.S., Gutkin D.W., Star A., et al. Gender differences in murine pulmonary responses elicited by cellulose nanocrystals. Part Fibre Toxicol. 2016;13 doi: 10.1186/s12989-016-0140-x. PubMed DOI PMC
Sunasee R., Araoye E., Pyram D., Hemraz U.D., Boluk Y., Ckless K. Cellulose nanocrystal cationic derivative induces NLRP3 inflammasome-dependent IL-1beta secretion associated with mitochondrial ROS production. Biochem Biophys Rep. 2015;4:1–9. doi: 10.1016/j.bbrep.2015.08.008. PubMed DOI PMC
Ede J.D., Ong K.J., Goergen M., Rudie A., Pomeroy-Carter C.A., Shatkin J.A. Risk Analysis of Cellulose Nanomaterials by Inhalation: Current State of Science. Nanomaterials (Basel) 2019;9:337. doi: 10.3390/nano9030337. PubMed DOI PMC
Przekora A., Vandrovcova M., Travnickova M., Pajorova J., Molitor M., Ginalska G., Bacakova L. Evaluation of the potential of chitosan/beta-1,3-glucan/hydroxyapatite material as a scaffold for living bone graft production in vitro by comparison of ADSC and BMDSC behaviour on its surface. Biomed Mater. 2017;12:015030. doi: 10.1088/1748-605X/aa56f9. PubMed DOI
Bacakova L., Zarubova J., Travnickova M., Musilkova J., Pajorova J., Slepicka P., Kasalkova N.S., Svorcik V., Kolska Z., Motarjemi H., et al. Stem cells: their source, potency and use in regenerative therapies with focus on adipose-derived stem cells - a review. Biotechnol Adv. 2018;36:1111–1126. doi: 10.1016/j.biotechadv.2018.03.011. PubMed DOI
Filova E., Bullett N.A., Bacakova L., Grausova L., Haycock J.W., Hlucilova J., Klima J., Shard A. Regionally-selective cell colonization of micropatterned surfaces prepared by plasma polymerization of acrylic acid and 1,7-octadiene. Physiol Res. 2009;58:669–684. PubMed