Versatile Application of Nanocellulose: From Industry to Skin Tissue Engineering and Wound Healing

. 2019 Jan 29 ; 9 (2) : . [epub] 20190129

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid30699947

Grantová podpora
17-00885S Grantová Agentura České Republiky

Nanocellulose is cellulose in the form of nanostructures, i.e., features not exceeding 100 nm at least in one dimension. These nanostructures include nanofibrils, found in bacterial cellulose; nanofibers, present particularly in electrospun matrices; and nanowhiskers, nanocrystals, nanorods, and nanoballs. These structures can be further assembled into bigger two-dimensional (2D) and three-dimensional (3D) nano-, micro-, and macro-structures, such as nanoplatelets, membranes, films, microparticles, and porous macroscopic matrices. There are four main sources of nanocellulose: bacteria (Gluconacetobacter), plants (trees, shrubs, herbs), algae (Cladophora), and animals (Tunicata). Nanocellulose has emerged for a wide range of industrial, technology, and biomedical applications, namely for adsorption, ultrafiltration, packaging, conservation of historical artifacts, thermal insulation and fire retardation, energy extraction and storage, acoustics, sensorics, controlled drug delivery, and particularly for tissue engineering. Nanocellulose is promising for use in scaffolds for engineering of blood vessels, neural tissue, bone, cartilage, liver, adipose tissue, urethra and dura mater, for repairing connective tissue and congenital heart defects, and for constructing contact lenses and protective barriers. This review is focused on applications of nanocellulose in skin tissue engineering and wound healing as a scaffold for cell growth, for delivering cells into wounds, and as a material for advanced wound dressings coupled with drug delivery, transparency and sensorics. Potential cytotoxicity and immunogenicity of nanocellulose are also discussed.

Zobrazit více v PubMed

Sano M.B., Rojas A.D., Gatenholm P., Davalos R.V. Electromagnetically controlled biological assembly of aligned bacterial cellulose nanofibers. Ann. Biomed. Eng. 2010;38:2475–2484. doi: 10.1007/s10439-010-9999-0. PubMed DOI

Martínez Ávila H., Schwarz S., Feldmann E.-M., Mantas A., von Bomhard A., Gatenholm P., Rotter N. Biocompatibility evaluation of densified bacterial nanocellulose hydrogel as an implant material for auricular cartilage regeneration. Appl. Microbiol. Biotech. 2014;98:7423–7435. doi: 10.1007/s00253-014-5819-z. PubMed DOI

Costa A.F.S., Almeida F.C.G., Vinhas G.M., Sarubbo L.A. Production of bacterial cellulose by Gluconacetobacter hansenii using corn steep liquor as nutrient sources. Front. Microbiol. 2017;8:2027. doi: 10.3389/fmicb.2017.02027. PubMed DOI PMC

Shvedova A.A., Kisin E.R., Yanamala N., Farcas M.T., Menas A.L., Williams A., Fournier P.M., Reynolds J.S., Gutkin D.W., Star A., et al. Gender differences in murine pulmonary responses elicited by cellulose nanocrystals. Part. Fibre Toxicol. 2016;13:28. doi: 10.1186/s12989-016-0140-x. PubMed DOI PMC

Faradilla R.H.F., Lee G., Arns J.-Y., Roberts J., Martens P., Stenzel M.H., Arcot J. Characteristics of a free-standing film from banana pseudostem nanocellulose generated from TEMPO-mediated oxidation. Carbohydr. Polym. 2017;174:1156–1163. doi: 10.1016/j.carbpol.2017.07.025. PubMed DOI

Liu Y., Sui Y., Liu C., Liu C., Wu M., Li B., Li Y. A physically crosslinked polydopamine/nanocellulose hydrogel as potential versatile vehicles for drug delivery and wound healing. Carbohydr. Polym. 2018;188:27–36. doi: 10.1016/j.carbpol.2018.01.093. PubMed DOI

Valentim R., Andrade S., dos Santos M., Santos A., Pereira V., dos Santos I., Dias C., dos Reis M. Composite based on biphasic calcium phosphate (HA/β-TCP) and nanocellulose from the Açaí tegument. Materials. 2018;11:2213. doi: 10.3390/ma11112213. PubMed DOI PMC

Julie Chandra C.S., George N., Narayanankutty S.K. Isolation and characterization of cellulose nanofibrils from arecanut husk fibre. Carbohydr. Polym. 2016;142:158–166. PubMed

Martelli-Tosi M., Masson M.M., Silva N.C., Esposto B.S., Barros T.T., Assis O.B.G., Tapia-Blácido D.R. Soybean straw nanocellulose produced by enzymatic or acid treatment as a reinforcing filler in soy protein isolate films. Carbohydr. Polym. 2018;198:61–68. doi: 10.1016/j.carbpol.2018.06.053. PubMed DOI

Kontturi E., Laaksonen P., Linder M.B., Nonappa, Gröschel A.H., Rojas O.J., Ikkala O. Advanced materials through assembly of nanocelluloses. Adv. Mater. 2018;30:1703779. doi: 10.1002/adma.201703779. PubMed DOI

Novotna K., Zajdlova M., Suchy T., Hadraba D., Lopot F., Zaloudkova M., Douglas T.E.L., Munzarova M., Juklickova M., Stranska D., et al. Polylactide nanofibers with hydroxyapatite as growth substrates for osteoblast-like cells. J. Biomed. Mater. Res. 2014;102:3918–3930. doi: 10.1002/jbm.a.35061. PubMed DOI

Torres F., Commeaux S., Troncoso O. Biocompatibility of bacterial cellulose based biomaterials. J. Funct. Biomater. 2012;3:864–878. doi: 10.3390/jfb3040864. PubMed DOI PMC

Bottan S., Robotti F., Jayathissa P., Hegglin A., Bahamonde N., Heredia-Guerrero J.A., Bayer I.S., Scarpellini A., Merker H., Lindenblatt N., et al. Surface-structured bacterial cellulose with guided assembly-based biolithography (GAB) ACS Nano. 2015;9:206–219. doi: 10.1021/nn5036125. PubMed DOI

Khazeni S., Hatamian-Zarmi A., Yazdian F., Mokhtari-Hosseini Z.B., Ebrahimi-Hosseinzadeh B., Noorani B., Amoabedini G., Soudi M.R. Production of nanocellulose in miniature-bioreactor: Optimization and characterization. Prep. Biochem. Biotechnol. 2017;47:371–378. doi: 10.1080/10826068.2016.1252923. PubMed DOI

Souza S.F., Mariano M., Reis D., Lombello C.B., Ferreira M., Sain M. Cell interactions and cytotoxic studies of cellulose nanofibers from Curauá natural fibers. Carbohydr. Polym. 2018;201:87–95. doi: 10.1016/j.carbpol.2018.08.056. PubMed DOI

Li W., Guo R., Lan Y., Zhang Y., Xue W., Zhang Y. Preparation and properties of cellulose nanocrystals reinforced collagen composite films. J. Biomed. Mater. Res. Part A. 2014;102:1131–1139. doi: 10.1002/jbm.a.34792. PubMed DOI

Yanamala N., Farcas M.T., Hatfield M.K., Kisin E.R., Kagan V.E., Geraci C.L., Shvedova A.A. In vivo evaluation of the pulmonary toxicity of cellulose nanocrystals: A renewable and sustainable nanomaterial of the future. ACS Sustain. Chem. Eng. 2014;2:1691–1698. doi: 10.1021/sc500153k. PubMed DOI PMC

Guglielmo A., Sabra A., Elbery M., Cerveira M.M., Ghenov F., Sunasee R., Ckless K. A mechanistic insight into curcumin modulation of the IL-1β secretion and NLRP3 S-glutathionylation induced by needle-like cationic cellulose nanocrystals in myeloid cells. Chem. Biol. Interact. 2017;274:1–12. doi: 10.1016/j.cbi.2017.06.028. PubMed DOI

Zhao Y., Gao G., Liu D., Tian D., Zhu Y., Chang Y. Vapor sensing with color-tunable multilayered coatings of cellulose nanocrystals. Carbohydr. Polym. 2017;174:39–47. doi: 10.1016/j.carbpol.2017.06.059. PubMed DOI

Daiyong Y. Preparation of nanocellulose. Prog. Chem. 2007;19:1568–1575.

Klemm D., Schumann D., Kramer F., Heßler N., Koth D., Sultanova B. Nanocellulose materials-different cellulose, different functionality. Macromol. Symp. 2009;280:60–71. doi: 10.1002/masy.200950608. DOI

Klemm D., Kramer F., Moritz S., Lindström T., Ankerfors M., Gray D., Dorris A. Nanocelluloses: A new family of nature-based materials. Angew. Chem. Int. Edit. 2011;50:5438–5466. doi: 10.1002/anie.201001273. PubMed DOI

Zhang J., Elder T.J., Pu Y., Ragauskas A.J. Facile synthesis of spherical cellulose nanoparticles. Carbohydr. Polym. 2007;69:607–611. doi: 10.1016/j.carbpol.2007.01.019. DOI

Pu Y., Zhang J., Elder T., Deng Y., Gatenholm P., Ragauskas A.J. Investigation into nanocellulosics versus acacia reinforced acrylic films. Compos. Part B Eng. 2007;38:360–366. doi: 10.1016/j.compositesb.2006.07.008. DOI

Chávez-Guerrero L., Sepúlveda-Guzmán S., Silva-Mendoza J., Aguilar-Flores C., Pérez-Camacho O. Eco-friendly isolation of cellulose nanoplatelets through oxidation under mild conditions. Carbohydr. Polym. 2018;181:642–649. doi: 10.1016/j.carbpol.2017.11.100. PubMed DOI

Basu A., Lindh J., Ålander E., Strømme M., Ferraz N. On the use of ion-crosslinked nanocellulose hydrogels for wound healing solutions: Physicochemical properties and application-oriented biocompatibility studies. Carbohydr. Polym. 2017;174:299–308. doi: 10.1016/j.carbpol.2017.06.073. PubMed DOI

Basu A., Heitz K., Strømme M., Welch K., Ferraz N. Ion-crosslinked wood-derived nanocellulose hydrogels with tunable antibacterial properties: Candidate materials for advanced wound care applications. Carbohydr. Polym. 2018;181:345–350. doi: 10.1016/j.carbpol.2017.10.085. PubMed DOI

Xin S., Li X., Ma Z., Lei Z., Zhao J., Pan S., Zhou X., Deng H. Cytotoxicity and antibacterial ability of scaffolds immobilized by polysaccharide/layered silicate composites. Carbohydr. Polym. 2013;92:1880–1886. doi: 10.1016/j.carbpol.2012.11.040. PubMed DOI

Mahdavi M., Mahmoudi N., Rezaie Anaran F., Simchi A. Electrospinning of nanodiamond-modified polysaccharide nanofibers with physico-mechanical properties close to natural skins. Mar. Drugs. 2016;14:128. doi: 10.3390/md14070128. PubMed DOI PMC

Abdul Khalil H.P.S., Saurabh C.K., Adnan A.S., Nurul Fazita M.R., Syakir M.I., Davoudpour Y., Rafatullah M., Abdullah C.K., Haafiz M.K.M., Dungani R. A review on chitosan-cellulose blends and nanocellulose reinforced chitosan biocomposites: Properties and their applications. Carbohydr. Polym. 2016;150:216–226. PubMed

Di Z., Shi Z., Ullah M.W., Li S., Yang G. A transparent wound dressing based on bacterial cellulose whisker and poly (2-hydroxyethyl methacrylate) Int. J. Biol. Macromol. 2017;105:638–644. doi: 10.1016/j.ijbiomac.2017.07.075. PubMed DOI

Catalán J., Ilves M., Järventaus H., Hannukainen K.-S., Kontturi E., Vanhala E., Alenius H., Savolainen K.M., Norppa H. Genotoxic and immunotoxic effects of cellulose nanocrystals in vitro. Environ. Mol. Mutagen. 2015;56:171–182. doi: 10.1002/em.21913. PubMed DOI

Sirviö J.A., Kolehmainen A., Visanko M., Liimatainen H., Niinimäki J., Hormi O.E.O. Strong, self-standing oxygen barrier films from nanocelluloses modified with regioselective oxidative treatments. ACS Appl. Mat. Interfaces. 2014;6:14384–14390. doi: 10.1021/am503659j. PubMed DOI

Sharif Hossain A.B.M., Uddin M.M., Veettil V.N., Fawzi M. Nano-cellulose based nano-coating biomaterial dataset using corn leaf biomass: An innovative biodegradable plant biomaterial. Data Br. 2018;17:162–168. doi: 10.1016/j.dib.2017.12.046. PubMed DOI PMC

Rashad A., Mohamed-Ahmed S., Ojansivu M., Berstad K., Yassin M.A., Kivijärvi T., Heggset E.B., Syverud K., Mustafa K. Coating 3D printed polycaprolactone scaffolds with nanocellulose promotes growth and differentiation of mesenchymal stem cells. Biomacromolecules. 2018;19:4307–4319. doi: 10.1021/acs.biomac.8b01194. PubMed DOI

Medhi P., Olatunji O., Nayak A., Uppuluri C.T., Olsson R.T., Nalluri B.N., Das D.B. Lidocaine-loaded fish scale-nanocellulose biopolymer composite microneedles. AAPS PharmSciTech. 2017;18:1488–1494. doi: 10.1208/s12249-017-0758-5. PubMed DOI

Rocha I., Lindh J., Hong J., Strømme M., Mihranyan A., Ferraz N. Blood compatibility of sulfonated cladophora nanocellulose beads. Molecules. 2018;23:601. doi: 10.3390/molecules23030601. PubMed DOI PMC

Ruan C.-Q., Strømme M., Lindh J. Preparation of porous 2,3-dialdehyde cellulose beads crosslinked with chitosan and their application in adsorption of Congo red dye. Carbohydr. Polym. 2018;181:200–207. doi: 10.1016/j.carbpol.2017.10.072. PubMed DOI

Korhonen J.T., Kettunen M., Ras R.H.A., Ikkala O. Hydrophobic nanocellulose aerogels as floating, sustainable, reusable, and recyclable oil absorbents. ACS Appl. Mater. Interfaces. 2011;3:1813–1816. doi: 10.1021/am200475b. PubMed DOI

Korhonen J.T., Hiekkataipale P., Malm J., Karppinen M., Ikkala O., Ras R.H.A. Inorganic hollow nanotube aerogels by atomic layer deposition onto native nanocellulose templates. ACS Nano. 2011;5:1967–1974. doi: 10.1021/nn200108s. PubMed DOI

Xiao Y., Rong L., Wang B., Mao Z., Xu H., Zhong Y., Zhang L., Sui X. A light-weight and high-efficacy antibacterial nanocellulose-based sponge via covalent immobilization of gentamicin. Carbohydr. Polym. 2018;200:595–601. doi: 10.1016/j.carbpol.2018.07.091. PubMed DOI

Osorio M., Fernández-Morales P., Gañán P., Zuluaga R., Kerguelen H., Ortiz I., Castro C. Development of novel three-dimensional scaffolds based on bacterial nanocellulose for tissue engineering and regenerative medicine: Effect of processing methods, pore size, and surface area: Development of novel three-dimensional scaffolds. J. Biomed. Mater. Res. Part A. 2018;107:348–359. doi: 10.1002/jbm.a.36532. PubMed DOI

Shahabi-Ghahfarrokhi I., Khodaiyan F., Mousavi M., Yousefi H. Green bionanocomposite based on kefiran and cellulose nanocrystals produced from beer industrial residues. Int. J. Biol. Macromol. 2015;77:85–91. doi: 10.1016/j.ijbiomac.2015.02.055. PubMed DOI

Chen Y.W., Lee H.V. Revalorization of selected municipal solid wastes as new precursors of “green” nanocellulose via a novel one-pot isolation system: A source perspective. Int. J. Biol. Macromol. 2018;107:78–92. doi: 10.1016/j.ijbiomac.2017.08.143. PubMed DOI

Fu L., Zhang J., Yang G. Present status and applications of bacterial cellulose-based materials for skin tissue repair. Carbohydr. Polym. 2013;92:1432–1442. doi: 10.1016/j.carbpol.2012.10.071. PubMed DOI

Yuen J.D., Walper S.A., Melde B.J., Daniele M.A., Stenger D.A. Electrolyte-sensing transistor decals enabled by ultrathin microbial nanocellulose. Sci. Rep. 2017;7:40867. doi: 10.1038/srep40867. PubMed DOI PMC

Qiu Y., Qiu L., Cui J., Wei Q. Bacterial cellulose and bacterial cellulose-vaccarin membranes for wound healing. Mater. Sci. Eng. C. 2016;59:303–309. doi: 10.1016/j.msec.2015.10.016. PubMed DOI

Picheth G.F., Pirich C.L., Sierakowski M.R., Woehl M.A., Sakakibara C.N., de Souza C.F., Martin A.A., da Silva R., de Freitas R.A. Bacterial cellulose in biomedical applications: A review. Int. J. Biol. Macromol. 2017;104:97–106. doi: 10.1016/j.ijbiomac.2017.05.171. PubMed DOI

Ahrem H., Pretzel D., Endres M., Conrad D., Courseau J., Müller H., Jaeger R., Kaps C., Klemm D.O., Kinne R.W. Laser-structured bacterial nanocellulose hydrogels support ingrowth and differentiation of chondrocytes and show potential as cartilage implants. Acta Biomater. 2014;10:1341–1353. doi: 10.1016/j.actbio.2013.12.004. PubMed DOI

Dos Reis E.M., Berti F.V., Colla G., Porto L.M. Bacterial nanocellulose-IKVAV hydrogel matrix modulates melanoma tumor cell adhesion and proliferation and induces vasculogenic mimicry in vitro. J. Biomed. Mater. Res. Part B Appl. Biomater. 2018;106:2741–2749. doi: 10.1002/jbm.b.34055. PubMed DOI

Lazarini S.C., Yamada C., Barud H.S., Trovatti E., Corbi P.P., Lustri W.R. Influence of chemical and physical conditions in selection of Gluconacetobacter hansenii ATCC 23769 strains with high capacity to produce bacterial cellulose for application as sustained antimicrobial drug-release supports. J. Appl. Microbiol. 2018;125:777–791. doi: 10.1111/jam.13916. PubMed DOI

Saska S., Teixeira L.N., de Castro Raucci L.M.S., Scarel-Caminaga R.M., Franchi L.P., dos Santos R.A., Santagneli S.H., Capela M.V., de Oliveira P.T., Takahashi C.S., et al. Nanocellulose-collagen-apatite composite associated with osteogenic growth peptide for bone regeneration. Int. J. Biol. Macromol. 2017;103:467–476. doi: 10.1016/j.ijbiomac.2017.05.086. PubMed DOI

Dubey S., Sharma R.K., Agarwal P., Singh J., Sinha N., Singh R.P. From rotten grapes to industrial exploitation: Komagataeibacter europaeus SGP37, a micro-factory for macroscale production of bacterial nanocellulose. Int. J. Biol. Macromol. 2017;96:52–60. doi: 10.1016/j.ijbiomac.2016.12.016. PubMed DOI

Kaminagakura K.L.N., Sue Sato S., Sugino P., Kataki de Oliveira Veloso L., dos Santos D.C., Padovani C.R., Basmaji P., Olyveira G., Schellini S.A. Nanoskin® to treat full thickness skin wounds. J. Biomed. Mater. Res. Part B Appl. Biomater. 2018 doi: 10.1002/jbm.b.34166. in press. PubMed DOI

Zharikov A.N., Lubyansky V.G., Gladysheva E.K., Skiba E.A., Budaeva V.V., Semyonova E.N., Zharikov A.A., Sakovich G.V. Early morphological changes in tissues when replacing abdominal wall defects by bacterial nanocellulose in experimental trials. J. Mater. Sci. Mater. Med. 2018;29:95. doi: 10.1007/s10856-018-6111-z. PubMed DOI

Wiegand C., Moritz S., Hessler N., Kralisch D., Wesarg F., Müller F.A., Fischer D., Hipler U.-C. Antimicrobial functionalization of bacterial nanocellulose by loading with polihexanide and povidone-iodine. J. Mater. Sci. Mater. Med. 2015;26:245. doi: 10.1007/s10856-015-5571-7. PubMed DOI

Kolakovic R., Peltonen L., Laaksonen T., Putkisto K., Laukkanen A., Hirvonen J. Spray-dried cellulose nanofibers as novel tablet excipient. AAPS PharmSciTech. 2011;12:1366–1373. doi: 10.1208/s12249-011-9705-z. PubMed DOI PMC

Kolakovic R., Laaksonen T., Peltonen L., Laukkanen A., Hirvonen J. Spray-dried nanofibrillar cellulose microparticles for sustained drug release. Int. J. Pharm. 2012;430:47–55. doi: 10.1016/j.ijpharm.2012.03.031. PubMed DOI

Kolakovic R., Peltonen L., Laukkanen A., Hirvonen J., Laaksonen T. Nanofibrillar cellulose films for controlled drug delivery. Eur. J. Pharm. Biopharm. 2012;82:308–315. doi: 10.1016/j.ejpb.2012.06.011. PubMed DOI

Hakkarainen T., Koivuniemi R., Kosonen M., Escobedo-Lucea C., Sanz-Garcia A., Vuola J., Valtonen J., Tammela P., Mäkitie A., Luukko K., et al. Nanofibrillar cellulose wound dressing in skin graft donor site treatment. J. Controll. Release. 2016;244:292–301. doi: 10.1016/j.jconrel.2016.07.053. PubMed DOI

Liu J., Cheng F., Grénman H., Spoljaric S., Seppälä J., Eriksson J.E., Willför S., Xu C. Development of nanocellulose scaffolds with tunable structures to support 3D cell culture. Carbohydr. Polym. 2016;148:259–271. doi: 10.1016/j.carbpol.2016.04.064. PubMed DOI

Empson Y.M., Ekwueme E.C., Hong J.K., Paynter D.M., Kwansa A.L., Brown C., Pekkanen A.M., Roman M., Rylander N.M., Brolinson G.P., et al. High elastic modulus nanoparticles: A novel tool for subfailure connective tissue matrix damage. Transl. Res. 2014;164:244–257. doi: 10.1016/j.trsl.2014.05.004. PubMed DOI

Basu A., Hong J., Ferraz N. Hemocompatibility of Ca2+ -crosslinked nanocellulose hydrogels: Toward efficient management of hemostasis. Macromol. Biosci. 2017;17:1700236. doi: 10.1002/mabi.201700236. PubMed DOI

Basu A., Strømme M., Ferraz N. Towards tunable protein-carrier wound dressings based on nanocellulose hydrogels crosslinked with calcium ions. Nanomaterials. 2018;8:550. doi: 10.3390/nano8070550. PubMed DOI PMC

Powell L.C., Khan S., Chinga-Carrasco G., Wright C.J., Hill K.E., Thomas D.W. An investigation of Pseudomonas aeruginosa biofilm growth on novel nanocellulose fibre dressings. Carbohydr. Polym. 2016;137:191–197. doi: 10.1016/j.carbpol.2015.10.024. PubMed DOI

Jasmani L., Adnan S. Preparation and characterization of nanocrystalline cellulose from Acacia mangium and its reinforcement potential. Carbohydr. Polym. 2017;161:166–171. doi: 10.1016/j.carbpol.2016.12.061. PubMed DOI

Fu Q., Medina L., Li Y., Carosio F., Hajian A., Berglund L.A. Nanostructured wood hybrids for fire-retardancy prepared by clay impregnation into the cell wall. ACS Appl. Mater. Interfaces. 2017;9:36154–36163. doi: 10.1021/acsami.7b10008. PubMed DOI

Singla R., Soni S., Patial V., Kulurkar P.M., Kumari A., Mahesh S., Padwad Y.S., Yadav S.K. Cytocompatible anti-microbial dressings of Syzygium cumini cellulose nanocrystals decorated with silver nanoparticles accelerate acute and diabetic wound healing. Sci. Rep. 2017;7:10457. doi: 10.1038/s41598-017-08897-9. PubMed DOI PMC

Elias N., Chandren S., Razak F.I.A., Jamalis J., Widodo N., Wahab R.A. Characterization, optimization and stability studies on Candida rugosa lipase supported on nanocellulose reinforced chitosan prepared from oil palm biomass. Int. J. Biol. Macromol. 2018;114:306–316. doi: 10.1016/j.ijbiomac.2018.03.095. PubMed DOI

Adewuyi A., Otuechere C.A., Adebayo O.L., Anazodo C., Pereira F.V. Renal toxicological evaluations of sulphonated nanocellulose from Khaya sengalensis seed in Wistar rats. Chem. Biol. Interact. 2018;284:56–68. doi: 10.1016/j.cbi.2018.02.015. PubMed DOI

Matharu A.S., de Melo E.M., Remón J., Wang S., Abdulina A., Kontturi E. Processing of citrus nanostructured cellulose: A rigorous design-of-experiment study of the hydrothermal microwave-assisted selective scissoring process. ChemSusChem. 2018;11:1344–1353. doi: 10.1002/cssc.201702456. PubMed DOI

Poonguzhali R., Basha S.K., Kumari V.S. Synthesis and characterization of chitosan-PVP-nanocellulose composites for in-vitro wound dressing application. Int. J. Biol. Macromol. 2017;105:111–120. doi: 10.1016/j.ijbiomac.2017.07.006. PubMed DOI

Li J., Wei X., Wang Q., Chen J., Chang G., Kong L., Su J., Liu Y. Homogeneous isolation of nanocellulose from sugarcane bagasse by high pressure homogenization. Carbohydr. Polym. 2012;90:1609–1613. doi: 10.1016/j.carbpol.2012.07.038. PubMed DOI

Ramphul H., Bhaw-Luximon A., Jhurry D. Sugar-cane bagasse derived cellulose enhances performance of polylactide and polydioxanone electrospun scaffold for tissue engineering. Carbohydr. Polym. 2017;178:238–250. doi: 10.1016/j.carbpol.2017.09.046. PubMed DOI

Cudjoe E., Hunsen M., Xue Z., Way A.E., Barrios E., Olson R.A., Hore M.J.A., Rowan S.J. Miscanthus Giganteus: A commercially viable sustainable source of cellulose nanocrystals. Carbohydr. Polym. 2017;155:230–241. doi: 10.1016/j.carbpol.2016.08.049. PubMed DOI

De Carvalho Benini K.C.C., Voorwald H.J.C., Cioffi M.O.H., Rezende M.C., Arantes V. Preparation of nanocellulose from Imperata brasiliensis grass using Taguchi method. Carbohydr. Polym. 2018;192:337–346. doi: 10.1016/j.carbpol.2018.03.055. PubMed DOI

Singla R., Soni S., Kulurkar P.M., Kumari A., Mahesh S., Patial V., Padwad Y.S., Yadav S.K. In situ functionalized nanobiocomposites dressings of bamboo cellulose nanocrystals and silver nanoparticles for accelerated wound healing. Carbohydr. Polym. 2017;155:152–162. doi: 10.1016/j.carbpol.2016.08.065. PubMed DOI

Supramaniam J., Adnan R., Mohd Kaus N.H., Bushra R. Magnetic nanocellulose alginate hydrogel beads as potential drug delivery system. Int. J. Biol. Macromol. 2018;118:640–648. doi: 10.1016/j.ijbiomac.2018.06.043. PubMed DOI

Tarrés Q., Deltell A., Espinach F.X., Pèlach M.À., Delgado-Aguilar M., Mutjé P. Magnetic bionanocomposites from cellulose nanofibers: Fast, simple and effective production method. Int. J. Biol. Macromol. 2017;99:29–36. doi: 10.1016/j.ijbiomac.2017.02.072. PubMed DOI

Varanasi S., Henzel L., Sharman S., Batchelor W., Garnier G. Producing nanofibres from carrots with a chemical-free process. Carbohydr. Polym. 2018;184:307–314. doi: 10.1016/j.carbpol.2017.12.056. PubMed DOI

Song L., Li Y., Xiong Z., Pan L., Luo Q., Xu X., Lu S. Water-Induced shape memory effect of nanocellulose papers from sisal cellulose nanofibers with graphene oxide. Carbohydr. Polym. 2018;179:110–117. doi: 10.1016/j.carbpol.2017.09.078. PubMed DOI

Bonné M.J., Edler K.J., Buchanan J.G., Wolverson D., Psillakis E., Helton M., Thielemans W., Marken F. Thin-film modified electrodes with reconstituted cellulose−PDDAC films for the accumulation and detection of triclosan. J. Phys. Chem. C. 2008;112:2660–2666. doi: 10.1021/jp709783k. DOI

Metreveli G., Wågberg L., Emmoth E., Belák S., Strømme M., Mihranyan A. A size-exclusion nanocellulose filter paper for virus removal. Adv. Healthc. Mater. 2014;3:1546–1550. doi: 10.1002/adhm.201300641. PubMed DOI

Hua K., Rocha I., Zhang P., Gustafsson S., Ning Y., Strømme M., Mihranyan A., Ferraz N. Transition from bioinert to bioactive material by tailoring the biological cell response to carboxylated nanocellulose. Biomacromolecules. 2016;17:1224–1233. doi: 10.1021/acs.biomac.6b00053. PubMed DOI

Liu J., Willför S., Mihranyan A. On importance of impurities, potential leachables and extractables in algal nanocellulose for biomedical use. Carbohydr. Polym. 2017;172:11–19. doi: 10.1016/j.carbpol.2017.05.002. PubMed DOI

Gustafsson S., Manukyan L., Mihranyan A. Protein–nanocellulose interactions in paper filters for advanced separation applications. Langmuir. 2017;33:4729–4736. doi: 10.1021/acs.langmuir.7b00566. PubMed DOI

Gustafsson O., Gustafsson S., Manukyan L., Mihranyan A. Significance of brownian motion for nanoparticle and virus capture in nanocellulose-based filter paper. Membranes. 2018;8:90. doi: 10.3390/membranes8040090. PubMed DOI PMC

Zarei S., Niad M., Raanaei H. The removal of mercury ion pollution by using Fe3O4-nanocellulose: Synthesis, characterizations and DFT studies. J. Hazard. Mater. 2018;344:258–273. doi: 10.1016/j.jhazmat.2017.10.009. PubMed DOI

Song S.H., Kim J.E., Lee Y.J., Kwak M.H., Sung G.Y., Kwon S.H., Son H.J., Lee H.S., Jung Y.J., Hwang D.Y. Cellulose film regenerated from Styela clava tunics have biodegradability, toxicity and biocompatibility in the skin of SD rats. J. Mater. Sci. Mater. Med. 2014;25:1519–1530. doi: 10.1007/s10856-014-5182-8. PubMed DOI

Song S.H., Seong K.Y., Kim J.E., Go J., Koh E.K., Sung J.E., Son H.J., Jung Y.J., Kim H.S., Hong J.T., et al. Effects of different cellulose membranes regenerated from Styela clava tunics on wound healing. Int. J. Mol. Med. 2017;39:1173–1187. doi: 10.3892/ijmm.2017.2923. PubMed DOI PMC

Song S.H., Kim J.E., Koh E.K., Sung J.E., Lee H.A., Yun W.B., Hong J.T., Hwang D.Y. Selenium-loaded cellulose film derived from Styela clava tunic accelerates the healing process of cutaneous wounds in streptozotocin-induced diabetic Sprague–Dawley rats. J. Dermatol. Treat. 2018;29:606–616. doi: 10.1080/09546634.2018.1425357. PubMed DOI

Mondal S. Preparation, properties and applications of nanocellulosic materials. Carbohydr. Polym. 2017;163:301–316. doi: 10.1016/j.carbpol.2016.12.050. PubMed DOI

Zhan H., Peng N., Lei X., Huang Y., Li D., Tao R., Chang C. UV-induced self-cleanable TiO2/nanocellulose membrane for selective separation of oil/water emulsion. Carbohydr. Polym. 2018;201:464–470. doi: 10.1016/j.carbpol.2018.08.093. PubMed DOI

Keshavarzi N., Mashayekhy Rad F., Mace A., Ansari F., Akhtar F., Nilsson U., Berglund L., Bergström L. Nanocellulose–zeolite composite films for odor elimination. ACS Appl. Mater. Interfaces. 2015;7:14254–14262. doi: 10.1021/acsami.5b02252. PubMed DOI

Li J., Zuo K., Wu W., Xu Z., Yi Y., Jing Y., Dai H., Fang G. Shape memory aerogels from nanocellulose and polyethyleneimine as a novel adsorbent for removal of Cu (II) and Pb (II) Carbohydr. Polym. 2018;196:376–384. doi: 10.1016/j.carbpol.2018.05.015. PubMed DOI

Jodeh S., Hamed O., Melhem A., Salghi R., Jodeh D., Azzaoui K., Benmassaoud Y., Murtada K. Magnetic nanocellulose from olive industry solid waste for the effective removal of methylene blue from wastewater. Environ. Sci. Pollut. Res. 2018;25:22060–22074. doi: 10.1007/s11356-018-2107-y. PubMed DOI

Rathod M., Moradeeya P.G., Haldar S., Basha S. Nanocellulose/TiO2 composites: Preparation, characterization and application in the photocatalytic degradation of a potential endocrine disruptor, mefenamic acid, in aqueous media. Photochem. Photobiol. Sci. 2018;17:1301–1309. doi: 10.1039/C8PP00156A. PubMed DOI

Adelantado C., Ríos Á., Zougagh M. Magnetic nanocellulose hybrid nanoparticles and ionic liquid for extraction of neonicotinoid insecticides from milk samples prior to determination by liquid chromatography-mass spectrometry. Food Addit. Contam. Part A. 2018;35:1755–1766. doi: 10.1080/19440049.2018.1492156. PubMed DOI

Zhang C., Zhou M., Liu S., Wang B., Mao Z., Xu H., Zhong Y., Zhang L., Xu B., Sui X. Copper-loaded nanocellulose sponge as a sustainable catalyst for regioselective hydroboration of alkynes. Carbohydr. Polym. 2018;191:17–24. doi: 10.1016/j.carbpol.2018.03.002. PubMed DOI

Anirudhan T.S., Rejeena S.R. Adsorption and hydrolytic activity of trypsin on a carboxylate-functionalized cation exchanger prepared from nanocellulose. J. Coll. Interface Sci. 2012;381:125–136. doi: 10.1016/j.jcis.2012.05.024. PubMed DOI

Yuan H., Chen L., Hong F.F., Zhu M. Evaluation of nanocellulose carriers produced by four different bacterial strains for laccase immobilization. Carbohydr. Polym. 2018;196:457–464. doi: 10.1016/j.carbpol.2018.05.055. PubMed DOI

Tavakolian M., Okshevsky M., van de Ven T.G.M., Tufenkji N. Developing antibacterial nanocrystalline cellulose using natural antibacterial agents. ACS Appl. Mater. Interfaces. 2018;10:33827–33838. doi: 10.1021/acsami.8b08770. PubMed DOI

DeLoid G.M., Sohal I.S., Lorente L.R., Molina R.M., Pyrgiotakis G., Stevanovic A., Zhang R., McClements D.J., Geitner N.K., Bousfield D.W., et al. Reducing intestinal digestion and absorption of fat using a nature-derived biopolymer: Interference of triglyceride hydrolysis by nanocellulose. ACS Nano. 2018;12:6469–6479. doi: 10.1021/acsnano.8b03074. PubMed DOI PMC

Razaq A., Nyström G., Strømme M., Mihranyan A., Nyholm L. High-capacity conductive nanocellulose paper sheets for electrochemically controlled extraction of DNA oligomers. PLoS ONE. 2011;6:e29243. doi: 10.1371/journal.pone.0029243. PubMed DOI PMC

Xu T., Jiang Q., Ghim D., Liu K.-K., Sun H., Derami H.G., Wang Z., Tadepalli S., Jun Y.-S., Zhang Q., et al. Catalytically active bacterial nanocellulose-based ultrafiltration membrane. Small. 2018;14:1704006. doi: 10.1002/smll.201704006. PubMed DOI

Ferraz N., Carlsson D.O., Hong J., Larsson R., Fellstrom B., Nyholm L., Stromme M., Mihranyan A. Haemocompatibility and ion exchange capability of nanocellulose polypyrrole membranes intended for blood purification. J. R. Soc. Interface. 2012;9:1943–1955. doi: 10.1098/rsif.2012.0019. PubMed DOI PMC

Asper M., Hanrieder T., Quellmalz A., Mihranyan A. Removal of xenotropic murine leukemia virus by nanocellulose based filter paper. Biologicals. 2015;43:452–456. doi: 10.1016/j.biologicals.2015.08.001. PubMed DOI

El-Samahy M.A., Mohamed S.A.A., Abdel Rehim M.H., Mohram M.E. Synthesis of hybrid paper sheets with enhanced air barrier and antimicrobial properties for food packaging. Carbohydr. Polym. 2017;168:212–219. doi: 10.1016/j.carbpol.2017.03.041. PubMed DOI

Nechyporchuk O., Kolman K., Bridarolli A., Odlyha M., Bozec L., Oriola M., Campo-Francés G., Persson M., Holmberg K., Bordes R. On the potential of using nanocellulose for consolidation of painting canvases. Carbohydr. Polym. 2018;194:161–169. doi: 10.1016/j.carbpol.2018.04.020. PubMed DOI

Li T., Song J., Zhao X., Yang Z., Pastel G., Xu S., Jia C., Dai J., Chen C., Gong A., et al. Anisotropic, lightweight, strong, and super thermally insulating nanowood with naturally aligned nanocellulose. Sci. Adv. 2018;4:eaar3724. doi: 10.1126/sciadv.aar3724. PubMed DOI PMC

Nechyporchuk O., Bordes R., Köhnke T. Wet spinning of flame-retardant cellulosic fibers supported by interfacial complexation of cellulose nanofibrils with silica nanoparticles. ACS Appl. Mater. Interfaces. 2017;9:39069–39077. doi: 10.1021/acsami.7b13466. PubMed DOI

Wang Z., Pan R., Ruan C., Edström K., Strømme M., Nyholm L. Redox-active separators for lithium-ion batteries. Adv. Sci. 2018;5:1700663. doi: 10.1002/advs.201700663. PubMed DOI PMC

Pan R., Xu X., Sun R., Wang Z., Lindh J., Edström K., Strømme M., Nyholm L. Nanocellulose modified polyethylene separators for lithium metal batteries. Small. 2018;14:1704371. doi: 10.1002/smll.201704371. PubMed DOI

Zhou X., Liu Y., Du C., Ren Y., Li X., Zuo P., Yin G., Ma Y., Cheng X., Gao Y. Free-standing sandwich-type graphene/nanocellulose/silicon laminar anode for flexible rechargeable lithium ion batteries. ACS Appl. Mater. Interfaces. 2018;10:29638–29646. doi: 10.1021/acsami.8b10066. PubMed DOI

Kang Y.J., Chun S.-J., Lee S.-S., Kim B.-Y., Kim J.H., Chung H., Lee S.-Y., Kim W. All-solid-state flexible supercapacitors fabricated with bacterial nanocellulose papers, carbon nanotubes, and triblock-copolymer ion gels. ACS Nano. 2012;6:6400–6406. doi: 10.1021/nn301971r. PubMed DOI

Gopakumar D.A., Pai A.R., Pottathara Y.B., Pasquini D., Carlos de Morais L., Luke M., Kalarikkal N., Grohens Y., Thomas S. Cellulose nanofiber-based polyaniline flexible papers as sustainable microwave absorbers in the X-band. ACS Appl. Mater. Interfaces. 2018;10:20032–20043. doi: 10.1021/acsami.8b04549. PubMed DOI

Xiong Z., Lin M., Lin H., Huang M. Facile synthesis of cellulose nanofiber nanocomposite as a SERS substrate for detection of thiram in juice. Carbohydr. Polym. 2018;189:79–86. doi: 10.1016/j.carbpol.2018.02.014. PubMed DOI

Zhang S., Xiong R., Mahmoud M.A., Quigley E.N., Chang H., El-Sayed M., Tsukruk V.V. Dual-excitation nanocellulose plasmonic membranes for molecular and cellular SERS detection. ACS Appl. Mater. Interfaces. 2018;10:18380–18389. doi: 10.1021/acsami.8b04817. PubMed DOI

Abbasi-Moayed S., Golmohammadi H., Hormozi-Nezhad M.R. A nanopaper-based artificial tongue: A ratiometric fluorescent sensor array on bacterial nanocellulose for chemical discrimination applications. Nanoscale. 2018;10:2492–2502. doi: 10.1039/C7NR05801B. PubMed DOI

Abbasi-Moayed S., Golmohammadi H., Bigdeli A., Hormozi-Nezhad M.R. A rainbow ratiometric fluorescent sensor array on bacterial nanocellulose for visual discrimination of biothiols. The Analyst. 2018;143:3415–3424. doi: 10.1039/C8AN00637G. PubMed DOI

Fontenot K.R., Edwards J.V., Haldane D., Pircher N., Liebner F., Condon B.D., Qureshi H., Yager D. Designing cellulosic and nanocellulosic sensors for interface with a protease sequestrant wound-dressing prototype: Implications of material selection for dressing and protease sensor design. J. Biomater. Appl. 2017;32:622–637. doi: 10.1177/0885328217735049. PubMed DOI

Anirudhan T.S., Deepa J.R. Binussreejayan electrochemical sensing of cholesterol by molecularly imprinted polymer of silylated graphene oxide and chemically modified nanocellulose polymer. Mater. Sci. Eng. C. 2018;92:942–956. doi: 10.1016/j.msec.2018.07.041. PubMed DOI

Liu C., Dong J., Waterhouse G.I.N., Cheng Z., Ai S. Electrochemical immunosensor with nanocellulose-Au composite assisted multiple signal amplification for detection of avian leukosis virus subgroup J. Biosens. Bioelectron. 2018;101:110–115. doi: 10.1016/j.bios.2017.10.007. PubMed DOI

Mangayil R., Rajala S., Pammo A., Sarlin E., Luo J., Santala V., Karp M., Tuukkanen S. Engineering and characterization of bacterial nanocellulose films as low cost and flexible sensor material. ACS Appl. Mater. Interfaces. 2017;9:19048–19056. doi: 10.1021/acsami.7b04927. PubMed DOI

Rajala S., Siponkoski T., Sarlin E., Mettänen M., Vuoriluoto M., Pammo A., Juuti J., Rojas O.J., Franssila S., Tuukkanen S. Cellulose nanofibril film as a piezoelectric sensor material. ACS Appl. Mater. Interfaces. 2016;8:15607–15614. doi: 10.1021/acsami.6b03597. PubMed DOI

Hänninen A., Sarlin E., Lyyra I., Salpavaara T., Kellomäki M., Tuukkanen S. Nanocellulose and chitosan based films as low cost, green piezoelectric materials. Carbohydr. Polym. 2018;202:418–424. doi: 10.1016/j.carbpol.2018.09.001. PubMed DOI

Jung M., Kim K., Kim B., Lee K.-J., Kang J.-W., Jeon S. Vertically stacked nanocellulose tactile sensor. Nanoscale. 2017;9:17212–17219. doi: 10.1039/C7NR03685J. PubMed DOI

Zhou J., Hsieh Y.-L. Conductive polymer protonated nanocellulose aerogels for tunable and linearly responsive strain sensors. ACS Appl. Mater. Interfaces. 2018;10:27902–27910. doi: 10.1021/acsami.8b10239. PubMed DOI

Meneguin A.B., Ferreira Cury B.S., dos Santos A.M., Franco D.F., Barud H.S., da Silva Filho E.C. Resistant starch/pectin free-standing films reinforced with nanocellulose intended for colonic methotrexate release. Carbohydr. Polym. 2017;157:1013–1023. doi: 10.1016/j.carbpol.2016.10.062. PubMed DOI

Silva N.H.C.S., Rodrigues A.F., Almeida I.F., Costa P.C., Rosado C., Neto C.P., Silvestre A.J.D., Freire C.S.R. Bacterial cellulose membranes as transdermal delivery systems for diclofenac: In vitro dissolution and permeation studies. Carbohydr. Polym. 2014;106:264–269. doi: 10.1016/j.carbpol.2014.02.014. PubMed DOI

Bodhibukkana C., Srichana T., Kaewnopparat S., Tangthong N., Bouking P., Martin G.P., Suedee R. Composite membrane of bacterially-derived cellulose and molecularly imprinted polymer for use as a transdermal enantioselective controlled-release system of racemic propranolol. J. Controll. Release. 2006;113:43–56. doi: 10.1016/j.jconrel.2006.03.007. PubMed DOI

Brassolatti P., Kido H.W., Bossini P.S., Gabbai-Armelin P.R., Otterço A.N., Almeida-Lopes L., Zanardi L.M., Napolitano M.A., de Avó L.R.d.S., Forato L.A., et al. Bacterial cellulose membrane used as biological dressings on third-degree burns in rats. Biomed. Mater. Eng. 2018;29:29–42. PubMed

Napavichayanun S., Yamdech R., Aramwit P. The safety and efficacy of bacterial nanocellulose wound dressing incorporating sericin and polyhexamethylene biguanide: In vitro, in vivo and clinical studies. Arch. Dermatol. Res. 2016;308:123–132. doi: 10.1007/s00403-016-1621-3. PubMed DOI

Alkhatib Y., Dewaldt M., Moritz S., Nitzsche R., Kralisch D., Fischer D. Controlled extended octenidine release from a bacterial nanocellulose/Poloxamer hybrid system. Eur. J. Pharm. Biopharm. 2017;112:164–176. doi: 10.1016/j.ejpb.2016.11.025. PubMed DOI

Weishaupt R., Heuberger L., Siqueira G., Gutt B., Zimmermann T., Maniura-Weber K., Salentinig S., Faccio G. Enhanced antimicrobial activity and structural transitions of a nanofibrillated cellulose–nisin biocomposite suspension. ACS Appl. Mater. Interfaces. 2018;10:20170–20181. doi: 10.1021/acsami.8b04470. PubMed DOI

Kontogiannopoulos K.N., Assimopoulou A.N., Tsivintzelis I., Panayiotou C., Papageorgiou V.P. Electrospun fiber mats containing shikonin and derivatives with potential biomedical applications. Int. J. Pharm. 2011;409:216–228. doi: 10.1016/j.ijpharm.2011.02.004. PubMed DOI

Asabuwa Ngwabebhoh F., Ilkar Erdagi S., Yildiz U. Pickering emulsions stabilized nanocellulosic-based nanoparticles for coumarin and curcumin nanoencapsulations: In vitro release, anticancer and antimicrobial activities. Carbohydr. Polym. 2018;201:317–328. doi: 10.1016/j.carbpol.2018.08.079. PubMed DOI

Loh E.Y.X., Mohamad N., Fauzi M.B., Ng M.H., Ng S.F., Mohd Amin M.C.I. Development of a bacterial cellulose-based hydrogel cell carrier containing keratinocytes and fibroblasts for full-thickness wound healing. Sci. Rep. 2018;8:2875. doi: 10.1038/s41598-018-21174-7. PubMed DOI PMC

Rodrigues C., de Assis A.M., Moura D.J., Halmenschlager G., Saffi J., Xavier L.L., da Cruz Fernandes M., Wink M.R. New therapy of skin repair combining adipose-derived mesenchymal stem cells with sodium carboxymethylcellulose scaffold in a pre-clinical rat model. PLoS ONE. 2014;9:e96241. doi: 10.1371/journal.pone.0096241. PubMed DOI PMC

Kramer F., Klemm D., Schumann D., Heßler N., Wesarg F., Fried W., Stadermann D. Nanocellulose polymer composites as innovative pool for (bio)material development. Macromol. Symp. 2006;244:136–148. doi: 10.1002/masy.200651213. DOI

Klemm D., Schumann D., Kramer F., Heßler N., Hornung M., Schmauder H.-P., Marsch S. Nanocelluloses as innovative polymers in research and application. In: Klemm D., editor. Polysaccharides II. Volume 205. Springer; Berlin/Heidelberg, Germany: 2006. pp. 49–96.

Sulaeva I., Henniges U., Rosenau T., Potthast A. Bacterial cellulose as a material for wound treatment: Properties and modifications. A review. Biotechnol. Adv. 2015;33:1547–1571. doi: 10.1016/j.biotechadv.2015.07.009. PubMed DOI

Sun F., Nordli H.R., Pukstad B., Kristofer Gamstedt E., Chinga-Carrasco G. Mechanical characteristics of nanocellulose-PEG bionanocomposite wound dressings in wet conditions. J. Mech. Behav. Biomed. Mater. 2017;69:377–384. doi: 10.1016/j.jmbbm.2017.01.049. PubMed DOI

Li J., Cha R., Mou K., Zhao X., Long K., Luo H., Zhou F., Jiang X. Nanocellulose-based antibacterial materials. Adv. Healthc. Mater. 2018;7:1800334. doi: 10.1002/adhm.201800334. PubMed DOI

Bacakova L., Filova E., Parizek M., Ruml T., Svorcik V. Modulation of cell adhesion, proliferation and differentiation on materials designed for body implants. Biotechnol. Adv. 2011;29:739–767. doi: 10.1016/j.biotechadv.2011.06.004. PubMed DOI

Ahola S., Salmi J., Johansson L.-S., Laine J., Österberg M. Model films from native cellulose nanofibrils. preparation, swelling, and surface interactions. Biomacromolecules. 2008;9:1273–1282. doi: 10.1021/bm701317k. PubMed DOI

Jonsson M., Brackmann C., Puchades M., Brattås K., Ewing A., Gatenholm P., Enejder A. Neuronal networks on nanocellulose scaffolds. Tissue Eng. Part C Methods. 2015;21:1162–1170. doi: 10.1089/ten.tec.2014.0602. PubMed DOI

Lopes V.R., Sanchez-Martinez C., Strømme M., Ferraz N. In vitro biological responses to nanofibrillated cellulose by human dermal, lung and immune cells: Surface chemistry aspect. Part. Fibre Toxicol. 2017;14:1. doi: 10.1186/s12989-016-0182-0. PubMed DOI PMC

Skogberg A., Mäki A.-J., Mettänen M., Lahtinen P., Kallio P. Cellulose nanofiber alignment using evaporation-induced droplet-casting, and cell alignment on aligned nanocellulose surfaces. Biomacromolecules. 2017;18:3936–3953. doi: 10.1021/acs.biomac.7b00963. PubMed DOI

Hua K., Ålander E., Lindström T., Mihranyan A., Strømme M., Ferraz N. Surface chemistry of nanocellulose fibers directs monocyte/macrophage response. Biomacromolecules. 2015;16:2787–2795. doi: 10.1021/acs.biomac.5b00727. PubMed DOI

Bacakova L., Novotna K., Sopuch T., Havelka P. Cell interaction with cellulose-based scaffolds for tissue engineering -A Review. In: Mondal I.H., editor. Cellulose and Cellulose Derivatives: Synthesis, Modification, Nanostructure and Applications. Nova Science Publishers, Inc. Hauppauge; New York, NY, USA: 2015. pp. 341–375.

Bodin A., Ahrenstedt L., Fink H., Brumer H., Risberg B., Gatenholm P. Modification of nanocellulose with a xyloglucan–RGD conjugate enhances adhesion and proliferation of endothelial cells: Implications for tissue engineering. Biomacromolecules. 2007;8:3697–3704. doi: 10.1021/bm070343q. PubMed DOI

Juntaro J., Pommet M., Mantalaris A., Shaffer M., Bismarck A. Nanocellulose enhanced interfaces in truly green unidirectional fibre reinforced composites. Compos. Interfaces. 2007;14:753–762. doi: 10.1163/156855407782106573. DOI

Auad M.L., Contos V.S., Nutt S., Aranguren M.I., Marcovich N.E. Characterization of nanocellulose-reinforced shape memory polyurethanes. Polym. Int. 2008;57:651–659. doi: 10.1002/pi.2394. DOI

Lönnberg H., Fogelström L., Berglund L., Malmström E., Hult A. Surface grafting of microfibrillated cellulose with poly(ε-caprolactone)—Synthesis and characterization. Eur. Polym. J. 2008;44:2991–2997. doi: 10.1016/j.eurpolymj.2008.06.023. DOI

Gardner D.J., Oporto G.S., Mills R., Samir M.A.S.A. Adhesion and surface issues in cellulose and nanocellulose. J. Adhes. Sci. Technol. 2008;22:545–567. doi: 10.1163/156856108X295509. DOI

Morán J.I., Alvarez V.A., Cyras V.P., Vázquez A. Extraction of cellulose and preparation of nanocellulose from sisal fibers. Cellulose. 2008;15:149–159. doi: 10.1007/s10570-007-9145-9. DOI

Oksman K., Mathew A.P., Sain M. Novel bionanocomposites: Processing, properties and potential applications. Plast. Rubber Compos. 2009;38:396–405. doi: 10.1179/146580109X12540995045723. DOI

Heßler N., Klemm D. Alteration of bacterial nanocellulose structure by in situ modification using polyethylene glycol and carbohydrate additives. Cellulose. 2009;16:899–910. doi: 10.1007/s10570-009-9301-5. DOI

Aulin C., Ahola S., Josefsson P., Nishino T., Hirose Y., Österberg M., Wågberg L. Nanoscale cellulose films with different crystallinities and mesostructures—Their surface properties and interaction with water. Langmuir. 2009;25:7675–7685. doi: 10.1021/la900323n. PubMed DOI

Saxena A., Elder T.J., Pan S., Ragauskas A.J. Novel nanocellulosic xylan composite film. Compos. Part B Eng. 2009;40:727–730. doi: 10.1016/j.compositesb.2009.05.003. DOI

Gatenholm P., Klemm D. Bacterial nanocellulose as a renewable material for biomedical applications. MRS Bull. 2010;35:208–213. doi: 10.1557/mrs2010.653. DOI

Khan R.A., Salmieri S., Dussault D., Uribe-Calderon J., Kamal M.R., Safrany A., Lacroix M. Production and properties of nanocellulose-reinforced methylcellulose-based biodegradable films. J. Agric. Food Chem. 2010;58:7878–7885. doi: 10.1021/jf1006853. PubMed DOI

Azeredo H.M.C., Mattoso L.H.C., Avena-Bustillos R.J., Filho G.C., Munford M.L., Wood D., McHugh T.H. Nanocellulose reinforced chitosan composite films as affected by nanofiller loading and plasticizer content. J. Food Sci. 2010;75:N1–N7. doi: 10.1111/j.1750-3841.2009.01386.x. PubMed DOI

Kralisch D., Hessler N., Klemm D., Erdmann R., Schmidt W. White biotechnology for cellulose manufacturing–The HoLiR concept. Biotechnol. Bioeng. 2010;105:740–747. PubMed

Nyström G., Mihranyan A., Razaq A., Lindström T., Nyholm L., Strømme M. A Nanocellulose polypyrrole composite based on microfibrillated cellulose from wood. J. Phys. Chem. B. 2010;114:4178–4182. doi: 10.1021/jp911272m. PubMed DOI PMC

Iseli A.M., Kwen H.-D., Ul-Alam M., Balasubramanian M., Rajagopalan S. Enhanced contaminated human remains pouch: Initial development and preliminary performance assessments. Am. J. Disaster Med. 2011;6:31–38. PubMed

Wesarg F., Schlott F., Grabow J., Kurland H.-D., Heßler N., Kralisch D., Müller F.A. In situ synthesis of photocatalytically active hybrids consisting of bacterial nanocellulose and anatase nanoparticles. Langmuir. 2012;28:13518–13525. doi: 10.1021/la302787z. PubMed DOI

Schütz C., Sort J., Bacsik Z., Oliynyk V., Pellicer E., Fall A., Wågberg L., Berglund L., Bergström L., Salazar-Alvarez G. Hard and transparent films formed by nanocellulose–TiO2 nanoparticle hybrids. PLoS ONE. 2012;7:e45828. doi: 10.1371/journal.pone.0045828. PubMed DOI PMC

Loranger E., Piché A.-O., Daneault C. Influence of high shear dispersion on the production of cellulose nanofibers by ultrasound-assisted TEMPO-oxidation of kraft pulp. Nanomaterials. 2012;2:286–297. doi: 10.3390/nano2030286. PubMed DOI PMC

Orelma H., Teerinen T., Johansson L.-S., Holappa S., Laine J. CMC-modified cellulose biointerface for antibody conjugation. Biomacromolecules. 2012;13:1051–1058. doi: 10.1021/bm201771m. PubMed DOI

Díez I., Eronen P., Österberg M., Linder M.B., Ikkala O., Ras R.H.A. Functionalization of nanofibrillated cellulose with silver nanoclusters: Fluorescence and antibacterial activity. Macromol. Biosci. 2011;11:1185–1191. doi: 10.1002/mabi.201100099. PubMed DOI

Bäckdahl H., Risberg B., Gatenholm P. Observations on bacterial cellulose tube formation for application as vascular graft. Mater. Sci. Eng. C. 2011;31:14–21. doi: 10.1016/j.msec.2010.07.010. DOI

Zimmermann K.A., LeBlanc J.M., Sheets K.T., Fox R.W., Gatenholm P. Biomimetic design of a bacterial cellulose/hydroxyapatite nanocomposite for bone healing applications. Mater. Sci. Eng. C. 2011;31:43–49. doi: 10.1016/j.msec.2009.10.007. DOI

Bhattacharya M., Malinen M.M., Lauren P., Lou Y.-R., Kuisma S.W., Kanninen L., Lille M., Corlu A., GuGuen-Guillouzo C., Ikkala O., et al. Nanofibrillar cellulose hydrogel promotes three-dimensional liver cell culture. J. Controll. Release. 2012;164:291–298. doi: 10.1016/j.jconrel.2012.06.039. PubMed DOI

Muller D., Silva J.P., Rambo C.R., Barra G.M.O., Dourado F., Gama F.M. Neuronal cells’ behavior on polypyrrole coated bacterial nanocellulose three-dimensional (3D) scaffolds. J. Biomater. Sci. Polym. Edit. 2013;24:1368–1377. doi: 10.1080/09205063.2012.761058. PubMed DOI

Kowalska-Ludwicka K., Cala J., Grobelski B., Sygut D., Jesionek-Kupnicka D., Kolodziejczyk M., Bielecki S., Pasieka Z. Modified bacterial cellulose tubes for regeneration of damaged peripheral nerves. Arch. Med. Sci. 2013;3:527–534. doi: 10.5114/aoms.2013.33433. PubMed DOI PMC

Nimeskern L., Martínez Ávila H., Sundberg J., Gatenholm P., Müller R., Stok K.S. Mechanical evaluation of bacterial nanocellulose as an implant material for ear cartilage replacement. J. Mech. Behav. Biomed. Mater. 2013;22:12–21. doi: 10.1016/j.jmbbm.2013.03.005. PubMed DOI

Feldmann E.-M., Sundberg J., Bobbili B., Schwarz S., Gatenholm P., Rotter N. Description of a novel approach to engineer cartilage with porous bacterial nanocellulose for reconstruction of a human auricle. J. Biomater. Appl. 2013;28:626–640. doi: 10.1177/0885328212472547. PubMed DOI

Pretzel D., Linss S., Ahrem H., Endres M., Kaps C., Klemm D., Kinne R.W. A novel in vitro bovine cartilage punch model for assessing the regeneration of focal cartilage defects with biocompatible bacterial nanocellulose. Arthritis Res. Ther. 2013;15:R59. doi: 10.1186/ar4231. PubMed DOI PMC

Fu L., Zhou P., Zhang S., Yang G. Evaluation of bacterial nanocellulose-based uniform wound dressing for large area skin transplantation. Mater. Sci. Eng. C. 2013;33:2995–3000. doi: 10.1016/j.msec.2013.03.026. PubMed DOI

Kuzmenko V., Sämfors S., Hägg D., Gatenholm P. Universal method for protein bioconjugation with nanocellulose scaffolds for increased cell adhesion. Mater. Sci. Eng. C. 2013;33:4599–4607. doi: 10.1016/j.msec.2013.07.031. PubMed DOI

Dugan J.M., Gough J.E., Eichhorn S.J. Bacterial cellulose scaffolds and cellulose nanowhiskers for tissue engineering. Nanomedicine. 2013;8:287–298. doi: 10.2217/nnm.12.211. PubMed DOI

Abeer M.M., Mohd Amin M.C.I., Martin C. A review of bacterial cellulose-based drug delivery systems: Their biochemistry, current approaches and future prospects. J. Pharm. Pharmacol. 2014;66:1047–1061. doi: 10.1111/jphp.12234. PubMed DOI

Ullah H., Wahid F., Santos H.A., Khan T. Advances in biomedical and pharmaceutical applications of functional bacterial cellulose-based nanocomposites. Carbohydr. Polym. 2016;150:330–352. doi: 10.1016/j.carbpol.2016.05.029. PubMed DOI

Gumrah Dumanli A. Nanocellulose and its composites for biomedical applications. Curr. Med. Chem. 2017;24:512–528. doi: 10.2174/0929867323666161014124008. PubMed DOI

Halib N., Perrone F., Cemazar M., Dapas B., Farra R., Abrami M., Chiarappa G., Forte G., Zanconati F., Pozzato G., et al. Potential applications of nanocellulose-containing materials in the biomedical field. Materials. 2017;10:977. doi: 10.3390/ma10080977. PubMed DOI PMC

Pötzinger Y., Kralisch D., Fischer D. Bacterial nanocellulose: The future of controlled drug delivery? Ther. Deliv. 2017;8:753–761. doi: 10.4155/tde-2017-0059. PubMed DOI

Xu W., Wang X., Sandler N., Willför S., Xu C. Three-dimensional printing of wood-derived biopolymers: A review focused on biomedical applications. ACS Sustain. Chem. Eng. 2018;6:5663–5680. doi: 10.1021/acssuschemeng.7b03924. PubMed DOI PMC

Innala M., Riebe I., Kuzmenko V., Sundberg J., Gatenholm P., Hanse E., Johannesson S. 3D culturing and differentiation of SH-SY5Y neuroblastoma cells on bacterial nanocellulose scaffolds. Artif. Cells Nanomed. Biotechnol. 2014;42:302–308. doi: 10.3109/21691401.2013.821410. PubMed DOI

Kuzmenko V., Karabulut E., Pernevik E., Enoksson P., Gatenholm P. Tailor-made conductive inks from cellulose nanofibrils for 3D printing of neural guidelines. Carbohydr. Polym. 2018;189:22–30. doi: 10.1016/j.carbpol.2018.01.097. PubMed DOI

Martínez Ávila H., Feldmann E.-M., Pleumeekers M.M., Nimeskern L., Kuo W., de Jong W.C., Schwarz S., Müller R., Hendriks J., Rotter N., et al. Novel bilayer bacterial nanocellulose scaffold supports neocartilage formation in vitro and in vivo. Biomaterials. 2015;44:122–133. doi: 10.1016/j.biomaterials.2014.12.025. PubMed DOI

Markstedt K., Mantas A., Tournier I., Martínez Ávila H., Hägg D., Gatenholm P. 3D bioprinting human chondrocytes with nanocellulose–alginate bioink for cartilage tissue engineering applications. Biomacromolecules. 2015;16:1489–1496. doi: 10.1021/acs.biomac.5b00188. PubMed DOI

Nguyen D., Hägg D.A., Forsman A., Ekholm J., Nimkingratana P., Brantsing C., Kalogeropoulos T., Zaunz S., Concaro S., Brittberg M., et al. Cartilage tissue engineering by the 3D bioprinting of iPS cells in a nanocellulose/alginate bioink. Sci. Rep. 2017;7:658. doi: 10.1038/s41598-017-00690-y. PubMed DOI PMC

Müller M., Öztürk E., Arlov Ø., Gatenholm P., Zenobi-Wong M. Alginate sulfate–nanocellulose bioinks for cartilage bioprinting applications. Ann. Biomed. Eng. 2017;45:210–223. doi: 10.1007/s10439-016-1704-5. PubMed DOI

Naseri N., Deepa B., Mathew A.P., Oksman K., Girandon L. Nanocellulose-based interpenetrating polymer network (IPN) hydrogels for cartilage applications. Biomacromolecules. 2016;17:3714–3723. doi: 10.1021/acs.biomac.6b01243. PubMed DOI

Pereira D.R., Silva-Correia J., Oliveira J.M., Reis R.L., Pandit A., Biggs M.J. Nanocellulose reinforced gellan-gum hydrogels as potential biological substitutes for annulus fibrosus tissue regeneration. Nanomed. Nanotechnol. Biol. Med. 2018;14:897–908. doi: 10.1016/j.nano.2017.11.011. PubMed DOI

Malinen M.M., Kanninen L.K., Corlu A., Isoniemi H.M., Lou Y.-R., Yliperttula M.L., Urtti A.O. Differentiation of liver progenitor cell line to functional organotypic cultures in 3D nanofibrillar cellulose and hyaluronan-gelatin hydrogels. Biomaterials. 2014;35:5110–5121. doi: 10.1016/j.biomaterials.2014.03.020. PubMed DOI

Krontiras P., Gatenholm P., Hägg D.A. Adipogenic differentiation of stem cells in three-dimensional porous bacterial nanocellulose scaffolds. J. Biomed. Mater. Res. Part B Appl. Biomater. 2015;103:195–203. doi: 10.1002/jbm.b.33198. PubMed DOI

Henriksson I., Gatenholm P., Hägg D.A. Increased lipid accumulation and adipogenic gene expression of adipocytes in 3D bioprinted nanocellulose scaffolds. Biofabrication. 2017;9:015022. doi: 10.1088/1758-5090/aa5c1c. PubMed DOI

Lou Y.-R., Kanninen L., Kuisma T., Niklander J., Noon L.A., Burks D., Urtti A., Yliperttula M. The use of nanofibrillar cellulose hydrogel as a flexible three-dimensional model to culture human pluripotent stem cells. Stem Cells Dev. 2014;23:380–392. doi: 10.1089/scd.2013.0314. PubMed DOI PMC

Hong F., Wei B., Chen L. Preliminary study on biosynthesis of bacterial nanocellulose tubes in a novel double-silicone-tube bioreactor for potential vascular prosthesis. BioMed Res. Int. 2015;2015:1–9. doi: 10.1155/2015/560365. PubMed DOI PMC

Weber C., Reinhardt S., Eghbalzadeh K., Wacker M., Guschlbauer M., Maul A., Sterner-Kock A., Wahlers T., Wippermann J., Scherner M. Patency and in vivo compatibility of bacterial nanocellulose grafts as small-diameter vascular substitute. J. Vasc. Surg. 2018;68:177S–187S.e1. doi: 10.1016/j.jvs.2017.09.038. PubMed DOI

Echeverry-Rendon M., Reece L.M., Pastrana F., Arias S.L., Shetty A.R., Pavón J.J., Allain J.P. Bacterial nanocellulose magnetically functionalized for neuro-endovascular treatment. Macromol. Biosci. 2017;17:1600382. doi: 10.1002/mabi.201600382. PubMed DOI

Pavón J.J., Allain J.P., Verma D., Echeverry-Rendón M., Cooper C.L., Reece L.M., Shetty A.R., Tomar V. In situ study unravels bio-nanomechanical behavior in a magnetic bacterial nano-cellulose (MBNC) hydrogel for neuro-endovascular reconstruction. Macromol. Biosci. 2018:1800225. doi: 10.1002/mabi.201800225. PubMed DOI

Vielreicher M., Kralisch D., Völkl S., Sternal F., Arkudas A., Friedrich O. Bacterial nanocellulose stimulates mesenchymal stem cell expansion and formation of stable collagen-I networks as a novel biomaterial in tissue engineering. Sci Rep. 2018;8 doi: 10.1038/s41598-018-27760-z. PubMed DOI PMC

Torres-Rendon J.G., Femmer T., De Laporte L., Tigges T., Rahimi K., Gremse F., Zafarnia S., Lederle W., Ifuku S., Wessling M., et al. Bioactive gyroid scaffolds formed by sacrificial templating of nanocellulose and nanochitin hydrogels as instructive platforms for biomimetic tissue engineering. Adv. Mater. 2015;27:2989–2995. doi: 10.1002/adma.201405873. PubMed DOI

Sundberg J., Götherström C., Gatenholm P. Biosynthesis and in vitro evaluation of macroporous mineralized bacterial nanocellulose scaffolds for bone tissue engineering. Biomed. Mater. Eng. 2015;25:39–52. PubMed

Si J., Cui Z., Wang Q., Liu Q., Liu C. Biomimetic composite scaffolds based on mineralization of hydroxyapatite on electrospun poly (ɛ-caprolactone)/nanocellulose fibers. Carbohydr. Polym. 2016;143:270–278. doi: 10.1016/j.carbpol.2016.02.015. PubMed DOI

Chen Q., Garcia R.P., Munoz J., Pérez de Larraya U., Garmendia N., Yao Q., Boccaccini A.R. Cellulose nanocrystals—Bioactive glass hybrid coating as bone substitutes by electrophoretic co-deposition: In situ control of mineralization of bioactive glass and enhancement of osteoblastic performance. ACS Appl. Mater. Interfaces. 2015;7:24715–24725. doi: 10.1021/acsami.5b07294. PubMed DOI

Huang J.-W., Lv X.-G., Li Z., Song L.-J., Feng C., Xie M.-K., Li C., Li H.-B., Wang J.-H., Zhu W.-D., et al. Urethral reconstruction with a 3D porous bacterial cellulose scaffold seeded with lingual keratinocytes in a rabbit model. Biomed. Mater. 2015;10:055005. doi: 10.1088/1748-6041/10/5/055005. PubMed DOI

Lv X., Feng C., Liu Y., Peng X., Chen S., Xiao D., Wang H., Li Z., Xu Y., Lu M. A smart bilayered scaffold supporting keratinocytes and muscle cells in micro/nano-scale for urethral reconstruction. Theranostics. 2018;8:3153–3163. doi: 10.7150/thno.22080. PubMed DOI PMC

Goldschmidt E., Cacicedo M., Kornfeld S., Valinoti M., Ielpi M., Ajler P.M., Yampolsky C., Rasmussen J., Castro G.R., Argibay P. Construction and in vitro testing of a cellulose dura mater graft. Neurol. Res. 2016;38:25–31. doi: 10.1080/01616412.2015.1122263. PubMed DOI

Lang N., Merkel E., Fuchs F., Schumann D., Klemm D., Kramer F., Mayer-Wagner S., Schroeder C., Freudenthal F., Netz H., et al. Bacterial nanocellulose as a new patch material for closure of ventricular septal defects in a pig model. Eur. J. Cardiothorac. Surg. 2015;47:1013–1021. doi: 10.1093/ejcts/ezu292. PubMed DOI

Tummala G.K., Joffre T., Rojas R., Persson C., Mihranyan A. Strain-induced stiffening of nanocellulose-reinforced poly (vinyl alcohol) hydrogels mimicking collagenous soft tissues. Soft Matter. 2017;13:3936–3945. doi: 10.1039/C7SM00677B. PubMed DOI

Sepúlveda R.V., Valente F.L., Reis E.C.C., Araújo F.R., Eleotério R.B., Queiroz P.V.S., Borges A.P.B., Universidade Federal De Viçosa Brazil bacterial cellulose and bacterial cellulose/polycaprolactone composite as tissue substitutes in rabbits’ cornea. Pesquisa Veterinária Brasileira. 2016;36:986–992. doi: 10.1590/s0100-736x2016001000011. DOI

Ludwicka K., Kolodziejczyk M., Gendaszewska-Darmach E., Chrzanowski M., Jedrzejczak-Krzepkowska M., Rytczak P., Bielecki S. Stable composite of bacterial nanocellulose and perforated polypropylene mesh for biomedical applications. J. Biomed. Mater. Res. Part B Appl. Biomater. 2018 doi: 10.1002/jbm.b.34191. in press. PubMed DOI

Park M., Lee D., Hyun J. Nanocellulose-alginate hydrogel for cell encapsulation. Carbohydr. Polym. 2015;116:223–228. doi: 10.1016/j.carbpol.2014.07.059. PubMed DOI

Park M., Shin S., Cheng J., Hyun J. Nanocellulose based asymmetric composite membrane for the multiple functions in cell encapsulation. Carbohydr. Polym. 2017;158:133–140. doi: 10.1016/j.carbpol.2016.12.007. PubMed DOI

Fontana J.D., De Souza A.M., Fontana C.K., Torriani I.L., Moreschi J.C., Gallotti B.J., De Souza S.J., Narcisco G.P., Bichara J.A., Farah L.F.X. Acetobacter cellulose pellicle as a temporary skin substitute. Appl. Biochem. Biotechnol. 1990;24–25:253–264. doi: 10.1007/BF02920250. PubMed DOI

Sanchavanakit N., Sangrungraungroj W., Kaomongkolgit R., Banaprasert T., Pavasant P., Phisalaphong M. Growth of human keratinocytes and fibroblasts on bacterial cellulose film. Biotechnol. Prog. 2006;22:1194–1199. doi: 10.1021/bp060035o. PubMed DOI

Kingkaew J., Jatupaiboon N., Sanchavanakit N., Pavasant P., Phisalaphong M. Biocompatibility and growth of human keratinocytes and fibroblasts on biosynthesized cellulose–chitosan film. J. Biomater. Sci. Polym. Edit. 2010;21:1009–1021. doi: 10.1163/156856209X462763. PubMed DOI

Keskin Z., Sendemir Urkmez A., Hames E.E. Novel keratin modified bacterial cellulose nanocomposite production and characterization for skin tissue engineering. Mater. Sci. Eng. C. 2017;75:1144–1153. doi: 10.1016/j.msec.2017.03.035. PubMed DOI

Khan S., Ul-Islam M., Ikram M., Islam S.U., Ullah M.W., Israr M., Jang J.H., Yoon S., Park J.K. Preparation and structural characterization of surface modified microporous bacterial cellulose scaffolds: A potential material for skin regeneration applications in vitro and in vivo. Int. J. Biol. Macromol. 2018;117:1200–1210. doi: 10.1016/j.ijbiomac.2018.06.044. PubMed DOI

Shi Z., Li Y., Chen X., Han H., Yang G. Double network bacterial cellulose hydrogel to build a biology–Device interface. Nanoscale. 2014;6:970–977. doi: 10.1039/C3NR05214A. PubMed DOI

Shah N., Ul-Islam M., Khattak W.A., Park J.K. Overview of bacterial cellulose composites: A multipurpose advanced material. Carbohydr. Polym. 2013;98:1585–1598. doi: 10.1016/j.carbpol.2013.08.018. PubMed DOI

De Oliveira Barud H.G., da Silva R.R., da Silva Barud H., Tercjak A., Gutierrez J., Lustri W.R., de Oliveira O.B., Ribeiro S.J.L. A multipurpose natural and renewable polymer in medical applications: Bacterial cellulose. Carbohydr. Polym. 2016;153:406–420. doi: 10.1016/j.carbpol.2016.07.059. PubMed DOI

Stumpf T.R., Yang X., Zhang J., Cao X. In situ and ex situ modifications of bacterial cellulose for applications in tissue engineering. Mater. Sci. Eng. C. 2018;82:372–383. doi: 10.1016/j.msec.2016.11.121. PubMed DOI

Trovatti E., Tang H., Hajian A., Meng Q., Gandini A., Berglund L.A., Zhou Q. Enhancing strength and toughness of cellulose nanofibril network structures with an adhesive peptide. Carbohydr. Polym. 2018;181:256–263. doi: 10.1016/j.carbpol.2017.10.073. PubMed DOI

Shefa A.A., Amirian J., Kang H.J., Bae S.H., Jung H.-I., Choi H., Lee S.Y., Lee B.-T. In vitro and in vivo evaluation of effectiveness of a novel TEMPO-oxidized cellulose nanofiber-silk fibroin scaffold in wound healing. Carbohydr. Polym. 2017;177:284–296. doi: 10.1016/j.carbpol.2017.08.130. PubMed DOI

Skogberg A. (Tampere University of Technology, Tampere, Finland). Personal communication. 2018. unpublished data.

Kim M., Kim G. 3D multi-layered fibrous cellulose structure using an electrohydrodynamic process for tissue engineering. J. Colloid Interface Sci. 2015;457:180–187. doi: 10.1016/j.jcis.2015.07.007. PubMed DOI

Vatankhah E., Prabhakaran M.P., Jin G., Mobarakeh L.G., Ramakrishna S. Development of nanofibrous cellulose acetate/gelatin skin substitutes for variety wound treatment applications. J. Biomater. Appl. 2014;28:909–921. doi: 10.1177/0885328213486527. PubMed DOI

Atila D., Keskin D., Tezcaner A. Cellulose acetate based 3-dimensional electrospun scaffolds for skin tissue engineering applications. Carbohydr. Polym. 2015;133:251–261. doi: 10.1016/j.carbpol.2015.06.109. PubMed DOI

Khalili S., Nouri Khorasani S., Razavi M., Hashemi Beni B., Heydari F., Tamayol A. Nanofibrous scaffolds with biomimetic structure. J. Biomed. Mater. Res. Part A. 2018;106:370–376. doi: 10.1002/jbm.a.36246. PubMed DOI

Ahn S., Chantre C.O., Gannon A.R., Lind J.U., Campbell P.H., Grevesse T., O’Connor B.B., Parker K.K. Soy protein/cellulose nanofiber scaffolds mimicking skin extracellular matrix for enhanced wound healing. Adv. Healthc. Mater. 2018;7:1701175. doi: 10.1002/adhm.201701175. PubMed DOI PMC

Zulkifli F.H., Jahir Hussain F.S., Abdull Rasad M.S.B., Mohd Yusoff M. Improved cellular response of chemically crosslinked collagen incorporated hydroxyethyl cellulose/poly(vinyl) alcohol nanofibers scaffold. J. Biomater. Appl. 2015;29:1014–1027. doi: 10.1177/0885328214549818. PubMed DOI

Zulkifli F.H., Hussain F.S.J., Zeyohannes S.S., Rasad M.S.B.A., Yusuff M.M. A facile synthesis method of hydroxyethyl cellulose-silver nanoparticle scaffolds for skin tissue engineering applications. Mater. Sci. Eng. C. 2017;79:151–160. doi: 10.1016/j.msec.2017.05.028. PubMed DOI

Mo Y., Guo R., Liu J., Lan Y., Zhang Y., Xue W., Zhang Y. Preparation and properties of PLGA nanofiber membranes reinforced with cellulose nanocrystals. Colloids Surf. B Biointerfaces. 2015;132:177–184. doi: 10.1016/j.colsurfb.2015.05.029. PubMed DOI

Hu Y., Catchmark J.M. In vitro biodegradability and mechanical properties of bioabsorbable bacterial cellulose incorporating cellulases. Acta Biomater. 2011;7:2835–2845. doi: 10.1016/j.actbio.2011.03.028. PubMed DOI

Hu Y., Catchmark J.M. Integration of cellulases into bacterial cellulose: Toward bioabsorbable cellulose composites. J. Biomed. Mater. Res. Part B Appl. Biomater. 2011;97B:114–123. doi: 10.1002/jbm.b.31792. PubMed DOI

Yadav V., Paniliatis B.J., Shi H., Lee K., Cebe P., Kaplan D.L. Novel in vivo-degradable cellulose-chitin copolymer from metabolically engineered Gluconacetobacter xylinus. App. Environ. Microbiol. 2010;76:6257–6265. doi: 10.1128/AEM.00698-10. PubMed DOI PMC

Yadav V., Sun L., Panilaitis B., Kaplan D.L. In vitro chondrogenesis with lysozyme susceptible bacterial cellulose as a scaffold. J. Tissue Eng. Regen. Med. 2015;9:E276–E288. doi: 10.1002/term.1644. PubMed DOI

Elçin A.E. In vitro and in vivo degradation of oxidized acetyl- and ethyl-cellulose sponges. Artif. Cells Blood Substit. Biotechnol. 2006;34:407–418. doi: 10.1080/10731190600769701. PubMed DOI

RoyChowdhury P., Kumar V. Fabrication and evaluation of porous 2,3-dialdehydecellulose membrane as a potential biodegradable tissue-engineering scaffold. J. Biomed. Mater. Res. Part A. 2006;76A:300–309. doi: 10.1002/jbm.a.30503. PubMed DOI

Mohamad N., Loh E.Y.X., Fauzi M.B., Ng M.H., Mohd Amin M.C.I. In vivo evaluation of bacterial cellulose/acrylic acid wound dressing hydrogel containing keratinocytes and fibroblasts for burn wounds. Drug Deliv. Transl. Res. 2018 doi: 10.1007/s13346-017-0475-3. in press. PubMed DOI

Souza C.M.C.O., Mesquita L.A.F., Souza D., Irioda A.C., Francisco J.C., Souza C.F., Guarita-Souza L.C., Sierakowski M.-R., Carvalho K.A.T. Regeneration of skin tissue promoted by mesenchymal stem cells seeded in nanostructured membrane. Transpl. Proc. 2014;46:1882–1886. doi: 10.1016/j.transproceed.2014.05.066. PubMed DOI

Mertaniemi H., Escobedo-Lucea C., Sanz-Garcia A., Gandía C., Mäkitie A., Partanen J., Ikkala O., Yliperttula M. Human stem cell decorated nanocellulose threads for biomedical applications. Biomaterials. 2016;82:208–220. doi: 10.1016/j.biomaterials.2015.12.020. PubMed DOI

Bacakova M., Pajorova J., Sopuch T., Bacakova L. Fibrin-modified cellulose as a promising dressing for accelerated wound healing. Materials. 2018;11:2314. doi: 10.3390/ma11112314. PubMed DOI PMC

Kwak M.H., Kim J.E., Go J., Koh E.K., Song S.H., Son H.J., Kim H.S., Yun Y.H., Jung Y.J., Hwang D.Y. Bacterial cellulose membrane produced by Acetobacter sp. A10 for burn wound dressing applications. Carbohydr. Polym. 2015;122:387–398. doi: 10.1016/j.carbpol.2014.10.049. PubMed DOI

Li Y., Wang S., Huang R., Huang Z., Hu B., Zheng W., Yang G., Jiang X. Evaluation of the effect of the structure of bacterial cellulose on full thickness skin wound repair on a microfluidic chip. Biomacromolecules. 2015;16:780–789. doi: 10.1021/bm501680s. PubMed DOI

Springer S., Zieger M., Hipler U.C., Lademann J., Albrecht V., Bueckle R., Meß C., Kaatz M., Huck V. Multiphotonic staging of chronic wounds and evaluation of sterile, optical transparent bacterial nanocellulose covering: A diagnostic window into human skin. Skin Res. Technol. 2018;25:68–78. doi: 10.1111/srt.12597. PubMed DOI

Zhang P., Chen L., Zhang Q., Hong F.F. Using in situ dynamic cultures to rapidly biofabricate fabric-reinforced composites of chitosan/bacterial nanocellulose for antibacterial wound dressings. Front. Microbiol. 2016;7:260. doi: 10.3389/fmicb.2016.00260. PubMed DOI PMC

Aramwit P., Bang N. The characteristics of bacterial nanocellulose gel releasing silk sericin for facial treatment. BMC Biotechnol. 2014;14 doi: 10.1186/s12896-014-0104-x. PubMed DOI PMC

Lamboni L., Li Y., Liu J., Yang G. Silk sericin-functionalized bacterial cellulose as a potential wound-healing biomaterial. Biomacromolecules. 2016;17:3076–3084. doi: 10.1021/acs.biomac.6b00995. PubMed DOI

Zhao J., Hu L., Gong N., Tang Q., Du L., Chen L. The effects of macrophage-stimulating protein on the migration, proliferation, and collagen synthesis of skin fibroblasts in vitro and in vivo. Tissue Eng. Part A. 2015;21:982–991. doi: 10.1089/ten.tea.2013.0726. PubMed DOI

Picheth G.F., Sierakowski M.R., Woehl M.A., Ono L., Cofré A.R., Vanin L.P., Pontarolo R., De Freitas R.A. Lysozyme-triggered epidermal growth factor release from bacterial cellulose membranes controlled by smart nanostructured films. J. Pharm. Sci. 2014;103:3958–3965. doi: 10.1002/jps.24205. PubMed DOI

Almeida I.F., Pereira T., Silva N.H.C.S., Gomes F.P., Silvestre A.J.D., Freire C.S.R., Sousa Lobo J.M., Costa P.C. Bacterial cellulose membranes as drug delivery systems: An in vivo skin compatibility study. Eur. J. Pharm. Biopharm. 2014;86:332–336. doi: 10.1016/j.ejpb.2013.08.008. PubMed DOI

Wu H., Williams G.R., Wu J., Wu J., Niu S., Li H., Wang H., Zhu L. Regenerated chitin fibers reinforced with bacterial cellulose nanocrystals as suture biomaterials. Carbohydr. Polym. 2018;180:304–313. doi: 10.1016/j.carbpol.2017.10.022. PubMed DOI

Luan J., Wu J., Zheng Y., Song W., Wang G., Guo J., Ding X. Impregnation of silver sulfadiazine into bacterial cellulose for antimicrobial and biocompatible wound dressing. Biomed. Mater. 2012;7:065006. doi: 10.1088/1748-6041/7/6/065006. PubMed DOI

Wu J., Zheng Y., Wen X., Lin Q., Chen X., Wu Z. Silver nanoparticle/bacterial cellulose gel membranes for antibacterial wound dressing: investigation in vitro and in vivo. Biomed. Mater. 2014;9:035005. doi: 10.1088/1748-6041/9/3/035005. PubMed DOI

Moniri M., Boroumand Moghaddam A., Azizi S., Abdul Rahim R., Zuhainis Saad W., Navaderi M., Arulselvan P., Mohamad R. Molecular study of wound healing after using biosynthesized BNC/Fe3O4 nanocomposites assisted with a bioinformatics approach. Int. J. Nanomed. 2018;13:2955–2971. doi: 10.2147/IJN.S159637. PubMed DOI PMC

Li Y., Tian Y., Zheng W., Feng Y., Huang R., Shao J., Tang R., Wang P., Jia Y., Zhang J., et al. Composites of bacterial cellulose and small molecule-decorated gold nanoparticles for treating gram-negative bacteria-infected wounds. Small. 2017;13:1700130. doi: 10.1002/smll.201700130. PubMed DOI

Moritz S., Wiegand C., Wesarg F., Hessler N., Müller F.A., Kralisch D., Hipler U.-C., Fischer D. Active wound dressings based on bacterial nanocellulose as drug delivery system for octenidine. Int. J. Pharm. 2014;471:45–55. doi: 10.1016/j.ijpharm.2014.04.062. PubMed DOI

Żywicka A., Fijałkowski K., Junka A.F., Grzesiak J., El Fray M. Modification of bacterial cellulose with quaternary ammonium compounds based on fatty acids and amino acids and the effect on antimicrobial activity. Biomacromolecules. 2018;19:1528–1538. doi: 10.1021/acs.biomac.8b00183. PubMed DOI

Lin W.-C., Lien C.-C., Yeh H.-J., Yu C.-M., Hsu S. Bacterial cellulose and bacterial cellulose–chitosan membranes for wound dressing applications. Carbohydr. Polym. 2013;94:603–611. doi: 10.1016/j.carbpol.2013.01.076. PubMed DOI

Ataide J.A., de Carvalho N.M., de Rebelo M.A., Chaud M.V., Grotto D., Gerenutti M., Rai M., Mazzola P.G., Jozala A.F. Bacterial nanocellulose loaded with bromelain: Assessment of antimicrobial, antioxidant and physical-chemical properties. Sci. Rep. 2017;7:18031. doi: 10.1038/s41598-017-18271-4. PubMed DOI PMC

Zmejkoski D., Spasojević D., Orlovska I., Kozyrovska N., Soković M., Glamočlija J., Dmitrović S., Matović B., Tasić N., Maksimović V., et al. Bacterial cellulose-lignin composite hydrogel as a promising agent in chronic wound healing. Int. J. Biol. Macromol. 2018;118:494–503. doi: 10.1016/j.ijbiomac.2018.06.067. PubMed DOI

Khamrai M., Banerjee S.L., Paul S., Samanta S., Kundu P.P. Curcumin entrapped gelatin/ionically modified bacterial cellulose based self-healable hydrogel film: An eco-friendly sustainable synthesis method of wound healing patch. Int. J. Biol. Macromol. 2018;122:940–953. doi: 10.1016/j.ijbiomac.2018.10.196. PubMed DOI

Kumavat S.D., Chaudhari Y.S., Borole P., Mishra P., Shenghani K., Duvvuri P. Degradation studies of curcumin. Int. J. Pharm. Rev. Res. 2013;3:50–55.

Esatbeyoglu T., Ulbrich K., Rehberg C., Rohn S., Rimbach G. Thermal stability, antioxidant, and anti-inflammatory activity of curcumin and its degradation product 4-vinyl guaiacol. Food Funct. 2015;6:887–893. doi: 10.1039/C4FO00790E. PubMed DOI

Kolarova K. (University of Chemistry and Technology Prague, Prague, Czech Republic). Personal communication. 2018. unpublished data.

Taokaew S., Nunkaew N., Siripong P., Phisalaphong M. Characteristics and anticancer properties of bacterial cellulose films containing ethanolic extract of mangosteen peel. J. Biomater. Sci. Polym. Edit. 2014;25:907–922. doi: 10.1080/09205063.2014.913464. PubMed DOI

Vosmanska V., Kolarova K., Rimpelova S., Svorcik V. Surface modification of oxidized cellulose haemostat by argon plasma treatment. Cellulose. 2014;21:2445–2456. doi: 10.1007/s10570-014-0328-x. DOI

Jack A.A., Nordli H.R., Powell L.C., Powell K.A., Kishnani H., Johnsen P.O., Pukstad B., Thomas D.W., Chinga-Carrasco G., Hill K.E. The interaction of wood nanocellulose dressings and the wound pathogen P. aeruginosa. Carbohydr. Polym. 2017;157:1955–1962. doi: 10.1016/j.carbpol.2016.11.080. PubMed DOI

Poonguzhali R., Khaleel Basha S., Sugantha Kumari V. Novel asymmetric chitosan/PVP/nanocellulose wound dressing: In vitro and in vivo evaluation. Int. J. Biol. Macromol. 2018;112:1300–1309. doi: 10.1016/j.ijbiomac.2018.02.073. PubMed DOI

Rees A., Powell L.C., Chinga-Carrasco G., Gethin D.T., Syverud K., Hill K.E., Thomas D.W. 3D bioprinting of carboxymethylated-periodate oxidized nanocellulose constructs for wound dressing applications. BioMed Res. Int. 2015;2015:1–7. doi: 10.1155/2015/925757. PubMed DOI PMC

Wang X., Cheng F., Liu J., Smått J.-H., Gepperth D., Lastusaari M., Xu C., Hupa L. Biocomposites of copper-containing mesoporous bioactive glass and nanofibrillated cellulose: Biocompatibility and angiogenic promotion in chronic wound healing application. Acta Biomater. 2016;46:286–298. doi: 10.1016/j.actbio.2016.09.021. PubMed DOI

Werrett M.V., Herdman M.E., Brammananth R., Garusinghe U., Batchelor W., Crellin P.K., Coppel R.L., Andrews P.C. Bismuth phosphinates in Bi-nanocellulose composites and their efficacy towards multi-drug resistant bacteria. Chem. A Eur. J. 2018;24:12938–12949. doi: 10.1002/chem.201801803. PubMed DOI

Evdokimova O., Svensson F., Agafonov A., Håkansson S., Seisenbaeva G., Kessler V. Hybrid drug delivery patches based on spherical cellulose nanocrystals and colloid titania—Synthesis and antibacterial properties. Nanomaterials. 2018;8:228. doi: 10.3390/nano8040228. PubMed DOI PMC

Kwon S.S., Kong B.J., Park S.N. Physicochemical properties of pH-sensitive hydrogels based on hydroxyethyl cellulose–hyaluronic acid and for applications as transdermal delivery systems for skin lesions. Eur. J. Pharm. Biopharm. 2015;92:146–154. doi: 10.1016/j.ejpb.2015.02.025. PubMed DOI

Sampath Udeni Gunathilake T.M., Ching Y.C., Chuah C.H., Illias H.A., Ching K.Y., Singh R., Nai-Shang L. Influence of a nonionic surfactant on curcumin delivery of nanocellulose reinforced chitosan hydrogel. Int. J. Biol. Macromol. 2018;118:1055–1064. doi: 10.1016/j.ijbiomac.2018.06.147. PubMed DOI

Suwannateep N., Wanichwecharungruang S., Fluhr J., Patzelt A., Lademann J., Meinke M.C. Comparison of two encapsulated curcumin particular systems contained in different formulations with regard to in vitro skin penetration. Skin Res. Technol. 2013;19:1–9. doi: 10.1111/j.1600-0846.2011.00600.x. PubMed DOI

Anjum S., Gupta A., Sharma D., Gautam D., Bhan S., Sharma A., Kapil A., Gupta B. Development of novel wound care systems based on nanosilver nanohydrogels of polymethacrylic acid with Aloe vera and curcumin. Mater. Sci. Eng. C. 2016;64:157–166. doi: 10.1016/j.msec.2016.03.069. PubMed DOI

Mo Y., Guo R., Zhang Y., Xue W., Cheng B., Zhang Y. Controlled dual delivery of angiogenin and curcumin by electrospun nanofibers for skin regeneration. Tissue Eng. Part A. 2017;23:597–608. doi: 10.1089/ten.tea.2016.0268. PubMed DOI

Guo R., Lan Y., Xue W., Cheng B., Zhang Y., Wang C., Ramakrishna S. Collagen-cellulose nanocrystal scaffolds containing curcumin-loaded microspheres on infected full-thickness burns repair. J. Tissue Eng. Regen. Med. 2017;11:3544–3555. doi: 10.1002/term.2272. PubMed DOI

Vosmanská V., Kolářová K., Rimpelová S., Kolská Z., Švorčík V. Antibacterial wound dressing: Plasma treatment effect on chitosan impregnation and in situ synthesis of silver chloride on cellulose surface. RSC Adv. 2015;5:17690–17699. doi: 10.1039/C4RA16296J. DOI

Dong S., Cho H.J., Lee Y.W., Roman M. Synthesis and cellular uptake of folic acid-conjugated cellulose nanocrystals for cancer targeting. Biomacromolecules. 2014;15:1560–1567. doi: 10.1021/bm401593n. PubMed DOI

Zheng Z., Liu Y., Huang W., Mo Y., Lan Y., Guo R., Cheng B. Neurotensin-loaded PLGA/CNC composite nanofiber membranes accelerate diabetic wound healing. Artif. Cells Nanomed. Biotechnol. 2018 doi: 10.1080/21691401.2018.1460372. in press. PubMed DOI

Taheri A., Mohammadi M. The use of cellulose nanocrystals for potential application in topical delivery of hydroquinone. Chem. Biol. Drug Des. 2015;86:102–106. doi: 10.1111/cbdd.12466. PubMed DOI

Meng L.-Y., Wang B., Ma M.-G., Zhu J.-F. Cellulose-based nanocarriers as platforms for cancer therapy. Curr. Pharm. Des. 2017;23:5292–5300. doi: 10.2174/1381612823666171031111950. PubMed DOI

Edwards J., Fontenot K., Liebner F., Condon B. Peptide-cellulose conjugates on cotton-based materials have protease sensor/sequestrant activity. Sensors. 2018;18:2334. doi: 10.3390/s18072334. PubMed DOI PMC

Edwards J., Fontenot K., Liebner F., Pircher N., French A., Condon B. Structure/function analysis of cotton-based peptide-cellulose conjugates: Spatiotemporal/kinetic asessment of protease aerogels compared to nanocrystalline and paper cellulose. Int. J. Mol. Sci. 2018;19:840. doi: 10.3390/ijms19030840. PubMed DOI PMC

Bhattacharya K., Kiliç G., Costa P.M., Fadeel B. Cytotoxicity screening and cytokine profiling of nineteen nanomaterials enables hazard ranking and grouping based on inflammogenic potential. Nanotoxicology. 2017;11:809–826. PubMed

Menas A.L., Yanamala N., Farcas M.T., Russo M., Friend S., Fournier P.M., Star A., Iavicoli I., Shurin G.V., Vogel U.B., et al. Fibrillar vs crystalline nanocellulose pulmonary epithelial cell responses: Cytotoxicity or inflammation? Chemosphere. 2017;171:671–680. doi: 10.1016/j.chemosphere.2016.12.105. PubMed DOI PMC

Park E.-J., Khaliullin T.O., Shurin M.R., Kisin E.R., Yanamala N., Fadeel B., Chang J., Shvedova A.A. Fibrous nanocellulose, crystalline nanocellulose, carbon nanotubes, and crocidolite asbestos elicit disparate immune responses upon pharyngeal aspiration in mice. J. Immunotoxicol. 2018;15:12–23. doi: 10.1080/1547691X.2017.1414339. PubMed DOI

Liu J., Bacher M., Rosenau T., Willför S., Mihranyan A. Potentially immunogenic contaminants in wood-based and bacterial nanocellulose: Assessment of endotoxin and (1,3)-β-d-glucan levels. Biomacromolecules. 2018;19:150–157. doi: 10.1021/acs.biomac.7b01334. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...