• This record comes from PubMed

Effects of Bacterial Nanocellulose Loaded with Curcumin and Its Degradation Products on Human Dermal Fibroblasts

. 2020 Oct 25 ; 13 (21) : . [epub] 20201025

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
20-01641S Grantová Agentura České Republiky

Bacterial nanocellulose has found applications in tissue engineering, in skin tissue repair, and in wound healing. Its large surface area enables the adsorption of various substances. Bacterial nanocellulose with adsorbed substances can serve as a substrate for drug-delivery of specific bioactive healing agents into wounds. In this study, we loaded a bacterial nanocellulose hydrogel with curcumin, i.e., an important anti-bacterial and healing agent, and its degradation products. These products were prepared by thermal decomposition of curcumin (DC) at a temperature of 180 °C (DC 180) or of 300 °C (DC 300). The main thermal decomposition products were tumerone, vanillin, and feruloylmethane. Curcumin and its degradation products were loaded into the bacterial nanocellulose by an autoclaving process. The increased temperature during autoclaving enhanced the solubility and the penetration of the agents into the nanocellulose. The aim of this study was to investigate the cytotoxicity and the antimicrobial activity of pure curcumin, its degradation products, and finally of bacterial nanocellulose loaded with these agents. In vitro tests performed on human dermal fibroblasts revealed that the degradation products of curcumin, i.e., DC 180 and DC 300, were more cytotoxic than pure curcumin. However, if DC 300 was loaded into nanocellulose, the cytotoxic effect was not as strong as in the case of DC 300 powder added into the culture medium. DC 300 was found to be the least soluble product in water, which probably resulted in the poor loading of this agent into the nanocellulose. Nanocellulose loaded with pure curcumin or DC 180 exhibited more antibacterial activity than pristine nanocellulose.

See more in PubMed

Wang S., Lu A., Zhang L. Recent advances in regenerated cellulose materials. Prog. Polym. Sci. 2016;53:169–206. doi: 10.1016/j.progpolymsci.2015.07.003. DOI

Kamide K. Cellulose and Cellulose Derivatives. Elsevier BV; Amsterdam, The Netherlands: 2005. p. 652.

Bacakova L., Pajorova J., Bacakova M., Skogberg A., Kallio P., Kolarova K., Svorcik V. Versatile Application of Nanocellulose: From Industry to Skin Tissue Engineering and Wound Healing. Nanomaterials. 2019;9:164. doi: 10.3390/nano9020164. PubMed DOI PMC

Rangaswamy B.E., Vanitha K.P., Hungund B.S. Microbial Cellulose Production from Bacteria Isolated from Rotten Fruit. Int. J. Polym. Sci. 2015;2015:1–8. doi: 10.1155/2015/280784. DOI

Khamrai M., Banerjee S.L., Paul S., Samanta S., Kundu P.P. Curcumin entrapped gelatin/ionically modified bacterial cellulose based self-healable hydrogel film: An eco-friendly sustainable synthesis method of wound healing patch. Int. J. Biol. Macromol. 2019;122:940–953. doi: 10.1016/j.ijbiomac.2018.10.196. PubMed DOI

Wiegand C., Moritz S., Hessler N., Kralisch D., Wesarg F., Müller F.A., Fischer D., Hipler U.-C. Antimicrobial functionalization of bacterial nanocellulose by loading with polihexanide and povidone-iodine. J. Mater. Sci. Mater. Med. 2015;26:1–14. doi: 10.1007/s10856-015-5571-7. PubMed DOI

Kaminagakura K.L.N., Sato S.S., Sugino P., Veloso L.K.D., dos Santos D.C., Padovani C.R., Basmaji P., Olyveira G., Schellini S.A. Nanoskin® to treat full thickness skin wounds. J. Biomed. Mater. Res. B. 2019;107:724–732. doi: 10.1002/jbm.b.34166. PubMed DOI

Kwak M.H., Kim J.E., Go J., Koh E.K., Song S.H., Son H.J., Kim H.S., Yun Y.H., Jung Y.J., Hwang D.Y. Bacterial cellulose membrane produced by Acetobacter sp. A10 for burn wound dressing applications. Carbohydr. Polym. 2015;122:387–398. doi: 10.1016/j.carbpol.2014.10.049. PubMed DOI

Fu L., Zhang J., Yang G. Present status and applications of bacterial cellulose-based materials for skin tissue repair. Carbohydr. Polym. 2013;92:1432–1442. doi: 10.1016/j.carbpol.2012.10.071. PubMed DOI

Bacakova M., Pajorova J., Sopuch T., Bačáková L. Fibrin-Modified Cellulose as a Promising Dressing for Accelerated Wound Healing. Materials. 2018;11:2314. doi: 10.3390/ma11112314. PubMed DOI PMC

Moghadamtousi S.Z., Kadir H.A., Hassandarvish P., Tajik H., Abubakar S., Zandi K. A Review on Antibacterial, Antiviral, and Antifungal Activity of Curcumin. BioMed Res. Int. 2014;2014:1–12. doi: 10.1155/2014/186864. PubMed DOI PMC

Kong Z.-L., Kuo H.-P., Johnson A., Wu L.-C., Chang K.L.B. Curcumin-Loaded Mesoporous Silica Nanoparticles Markedly Enhanced Cytotoxicity in Hepatocellular Carcinoma Cells. Int. J. Mol. Sci. 2019;20:2918. doi: 10.3390/ijms20122918. PubMed DOI PMC

Esatbeyoglu T., Ulbrich K., Rehberg C., Rohn S., Rimbach G. Thermal stability, antioxidant, and anti-inflammatory activity of curcumin and its degradation product 4-vinyl guaiacol. Food Funct. 2015;6:887–893. doi: 10.1039/C4FO00790E. PubMed DOI

Akbik D., Ghadiri M., Chrzanowski W., Rohanizadeh R. Curcumin as a wound healing agent. Life Sci. 2014;116:1–7. doi: 10.1016/j.lfs.2014.08.016. PubMed DOI

Guo R., Lan Y., Xue W., Cheng B., Zhang Y., Wang C., Ramakrishna S. Collagen-cellulose nanocrystal scaffolds containing curcumin-loaded microspheres on infected full-thickness burns repair. J. Tissue Eng. Regen. Med. 2017;11:3544–3555. doi: 10.1002/term.2272. PubMed DOI

Kumavat S.D., Chaudhari Y.S., Borole P., Mishra P., Shenghani K., Duvvuri P. Degradation Studies of Curcumin. Int. J. Pharm. Sci. Rev. Res. 2013;3:50–55.

Schneider C., Gordon O.N., Edwards R.L., Luis P.B. Degradation of Curcumin: From Mechanism to Biological Implications. J. Agric. Food Chem. 2015;63:7606–7614. doi: 10.1021/acs.jafc.5b00244. PubMed DOI PMC

Kurien B.T., Singh A., Matsumoto H., Scofield R.H. Improving the Solubility and Pharmacological Efficacy of Curcumin by Heat Treatment. ASSAY Drug Dev. Technol. 2007;5:567–576. doi: 10.1089/adt.2007.064. PubMed DOI

Al Hagbani T., Nazzal S. Curcumin complexation with cyclodextrins by the autoclave process: Method development and characterization of complex formation. Int. J. Pharm. 2017;520:173–180. doi: 10.1016/j.ijpharm.2017.01.063. PubMed DOI

Ngwabebhoh F.A., Erdagi S.I., Yildiz U. Pickering emulsions stabilized nanocellulosic-based nanoparticles for coumarin and curcumin nanoencapsulations: In vitro release, anticancer and antimicrobial activities. Carbohydr. Polym. 2018;201:317–328. doi: 10.1016/j.carbpol.2018.08.079. PubMed DOI

Gunathilake T.M.S.U., Ching Y.C., Chuah C.H., Illias H.A., Ching K.Y., Singh R., Nai-Shang L. Influence of a nonionic surfactant on curcumin delivery of nanocellulose reinforced chitosan hydrogel. Int. J. Biol. Macromol. 2018;118:1055–1064. doi: 10.1016/j.ijbiomac.2018.06.147. PubMed DOI

Anjum S., Gupta A., Sharma D., Gautam D., Bhan S., Sharma A., Kapil A., Gupta B. Development of novel wound care systems based on nanosilver nanohydrogels of polymethacrylic acid with Aloe vera and curcumin. Mater. Sci. Eng. C. 2016;64:157–166. doi: 10.1016/j.msec.2016.03.069. PubMed DOI

Mo Y., Guo R., Zhang Y., Xue W., Cheng B., Zhang Y. Controlled Dual Delivery of Angiogenin and Curcumin by Electrospun Nanofibers for Skin Regeneration. Tissue Eng. Part A. 2017;23:597–608. doi: 10.1089/ten.tea.2016.0268. PubMed DOI

Chen Z., Xia Y., Liao S., Huang Y., Li Y., He Y., Tong Z., Li B. Thermal degradation kinetics study of curcumin with nonlinear methods. Food Chem. 2014;155:81–86. doi: 10.1016/j.foodchem.2014.01.034. PubMed DOI

Scharstuhl A., Mutsaers H.A.M., Pennings S., Szarek W., Russel F.G.M., Wagener F.A.D.T.G. Curcumin-induced fibroblast apoptosis andin vitrowound contraction are regulated by antioxidants and heme oxygenase: Implications for scar formation. J. Cell. Mol. Med. 2009;13:712–725. doi: 10.1111/j.1582-4934.2008.00339.x. PubMed DOI PMC

Ji M., Choi J., Lee J., Lee Y. Induction of apoptosis by ar-turmerone on various cell lines. Int. J. Mol. Med. 2004;14:253–256. doi: 10.3892/ijmm.14.2.253. PubMed DOI

Kim D., Suh Y., Lee H., Lee Y. Immune activation and antitumor response of ar-turmerone on P388D1 lymphoblast cell implanted tumors. Int. J. Mol. Med. 2012;31:386–392. doi: 10.3892/ijmm.2012.1196. PubMed DOI

Cozza G., Zonta F., Vedove A.D., Venerando A., Dall’Acqua S., Battistutta R., Ruzzene M., Lolli G. Biochemical and cellular mechanism of protein kinase CK2 inhibition by deceptive curcumin. FEBS J. 2019;287:1850–1864. doi: 10.1111/febs.15111. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...