Fibrin-Modified Cellulose as a Promising Dressing for Accelerated Wound Healing
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
17-00885S
Grantová Agentura České Republiky
TA04010065
Technologická Agentura České Republiky
PubMed
30453657
PubMed Central
PMC6266344
DOI
10.3390/ma11112314
PII: ma11112314
Knihovny.cz E-zdroje
- Klíčová slova
- dermal fibroblasts, fibrin, skin, sodium carboxymethylcellulose, wound dressing, wound healing,
- Publikační typ
- časopisecké články MeSH
Dermal injuries and chronic wounds usually regenerate with scar formation. Successful treatment without scarring might be achieved by pre-seeding a wound dressing with cells. We aimed to prepare a wound dressing fabricated from sodium carboxymethylcellulose (Hcel® NaT), combined with fibrin and seeded with dermal fibroblasts in vitro. We fabricated the Hcel® NaT in a porous and homogeneous form (P form and H form, respectively) differing in structural morphology and in the degree of substitution of hydroxyl groups. Each form of Hcel® NaT was functionalized with two morphologically different fibrin structures to improve cell adhesion and proliferation, estimated by an MTS assay. Fibrin functionalization of the Hcel® NaT strongly enhanced colonization of the material with human dermal fibroblasts. Moreover, the type of fibrin structures influenced the ability of the cells to adhere to the material and proliferate on it. The fibrin mesh filling the void spaces between cellulose fibers better supported cell attachment and subsequent proliferation than the fibrin coating, which only enwrapped individual cellulose fibers. On the fibrin mesh, the cell proliferation activity on day 3 was higher on the H form than on the P form of Hcel® NaT, while on the fibrin coating, the cell proliferation on day 7 was higher on the P form. The Hcel® NaT wound dressing functionalized with fibrin, especially when in the form of a mesh, can accelerate wound healing by supporting fibroblast adhesion and proliferation.
Zobrazit více v PubMed
Bacakova L., Novotna K., Sopuch T., Havelka P. Cell interaction with cellulose-based scaffolds for tissue engineering—A review. In: Mondal I.H., editor. Cellulose and Cellulose Composites: Modification, Characterization and Applications. Nova Science Publishers, Inc.; New York, NY, USA: 2015. pp. 341–375.
Kalia S., Dufresne A., Cherian B.M., Kaith B.S., Averous L., Njuguna J., Nassiopoulos E. Cellulose-Based Bio- and Nanocomposites: A Review. Int. J. Polym. Sci. 2011;2011:837875. doi: 10.1155/2011/837875. DOI
Klemm D., Heublein B., Fink H.P., Bohn A. Cellulose: Fascinating biopolymer and sustainable raw material. Angew. Chem. Int. Ed. 2005;44:3358–3393. doi: 10.1002/anie.200460587. PubMed DOI
Coseri S. Cellulose: To depolymerize... or not to? Biotechnol. Adv. 2017;35:251–266. doi: 10.1016/j.biotechadv.2017.01.002. PubMed DOI
Ohta S., Nishiyama T., Sakoda M., Machioka K., Fuke M., Ichimura S., Inagaki F., Shimizu A., Hasegawa K., Kokudo N., et al. Development of carboxymethyl cellulose nonwoven sheet as a novel hemostatic agent. J. Biosci. Bioeng. 2015;119:718–723. doi: 10.1016/j.jbiosc.2014.10.026. PubMed DOI
Ramli N.A., Wong T.W. Sodium carboxymethylcellulose scaffolds and their physicochemical effects on partial thickness wound healing. Int. J. Pharm. 2011;403:73–82. doi: 10.1016/j.ijpharm.2010.10.023. PubMed DOI
Wong T.W., Ramli N.A. Carboxymethylcellulose film for bacterial wound infection control and healing. Carbohydr. Polym. 2014;112:367–375. doi: 10.1016/j.carbpol.2014.06.002. PubMed DOI
Mutsaers S.E., Bishop J.E., McGrouther G., Laurent G.J. Mechanisms of tissue repair: From wound healing to fibrosis. Int. J. Biochem. Cell Biol. 1997;29:5–17. doi: 10.1016/S1357-2725(96)00115-X. PubMed DOI
Tracy L.E., Minasian R.A., Caterson E.J. Extracellular Matrix and Dermal Fibroblast Function in the Healing Wound. Adv. Wound Care. 2016;5:119–136. doi: 10.1089/wound.2014.0561. PubMed DOI PMC
Wright K.A., Nadire K.B., Busto P., Tubo R., McPherson J.M., Wentworth B.M. Alternative delivery of keratinocytes using a polyurethane membrane and the implications for its use in the treatment of full-thickness burn injury. Burns. 1998;24:7–17. doi: 10.1016/S0305-4179(97)00075-2. PubMed DOI
van den Bogaerdt A.J., Ulrich M.M., van Galen M.J., Reijnen L., Verkerk M., Pieper J., Lamme E.N., Middelkoop E. Upside-down transfer of porcine keratinocytes from a porous, synthetic dressing to experimental full-thickness wounds. Wound Repair Regen. 2004;12:225–234. doi: 10.1111/j.1067-1927.2004.012115.x. PubMed DOI
Johnen C., Steffen I., Beichelt D., Braeutigam K., Witascheck T., Toman N., Moser V., Ottomann C., Hartmann B., Gerlach J.C. Culture of subconfluent human fibroblasts and keratinocytes using biodegradable transfer membranes. Burns. 2008;34:655–663. doi: 10.1016/j.burns.2007.08.023. PubMed DOI
Mohamad N., Loh E.Y.X., Fauzi M.B., Ng M.H., Mohd Amin M.C.I. In vivo evaluation of bacterial cellulose/acrylic acid wound dressing hydrogel containing keratinocytes and fibroblasts for burn wounds. Drug Deliv. Transl. Res. 2018:1–9. doi: 10.1007/s13346-017-0475-3. PubMed DOI
Groeber F., Holeiter M., Hampel M., Hinderer S., Schenke-Layland K. Skin tissue engineering—In vivo and in vitro applications. Adv. Drug Deliv. Rev. 2011;63:352–366. doi: 10.1016/j.addr.2011.01.005. PubMed DOI
Laurens N., Koolwijk P., de Maat M.P. Fibrin structure and wound healing. J. Thromb. Haemost. 2006;4:932–939. doi: 10.1111/j.1538-7836.2006.01861.x. PubMed DOI
Reinke J.M., Sorg H. Wound repair and regeneration. Eur. Surg. Res. 2012;49:35–43. doi: 10.1159/000339613. PubMed DOI
Rajangam T., An S.S. Fibrinogen and fibrin based micro and nano scaffolds incorporated with drugs, proteins, cells and genes for therapeutic biomedical applications. Int. J. Nanomed. 2013;8:3641–3662. doi: 10.2147/IJN.S43945. PubMed DOI PMC
Bacakova M., Musilkova J., Riedel T., Stranska D., Brynda E., Zaloudkova M., Bacakova L. The potential applications of fibrin-coated electrospun polylactide nanofibers in skin tissue engineering. Int. J. Nanomed. 2016;11:771–789. doi: 10.2147/IJN.S99317. PubMed DOI PMC
Bacakova M., Pajorova J., Stranska D., Hadraba D., Lopot F., Riedel T., Brynda E., Zaloudkova M., Bacakova L. Protein nanocoatings on synthetic polymeric nanofibrous membranes designed as carriers for skin cells. Int. J. Nanomed. 2017;12:1143–1160. doi: 10.2147/IJN.S121299. PubMed DOI PMC
Pajorova J., Bacakova M., Musilkova J., Broz A., Hadraba D., Lopot F., Bacakova L. Morphology of a fibrin nanocoating influences dermal fibroblast behavior. Int. J. Nanomed. 2018;13:3367–3380. doi: 10.2147/IJN.S162644. PubMed DOI PMC
Melander A., Vuorinen T. Determination of the degree of polymerisation of carboxymethyl cellulose by size exclusion chromatography. Carbohydr. Polym. 2001;46:227–233. doi: 10.1016/S0144-8617(00)00303-9. DOI
Riedel T., Brynda E., Dyr J.E., Houska M. Controlled preparation of thin fibrin films immobilized at solid surfaces. J. Biomed. Mater. Res. A. 2009;88:437–447. doi: 10.1002/jbm.a.31755. PubMed DOI
Tamer T.M., Collins M.N., Valachova K., Hassan M.A., Omer A.M., Mohy-Eldin M.S., Svik K., Jurcik R., Ondruska L., Biro C., et al. MitoQ Loaded Chitosan-Hyaluronan Composite Membranes for Wound Healing. Materials. 2018;11:569. doi: 10.3390/ma11040569. PubMed DOI PMC
Zulkifli F.H., Hussain F.S., Rasad M.S., Mohd Yusoff M. Nanostructured materials from hydroxyethyl cellulose for skin tissue engineering. Carbohydr. Polym. 2014;114:238–245. doi: 10.1016/j.carbpol.2014.08.019. PubMed DOI
Song S.H., Kim J.E., Lee Y.J., Kwak M.H., Sung G.Y., Kwon S.H., Son H.J., Lee H.S., Jung Y.J., Hwang D.Y. Cellulose film regenerated from Styela clava tunics have biodegradability, toxicity and biocompatibility in the skin of SD rats. J. Mater. Sci. Mater. Med. 2014;25:1519–1530. doi: 10.1007/s10856-014-5182-8. PubMed DOI
Mohseni M., Shamloo A., Aghababaei Z., Vossoughi M., Moravvej H. Antimicrobial Wound Dressing Containing Silver Sulfadiazine with High Biocompatibility: In Vitro Study. Artif. Organs. 2016;40:765–773. doi: 10.1111/aor.12682. PubMed DOI
Novotna K., Havelka P., Sopuch T., Kolarova K., Vosmanska V., Lisa V., Svorcik V., Bacakova L. Cellulose-based materials as scaffolds for tissue engineering. Cellulose. 2013;20:2263–2278. doi: 10.1007/s10570-013-0006-4. DOI
Broussard K.C., Powers J.G. Wound dressings: Selecting the most appropriate type. Am. J. Clin. Dermatol. 2013;14:449–459. doi: 10.1007/s40257-013-0046-4. PubMed DOI
Ahmadi H., Williams G. Permanent scarring in a partial thickness scald burn dressed with Biobrane. J. Plast. Reconstr. Aesthet. Surg. 2009;62:697–698. doi: 10.1016/j.bjps.2008.01.014. PubMed DOI
Boateng J.S., Matthews K.H., Stevens H.N., Eccleston G.M. Wound healing dressings and drug delivery systems: A review. J. Pharm. Sci. 2008;97:2892–2923. doi: 10.1002/jps.21210. PubMed DOI
Rodriguez-Merchan E.C. Local fibrin glue and chitosan-based dressings in haemophilia surgery. Blood Coagul. Fibrinolysis. 2012;23:473–476. doi: 10.1097/MBC.0b013e3283555379. PubMed DOI
Yildirim S., Ozener H.O., Dogan B., Kuru B. Effect of topically applied hyaluronic acid on pain and palatal epithelial wound healing: An examiner-masked, randomized, controlled clinical trial. J. Periodontol. 2018;89:36–45. doi: 10.1902/jop.2017.170105. PubMed DOI
Bacakova L., Filova E., Kubies D., Machova L., Proks V., Malinova V., Lisa V., Rypacek F. Adhesion and growth of vascular smooth muscle cells in cultures on bioactive RGD peptide-carrying polylactides. J. Mater. Sci. Mater. Med. 2007;18:1317–1323. doi: 10.1007/s10856-006-0074-1. PubMed DOI
Hopp I., Michelmore A., Smith L.E., Robinson D.E., Bachhuka A., Mierczynska A., Vasilev K. The influence of substrate stiffness gradients on primary human dermal fibroblasts. Biomaterials. 2013;34:5070–5077. doi: 10.1016/j.biomaterials.2013.03.075. PubMed DOI
Engler A., Bacakova L., Newman C., Hategan A., Griffin M., Discher D. Substrate compliance versus ligand density in cell on gel responses. Biophys. J. 2004;86:617–628. doi: 10.1016/S0006-3495(04)74140-5. PubMed DOI PMC
Carr M.E., Jr., Hermans J. Size and density of fibrin fibers from turbidity. Macromolecules. 1978;11:46–50. doi: 10.1021/ma60061a009. PubMed DOI
Riedelova-Reicheltova Z., Brynda E., Riedel T. Fibrin nanostructures for biomedical applications. Physiol. Res. 2016;65:S263–S272. PubMed
Becker J.C., Domschke W., Pohle T. Biological in vitro effects of fibrin glue: Fibroblast proliferation, expression and binding of growth factors. Scand. J. Gastroenterol. 2004;39:927–932. doi: 10.1080/00365520410003371. PubMed DOI
Gsib O., Duval J.L., Goczkowski M., Deneufchatel M., Fichet O., Larreta-Garde V., Bencherif S.A., Egles C. Evaluation of Fibrin-Based Interpenetrating Polymer Networks as Potential Biomaterials for Tissue Engineering. Nanomaterials. 2017;7:436. doi: 10.3390/nano7120436. PubMed DOI PMC
Stevens M.M., George J.H. Exploring and engineering the cell surface interface. Science. 2005;310:1135–1138. doi: 10.1126/science.1106587. PubMed DOI
Bacakova L., Filova E., Parizek M., Ruml T., Svorcik V. Modulation of cell adhesion, proliferation and differentiation on materials designed for body implants. Biotechnol. Adv. 2011;29:739–767. doi: 10.1016/j.biotechadv.2011.06.004. PubMed DOI
Mazlyzam A.L., Aminuddin B.S., Fuzina N.H., Norhayati M.M., Fauziah O., Isa M.R., Saim L., Ruszymah B.H. Reconstruction of living bilayer human skin equivalent utilizing human fibrin as a scaffold. Burns. 2007;33:355–363. doi: 10.1016/j.burns.2006.08.022. PubMed DOI
Dvorankova B., Smetana K., Jr., Vacik J., Jelinkova M. Cultivation of keratinocytes on poly HEMA and their migration after inversion. Folia Biol. 1996;42:83–86. PubMed
Versatile Application of Nanocellulose: From Industry to Skin Tissue Engineering and Wound Healing