Alginate/pectin dressing with niosomal mangosteen extract for enhanced wound healing: evaluating skin irritation by structure-activity relationship

. 2022 Dec ; 8 (12) : e12032. [epub] 20221205

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36506386
Odkazy

PubMed 36506386
PubMed Central PMC9727648
DOI 10.1016/j.heliyon.2022.e12032
PII: S2405-8440(22)03320-5
Knihovny.cz E-zdroje

Most modern wound dressings assist the wound-healing process. In contrast, conventional wound dressings have limited antibacterial activity and promote sporadic fibroblast growth. Therefore, wound dressings with prolonged substance release must be improved. This research aimed to develop hydrogel films. These were synthesized from alginate and pectin, incorporated with mangosteen extract (ME), and encapsulated in niosomes (ME-loaded niosomes). Subsequently, we examined the in vitro release and physical characteristics of ME-loaded niosomes. These characteristics included particle pH, size, charge, polydispersity index (PDI), and drug loading properties. These properties included drug loading content (DLC), entrapment efficiency (EE), and yield (Y). Additionally, we examined the swelling ratio and biological characteristics of the hydrogel film. These characteristics included antibacterial activity, cytotoxicity (L929), cell attachment to the tested materials, cell migration, hemocompatibility, and in vivo irritation. Significant results were obtained using a 2:1 niosome preparation containing Span60 and cholesterol. Ratio influenced size, charge, PDI, DLC, EE, and Y. The results were 225.5 ± 5.83 nm, negatively charged, 0.38, 16.2 ± 0.87%, 64.8 ± 3.49%, and 87.3 ± 3.09%, respectively. Additionally, the release of encapsulated ME was pH sensitive because 85% of the ME can be released at a pH of 5.5 within seven days and decrease to 70% at a pH of 7.4. The maximum swelling ratios of patches with 0.5% and 1% Ca2+ crosslinking were 867 wt% and 1,025 wt%, respectively, after 30 min. These results suggested that a medium dose (15 mg) of niosomal ME incorporated in a hydrogel film provided better bacterial inhibition, cell migration, and cell adhesion in an in vitro model. Additionally, no toxicity was observed in the fibroblasts and red blood cells. Therefore, given the above-mentioned advantages, this product can be a promising candidate for wound dressing applications.

Zobrazit více v PubMed

Yousef H., Alhajj M., Sharma S. StatPearls Publishing; Treasure Island (FL): 2021. Anatomy, Skin (Integument), Epidermis. PubMed

Ghatak S., Maytin E.V., Mack J.A., Hascall V.C., Atanelishvili I., Moreno Rodriguez R., et al. Roles of proteoglycans and glycosaminoglycans in wound healing and fibrosis. Int. J. Cell Mol. Biol. 2015;2015 PubMed PMC

Kolarsick P.A.J., Kolarsick M.A., Goodwin C. Anatomy and Physiology of the Skin. J. Dermatol. Nurses Assoc. 2011;3(4):203–213.

Stadelmann W.K., Digenis A.G., Tobin G.R. Impediments to wound healing. Am. J. Surg. 1998;176(2, Supplement 1):39S–47S. PubMed

Banno K., Yoder M.C. Tissue regeneration using endothelial colony-forming cells: promising cells for vascular repair. Pediatr. Res. 2018;83(1):283–290. PubMed

Guo S., DiPietro L.A. Factors affecting wound healing. J. Dent. Res. 2010;89(3):219–229. PubMed PMC

Bacakova L., Pajorova J., Bacakova M., Skogberg A., Kallio P., Kolarova K., et al. Versatile application of nanocellulose: from industry to skin tissue engineering and wound healing. Nanomaterials. 2019;9(2):164. PubMed PMC

Cascone S., Lamberti G. Hydrogel-based commercial products for biomedical applications: a review. Int. J. Pharm. 2020;573 PubMed

Koehler J., Brandl F.P., Goepferich A.M. Hydrogel wound dressings for bioactive treatment of acute and chronic wounds. Eur. Polym. J. 2018;100:1–11.

Abd Alla S.G., Sen M., El-Naggar A.W.M. Swelling and mechanical properties of superabsorbent hydrogels based on Tara gum/acrylic acid synthesized by gamma radiation. Carbohydr. Polym. 2012;89(2):478–485. PubMed

Moist wound healing with commonly available dressings. Adv. Wound Care. 2021;10(12):685–698. PubMed PMC

Zhang M., Chen S., Zhong L., Wang B., Wang H., Hong F. Zn2+-loaded TOBC nanofiber-reinforced biomimetic calcium alginate hydrogel for antibacterial wound dressing. Int. J. Biol. Macromol. 2020;143:235–242. PubMed

Gheorghita Puscaselu R., Lobiuc A., Dimian M., Covasa M. Alginate: from food industry to biomedical applications and management of metabolic disorders. Polymers. 2020;12(10):2417. PubMed PMC

Sahoo D.R., Biswal T. Alginate and its application to tissue engineering. SN Appl. Sci. 2021;3(1):30.

Ramdhan T., Ching S.H., Prakash S., Bhandari B. Physical and mechanical properties of alginate based composite gels. Trends Food Sci. Technol. 2020;106:150–159.

Galus S., Lenart A. Development and characterization of composite edible films based on sodium alginate and pectin. J. Food Eng. 2013;115(4):459–465.

Wu X., Sun H., Qin Z., Che P., Yi X., Yu Q., et al. Fully physically crosslinked pectin-based hydrogel with high stretchability and toughness for biomedical application. Int. J. Biol. Macromol. 2020;149:707–716. PubMed

Matica M.A., Aachmann F.L., Tøndervik A., Sletta H., Ostafe V. Chitosan as a wound dressing starting material: antimicrobial properties and mode of action. Int. J. Mol. Sci. 2019;20(23):5889. PubMed PMC

Pedraza-Chaverri J., Cárdenas-Rodríguez N., Orozco-Ibarra M., Pérez-Rojas J.M. Medicinal properties of mangosteen (Garcinia mangostana) Food Chem. Toxicol. 2008;46(10):3227–3239. PubMed

Tatiya-aphiradee N., Chatuphonprasert W., Jarukamjorn K. Anti-inflammatory effect of Garcinia mangostana Linn. pericarp extract in methicillin-resistant Staphylococcus aureus-induced superficial skin infection in mice. Biomed. Pharmacother. 2019;111:705–713. PubMed

Nakatani K., Atsumi M., Arakawa T., Oosawa K., Shimura S., Nakahata N., et al. Inhibitions of histamine release and prostaglandin E2 synthesis by mangosteen, a Thai medicinal plant. Biol. Pharm. Bull. 2002;25(9):1137–1141. PubMed

Guillaume O., Garric X., Lavigne J.-P., Van Den Berghe H., Coudane J. Multilayer, degradable coating as a carrier for the sustained release of antibiotics: preparation and antimicrobial efficacy in vitro. J. Contr. Release. 2012;162(3):492–501. PubMed

Ag Seleci D., Seleci M., Walter J.-G., Stahl F., Scheper T. Niosomes as nanoparticular drug carriers: fundamentals and recent applications. J. Nanomater. 2016;2016

Chen S., Hanning S., Falconer J., Locke M., Wen J. Recent advances in non-ionic surfactant vesicles (niosomes): fabrication, characterization, pharmaceutical and cosmetic applications. Eur. J. Pharm. Biopharm. 2019;144:18–39. PubMed

Rajera R., Nagpal K., Singh S.K., Mishra D.N. Niosomes: a controlled and novel drug delivery system. Biol. Pharm. Bull. 2011;34(7):945–953. PubMed

Kaderli S., Boulocher C., Pillet E., Watrelot-Virieux D., Rougemont A.L., Roger T., et al. A novel biocompatible hyaluronic acid–chitosan hybrid hydrogel for osteoarthrosis therapy. Int. J. Pharm. 2015;483(1):158–168. PubMed

Satari M.H., Apriyanti E., Dharsono H.D.A., Nurdin D., Gartika M., Kurnia D. Effectiveness of bioactive compound as antibacterial and anti-quorum sensing agent from myrmecodia pendans. An In Silico Study. 2021;26(9):2465. PubMed PMC

Hudzicki J. Kirby-Bauer disk diffusion susceptibility test protocol. American society for microbiology. 2009;15:55–63.

Owayss A.A., Elbanna K., Iqbal J., Abulreesh H.H., Organji S.R., Raweh H.S.A., et al. In vitro antimicrobial activities of Saudi honeys originating from Ziziphus spina-christi L. and Acacia gerrardii Benth. Trees (Berl.) 2020;8(1):390–401. PubMed PMC

Padla E.P., Solis L.T., Levida R.M., Shen C.-C., Ragasa C.Y. Antimicrobial isothiocyanates from the seeds of moringa oleifera lam. %J Zeitschrift für Naturforschung C. 2012;67(11-12):557–564. PubMed

Pfaller M.A., Diekema D.J. Progress in antifungal susceptibility testing of Candida spp. Use of Clinical and Laboratory Standards Institute Broth Microdilution Methods. 2012;50(9):2846–2856. PubMed PMC

Hibbard H.A.J., Reynolds M.M. Fluorescent nitric oxide donor for the detection and killing of Pseudomonas aeruginosa. J. Mater. Chem. B. 2019;7(12):2009–2018. PubMed

Neufeld B.H., Neufeld M.J., Lutzke A., Schweickart S.M., Reynolds M.M. Metal–organic framework material inhibits biofilm formation of Pseudomonas aeruginosa. Adv. Funct. Mater. 2017;27(34)

Yeo L.K., Chaw C.S., Elkordy A.A. The effects of hydration parameters and Co-surfactants on methylene blue-loaded niosomes prepared by the thin film. Hydration Method. 2019;12(2):46. PubMed PMC

Danaei M., Dehghankhold M., Ataei S., Hasanzadeh Davarani F., Javanmard R., Dokhani A., et al. Impact of particle size and polydispersity index on the clinical applications of lipidic. Nanocarrier Systems. 2018;10(2):57. PubMed PMC

Sze A., Erickson D., Ren L., Li D. Zeta-potential measurement using the Smoluchowski equation and the slope of the current–time relationship in electroosmotic flow. J. Colloid Interface Sci. 2003;261(2):402–410. PubMed

García-Manrique P., Serrano-Pertierra E., Lozano-Andrés E., López-Martín S., Matos M., Gutiérrez G., et al. Selected tetraspanins functionalized niosomes as potential standards for exosome immunoassays. Nanomaterials. 2020;10(5):971. PubMed PMC

Eawsakul K., Chinavinijkul P., Saeeng R., Chairoungdua A., Tuchinda P., Nasongkla N. Preparation and characterizations of RSPP050-loaded polymeric micelles using poly (ethylene glycol)-b-poly (ε-caprolactone) and poly (ethylene glycol)-b-poly (D, L-lactide) Chem. Pharm. Bull. 2017;65(6):530–537. PubMed

Nasongkla N., Tuchinda P., Munyoo B., Eawsakul K. Preparation and characterization of MUC-30-loaded polymeric micelles against MCF-7 cell lines using molecular docking methods and in vitro study. Evid. base Compl. Alternative Med. 2021:2021. PubMed PMC

Ingallina C., Rinaldi F., Bogni A., Ponti J., Passeri D., Reggente M., et al. Niosomal approach to brain delivery: development, characterization and in vitro toxicological studies. Int. J. Pharm. 2016;511(2):969–982. PubMed

Dwivedi A., Mazumder A., Nasongkla N. Layer-by-layer nanocoating of antibacterial niosome on orthopedic implant. Int. J. Pharm. 2018;547(1-2):235–243. PubMed

Wongsuwan N., Dwivedi A., Tancharoen S., Nasongkla N. Development of dental implant coating with minocycline-loaded niosome for antibacterial application. J. Drug Deliv. Sci. Technol. 2020;56

Sharmin N., Sone I., Walsh J.L., Sivertsvik M., Fernández E.N. Effect of citric acid and plasma activated water on the functional properties of sodium alginate for potential food packaging applications. Food Packag. Shelf Life. 2021;29

Aderibigbe B.A., Buyana B. Alginate in Wound Dressings. Pharmaceutics. 2018;10(2):42. PubMed PMC

Mahmoud A.A., Salama A.H. Norfloxacin-loaded collagen/chitosan scaffolds for skin reconstruction: preparation, evaluation and in-vivo wound healing assessment. Eur. J. Pharmaceut. Sci. 2016;83:155–165. PubMed

Wang S., Kang O.-H., Kwon D.-Y. Trans-Cinnamaldehyde Exhibits Synergy with Conventional Antibiotic against Methicillin-Resistant Staphylococcus aureus. Int. J. Mol. Sci. 2021;22(5):2752. PubMed PMC

Srisang S., Nasongkla N. Layer-by-layer dip coating of Foley urinary catheters by chlorhexidine-loaded micelles. J. Drug Deliv. Sci. Technol. 2019;49:235–242.

Thedrattanawong C., Manaspon C., Nasongkla N. Controlling the burst release of doxorubicin from polymeric depots via adjusting hydrophobic/hydrophilic properties. J. Drug Deliv. Sci. Technol. 2018;46:446–451.

Talbot M.J., White R.G. Methanol fixation of plant tissue for Scanning Electron Microscopy improves preservation of tissue morphology and dimensions. Plant Methods. 2013;9(1):36. PubMed PMC

Li X., Ji X., Chen K., Ullah M.W., Yuan X., Lei Z., et al. Development of finasteride/PHBV@polyvinyl alcohol/chitosan reservoir-type microspheres as a potential embolic agent: from in vitro evaluation to animal study. Biomater. Sci. 2020;8(10):2797–2813. PubMed

Sokolova A.I., Pavlova E.R., Khramova Y.V., Klinov D.V., Shaitan K.V., Bagrov D.V. Imaging human keratinocytes grown on electrospun mats by scanning electron microscopy. Microsc. Res. Tech. 2019;82(5):544–549. PubMed

Martinotti S., Ranzato E. In: Epidermal Cells: Methods and Protocols. Turksen K., editor. Springer US; New York, NY: 2020. Scratch wound healing assay; pp. 225–229.

Bobadilla A.V.P., Arévalo J., Sarró E., Byrne H.M., Maini P.K., Carraro T., et al. In vitro cell migration quantification method for scratch assays. J. R. Soc. Interface. 2019;16(151) PubMed PMC

Eawsakul K., Tancharoen S., Nasongkla N. Combination of dip coating of BMP-2 and spray coating of PLGA on dental implants for osseointegration. J. Drug Deliv. Sci. Technol. 2021;61

Srisang S., Boongird A., Ungsurungsie M., Wanasawas P., Nasongkla N. Biocompatibility and stability during storage of Foley urinary catheters coated chlorhexidine loaded nanoparticles by nanocoating: in vitro and in vivo evaluation. J. Bio. Mater. Res. Part B: Appl. Bio. 2021;109(4):496–504. PubMed

OECD . Organization for Economic; 1994. OECD Guidelines for the Testing of Chemicals.

Reid T., Kashangura C., Chidewe C., Benhura M.A., Stray-Pedersen B., Mduluza T. Characterization of Anti−Salmonella typhi compounds from medicinal mushroom extracts from Zimbabwe. Int. J. Med. Mushrooms. 2019;21(7):713. 24. PubMed

Chepkirui C., Yuyama K.T., Wanga L.A., Decock C., Matasyoh J.C., Abraham W.-R., et al. Microporenic acids A–G, biofilm inhibitors, and antimicrobial agents from the basidiomycete microporus species. J. Nat. Prod. 2018;81(4):778–784. PubMed

Granja A.G., Carrillo-Salinas F., Pagani A., Gómez-Cañas M., Negri R., Navarrete C., et al. A cannabigerol quinone alleviates neuroinflammation in a chronic model of multiple sclerosis. J. Neuroimmune Pharmacol. 2012;7(4):1002–1016. PubMed

Kim D.H., Shin E.K., Kim Y.H., Lee B.W., Jun J.-G., Park J.H.Y., et al. Suppression of inflammatory responses by celastrol, a quinone methide triterpenoid isolated from Celastrus regelii. Eur. J. Clin. Invest. 2009;39(9):819–827. PubMed

Vafina G.F., Poptsov A.I., Spirikhin L.V., Galin F.Z. Synthesis of new methoxyquinopimaric-acid scaffold derivatives. Chem. Nat. Compd. 2018;54(1):88–91.

Fan J., Liu H., Wang J., Zeng J., Tan Y., Wang Y., et al. Procyanidin B2 improves endothelial progenitor cell function and promotes wound healing in diabetic mice via activating Nrf2. J. Cell Mol. Med. 2021;25(2):652–665. PubMed PMC

Kapoor M., Howard R., Hall I., Appleton I. Effects of epicatechin gallate on wound healing and scar formation in a full thickness incisional wound healing model in rats. Am. J. Pathol. 2004;165(1):299–307. PubMed PMC

Muchtaridi M., Afiranti F.S., Puspasari P.W., Subarnas A., Susilawati P.S. Research, Cytotoxicity of Garcinia mangostana L. pericarp extract, fraction, and isolate on HeLa cervical cancer cells. J. Pharmaceut. Sci. Res. 2018;10(2):348–351. Y.J.J.o.

Singhal G.S., Rabinowitch E. Changes in the absorption spectrum of methylene blue with pH. J. Phys. Chem. 1967;71(10):3347–3349.

Huang X.-C., Ma J.-K., Wei S.-L. Preparation and application of a novel magnetic molecularly imprinted polymer for simultaneous and rapid determination of three trace endocrine disrupting chemicals in lake water and milk samples. Anal. Bioanal. Chem. 2020;412(8):1835–1846. PubMed

Zhong Y., Ru C., Wang S., Li Z., Cheng Y. An online, non-destructive method for simultaneously detecting chemical, biological, and physical properties of herbal injections using hyperspectral imaging with artificial intelligence. Spectrochim. Acta Mol. Biomol. Spectrosc. 2022;264 PubMed

Leong Y.S., Ker P.J., Jamaludin M.Z., Nomanbhay S.M., Ismail A., Abdullah F., et al. UV-vis spectroscopy: A New Approach for Assessing the Color Index of Transformer Insulating Oil. Sensors. 2018;18(7):2175. PubMed PMC

Matias R., Ribeiro P.R.S., Sarraguça M.C., Lopes J.A. A UV spectrophotometric method for the determination of folic acid in pharmaceutical tablets and dissolution tests. Anal. Methods. 2014;6(9):3065–3071.

Soleimanian Y., Goli S.A.H., Varshosaz J., Sahafi S.M. Formulation and characterization of novel nanostructured lipid carriers made from beeswax, propolis wax and pomegranate seed oil. Food Chem. 2018;244:83–92. PubMed

Ruckmani K., Sankar V. Formulation and optimization of zidovudine niosomes. AAPS PharmSciTech. 2010;11(3):1119–1127. PubMed PMC

Nayak A.S., Chodisetti S., Gadag S., Nayak U.Y., Govindan S., Raval K. Tailoring solulan C24 based niosomes for transdermal delivery of donepezil: in vitro characterization, evaluation of pH sensitivity, and microneedle-assisted Ex vivo permeation studies. J. Drug Deliv. Sci. Technol. 2020;60

Hao Y., Zhao F., Li N., Yang Y., Li K.a. Studies on a high encapsulation of colchicine by a niosome system. Int. J. Pharm. 2002;244(1):73–80. PubMed

Hemachandran H., Anantharaman A., Mohan S., Mohan G., Kumar D.T., Dey D., et al. Unraveling the inhibition mechanism of cyanidin-3-sophoroside on polyphenol oxidase and its effect on enzymatic browning of apples. Food Chem. 2017;227:102–110. PubMed

Farmoudeh A., Akbari J., Saeedi M., Ghasemi M., Asemi N., Nokhodchi A. Methylene blue-loaded niosome: preparation, physicochemical characterization, and in vivo wound healing assessment. Drug delivery translational research. 2020;10(5):1428–1441. PubMed PMC

Mehta S.K., Jindal N. Formulation of Tyloxapol niosomes for encapsulation, stabilization and dissolution of anti-tubercular drugs. Colloids Surf., B. 2013;101:434–441. PubMed

Desai N.M., Gilbert Stanley J., Murthy P.S. Green coffee nanoparticles: optimisation, in vitro bioactivity and bio-release property. J. Microencapsul. 2020;37(1):52–64. PubMed

Gupta M., Vaidya B., Mishra N., Vyas S.P. Effect of surfactants on the characteristics of fluconazole niosomes for enhanced cutaneous delivery. Artif. Cell Blood Substit. Biotechnol. 2011;39(6):376–384. PubMed

Schuurman W., Levett P.A., Pot M.W., van Weeren P.R., Dhert W.J.A., Hutmacher D.W., et al. Gelatin-methacrylamide hydrogels as potential biomaterials for fabrication of tissue-engineered cartilage constructs. Macromol. Biosci. 2013;13(5):551–561. PubMed

Lee K.Y., Rowley J.A., Eiselt P., Moy E.M., Bouhadir K.H., Mooney D.J. Controlling mechanical and swelling properties of alginate hydrogels independently by cross-linker type and cross-linking density. Macromolecules. 2000;33(11):4291–4294.

Kamoun E.A., Kenawy E.-R.S., Chen X. A review on polymeric hydrogel membranes for wound dressing applications: PVA-based hydrogel dressings. J. Adv. Res. 2017;8(3):217–233. PubMed PMC

Biofilms, Wounds An Overview of the Evidence. Aesthetic Plast. Surg. 2015;4(7):373–381. PubMed PMC

Zeng Q., Qian Y., Huang Y., Ding F., Qi X., Shen J. Polydopamine nanoparticle-dotted food gum hydrogel with excellent antibacterial activity and rapid shape adaptability for accelerated bacteria-infected wound healing. Bioact. Mater. 2021;6(9):2647–2657. PubMed PMC

Roy N., Saha N., Humpolicek P., Saha P. Permeability and biocompatibility of novel medicated hydrogel wound dressings. Soft Mater. 2010;8(4):338–357.

Stockert J.C., Horobin R.W., Colombo L.L., Blázquez-Castro A. Tetrazolium salts and formazan products in Cell Biology: viability assessment, fluorescence imaging, and labeling perspectives. Acta Histochem. 2018;120(3):159–167. PubMed

Cannella V., Altomare R., Leonardi V., Russotto L., Di Bella S., Mira F., et al. In Vitro biocompatibility evaluation of nine dermal fillers on L929 cell line. BioMed Res. Int. 2020;2020 PubMed PMC

Extracellular matrix reorganization during wound healing and its impact on abnormal scarring. Adv. Wound Care. 2015;4(3):119–136. PubMed PMC

Extracellular matrix and dermal fibroblast function in the healing wound. Adv. Wound Care. 2016;5(3):119–136. PubMed PMC

Veziroglu S., Ayna M., Kohlhaas T., Sayin S., Fiutowski J., Mishra Y.K., et al. Marine algae incorporated polylactide acid patch: novel candidate for targeting osteosarcoma cells without impairing the osteoblastic proliferation. Polymers. 2021;13(6):847. PubMed PMC

Des Prez R.M., Steckley S., Stroud R.M., Hawiger J. Interaction of histoplasma capsulatum with human platelets. J. Infect. Dis. 1980;142(1):32–39. PubMed

Thanusha A.V., Koul V. Biocompatibility evaluation for the developed hydrogel wound dressing – ISO-10993-11 standards – in vitro and in vivo study. Biomed. Phy. Engin. Express. 2021;8(1) PubMed

Haridas N., Rosemary M.J. Effect of steam sterilization and biocompatibility studies of hyaluronic acid hydrogel for viscosupplementation. Polym. Degrad. Stabil. 2019;163:220–227.

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...