ABS Nanocomposites for Advanced Technical and Biomedical Applications
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
NW25-08-00288
Czech Health Research Council (AZV), Ministry of Health of the Czech Republic
IGA_PrF_2025_022
Palacky University in Olomouc
EU Project No. CZ.02.01.01/00/22_008/0004631
European Union
Creativity, Inteligence and Talent for Zlin County
Zlin County
PubMed
40219299
PubMed Central
PMC11991112
DOI
10.3390/polym17070909
PII: polym17070909
Knihovny.cz E-zdroje
- Klíčová slova
- ABS polymer, calcium carbonate, halloysite, mechanical testing, nanocellulose,
- Publikační typ
- časopisecké články MeSH
This study investigated the mechanical, thermal, and morphological properties of acrylonitrile butadiene styrene (ABS)-based nanocomposites reinforced with different types and concentrations of nanofillers. The uniaxial tensile testing results indicated that Young's modulus (E) generally decreased with increasing filler content, except at 0.500 w.% filler concentration, where a slight increase in stiffness was observed. A statistically significant interaction between sample type and filler concentration was identified (p = 0.045). Fracture toughness measurements revealed a significant reduction in impact resistance at 1.000 w.% filler concentration, with values dropping by up to 67% compared with neat acrylonitrile butadiene styrene. Dynamic mechanical vibration testing confirmed a decrease in stiffness, as evidenced by a shift of the first resonance frequency (fR1) to lower values. Hardness measurements including indentation and Shore D hardness exhibited an increasing trend with rising filler concentration, with statistically significant differences observed at specific concentration levels (p < 0.05). Scanning electron microscopy analysis showed that nanofillers were well dispersed at lower concentrations, but agglomeration began above 0.500 w.%, resulting in void formation and a noticeable decline in mechanical properties. The results suggest that an optimal filler concentration range of 0.250-0.500 w.% offers an ideal balance between enhanced mechanical properties and material integrity.
Zobrazit více v PubMed
Lapčík L., Ruszala M.J.A., Vašina M., Lapčíková B., Vlček J., Rowson N.A., Grover L.M., Greenwood R.W. Hollow Spheres as Nanocomposite Fillers for Aerospace and Automotive Composite Materials Applications. Compos. Part B Eng. 2016;106:74–80. doi: 10.1016/j.compositesb.2016.09.031. DOI
Lapcik L., Vasina M., Lapcikova B., Hui D., Otyepkova E., Greenwood R.W., Waters K.E., Vlcek J. Materials Characterization of Advanced Fillers for Composites Engineering Applications. Nanotechnol. Rev. 2019;8:503–512. doi: 10.1515/ntrev-2019-0045. DOI
Lapcík L., Sepetcioglu H., Murtaja Y., Lapcíková B., Vasina M., Ovsík M., Stanek M., Gautam S. Study of Mechanical Properties of Epoxy/Graphene and Epoxy/Halloysite Nanocomposites. Nanotechnol. Rev. 2023;12:20220520. doi: 10.1515/ntrev-2022-0520. DOI
Donath E., Sukhorukov G.B., Caruso F., Davis S.A., Mohwald H. Novel Hollow Polymer Shells by Colloid-Templated Assembly of Polyelectrolytes. Angew. Chem. Int. Ed. 1998;37:2202–2205. doi: 10.1002/(SICI)1521-3773(19980904)37:16<2201::AID-ANIE2201>3.0.CO;2-E. PubMed DOI
Ras R.H.A., Kemell M., de Wit J., Ritala M., ten Brinke G., Leskela M., Ikkala O. Hollow Inorganic Nanospheres and Nanotubes with Tunable Wall Thicknesses by Atomic Layer Deposition on Self-Assembled Polymeric Templates. Adv. Mater. 2007;19:102–106. doi: 10.1002/adma.200600728. DOI
Ruszala M., Rowson N.A., Grover L.M., Choudhery R.A. Low Carbon Footprint TiO2 Substitutes in Paint: A Review. Int. J. Chem. Eng. Appl. 2015;6:331. doi: 10.7763/IJCEA.2015.V6.505. DOI
Qi S.J., Kiratzis I., Adoni P., Tuekprakhon A., Hill H.J., Stamataki Z., Nabi A., Waugh D., Rodriguez J.R., Clarke S.M., et al. Porous Cellulose Thin Films as Sustainable and Effective Antimicrobial Surface Coatings. ACS Appl. Mater. Interfaces. 2023;15:20638–20648. doi: 10.1021/acsami.2c23251. PubMed DOI PMC
Cai J., Kimura S., Wada M., Kuga S. Nanoporous Cellulose as Metal Nanoparticles Support. Biomacromolecules. 2009;10:87–94. doi: 10.1021/bm800919e. PubMed DOI
Klemm D., Kramer F., Moritz S., Lindström T., Ankerfors M., Gray D., Dorris A. Nanocelluloses: A New Family of Nature-Based Materials. Angew. Chem. Int. Ed. 2011;50:5438–5466. doi: 10.1002/anie.201001273. PubMed DOI
Dufresne A. Cellulose Nanomaterials as Green Nanoreinforcements for Polymer Nanocomposites. Philos. Trans. R. Soc. A-Math. Phys. Eng. Sci. 2018;376:20170040. doi: 10.1098/rsta.2017.0040. PubMed DOI PMC
Dufresne A. Nanocellulose: From Nature to High Performance Tailored Materials. Walter de Gruyter GmbH & Co. KG; Berlin, Germany: 2017.
Bacakova L., Pajorova J., Bacakova M., Skogberg A., Kallio P., Kolarova K., Svorcik V. Versatile Application of Nanocellulose: From Industry to Skin Tissue Engineering and Wound Healing. Nanomaterials. 2019;9:164. doi: 10.3390/nano9020164. PubMed DOI PMC
Spagnuolo L., D’Orsi R., Operamolla A. Nanocellulose for Paper and Textile Coating: The Importance of Surface Chemistry. ChemPlusChem. 2022;87:e202200204. doi: 10.1002/cplu.202200204. PubMed DOI
Bishnoi P., Siwal S.S., Kumar V., Thakur V.K. Cellulose-based Smart Materials: Novel Synthesis Techniques, Properties, and Applications in Energy Storage and Conversion Devices. Electron. 2024;2:e42.
Shaghaleh H., Xu X., Wang S.F. Current Progress in Production of Biopolymeric Materials Based on Cellulose, Cellulose Nanofibers, and Cellulose Derivatives. RSC Adv. 2018;8:825–842. PubMed PMC
Norizan M.N., Shazleen S.S., Alias A.H., Sabaruddin F.A., Asyraf M., Zainudin E.S., Abdullah N., Samsudin M.S., Kamarudin S.H., Norrrahim M. Nanocellulose-Based Nanocomposites for Sustainable Applications: A Review. Nanomaterials. 2022;12:3483. doi: 10.3390/nano12193483. PubMed DOI PMC
Ma L.B., Zhang Y., Meng Y.J., Anusonti-Inthra P., Wang S.Q. Preparing Cellulose Nanocrystal/Acrylonitrile-Butadiene-Styrene Nanocomposites using the Master-Batch Method. Carbohydr. Polym. 2015;125:352–359. PubMed
de León R.D., Guzmán E., González R.L., Elizondo A.D., Magaña I., Neira G., Facio A.C., Valencia L. Surface Modification of Cellulose Nanocrystals with Lactone Monomers Via Plasma-Induced Polymerization and their Application in ABS Nanocomposites. Polymers. 2021;13:2699. doi: 10.3390/polym13162699. PubMed DOI PMC
Feng X.H., Yang Z.Z., Rostom S., Dadmun M., Wang S.Q., Wang Q.W., Xie Y.J. Reinforcing 3D Printed Acrylonitrile Butadiene Styrene by Impregnation of Methacrylate Resin and Cellulose Nanocrystal Mixture: Structural Effects and Homogeneous Properties. Mater. Des. 2018;138:62–70. doi: 10.1016/j.matdes.2017.10.050. DOI
Kulich D.M., Gaggar S.K., Lowry V., Stepien R. Kirk-Othmer Encyclopedia of Chemical Technology. John Wiley & Sons, Inc.; Hoboken, NJ, USA: 2000. Acrylonitrile–butadiene–styrene (ABS) Polymers.
Barchiki F., Fracaro L., Dominguez A.C., Senegaglia A.C., Vaz I.M., Soares P., de Moura S., Brofman P. Biocompatibility of ABS and PLA Polymers with Dental Pulp Stem Cells Enhance their Potential Biomedical Applications. Polymers. 2023;15:4629. doi: 10.3390/polym15244629. PubMed DOI PMC
Rasulzade N.S., Abbasova L.S., Mamedov B.A., Muradov P.Z., Bakhshalieva K.F. Preparation and Research of Antibacterial Composite Materials Based on ABS and Oligoethylene Ether of Salicylic Acid. Inorg. Mater. Appl. Res. 2021;12:393–396. doi: 10.1134/S2075113321020428. DOI
Huang B., He H., Meng S.N., Jia Y.C. Optimizing 3D Printing Performance of Acrylonitrile-Butadiene-Styrene Composites with Cellulose Nanocrystals/Silica Nanohybrids. Polym. Int. 2019;68:1351–1360.
Sepet H., Tarakcioglu N., Misra R. Investigation of Mechanical, Thermal and Surface Properties of Nanoclay/HDPE Nanocomposites Produced Industrially by Melt Mixing Approach. J. Compos. Mater. 2016;50:3105–3116.
Sepet H., Aydemir B., Tarakcioglu N. Evaluation of Mechanical and Thermal Properties and Creep Behavior of Micro- and Nano-CaCO3Particle-Filled HDPE Nano- and Microcomposites Produced in Large Scale. Polym. Bull. 2020;77:3677–3695.
Lapcik L., Vasina M., Lapcikova B., Stanek M., Ovsik M., Murtaja Y. Study of the Material Engineering Properties of High-Density Poly(Ethylene)/Perlite Nanocomposite Materials. Nanotechnol. Rev. 2020;9:1491–1499.
Oliver W.C., Pharr G.M. Measurement of Hardness and Elastic Modulus by Instrumented Indentation: Advances in Understanding and Refinements to Methodology. J. Mater. Res. 2004;19:3–20.
Manas D., Mizera A., Manas M., Ovsik M., Hylova L., Sehnalek S., Stoklasek P. Mechanical Properties Changes of Irradiated Thermoplastic Elastomer. Polymers. 2018;10:87. doi: 10.3390/polym10010087. PubMed DOI PMC
Bonfiglio P., Pompoli F., Horoshenkov K.V., Rahim M.I.B.S.A. A Simplified Transfer Matrix Approach for the Determination of the Complex Modulus of Viscoelastic Materials. Polym. Test. 2016;53:180–187.
Çavdar S., Sepetcioglu H., Karagöz I. Mechanical, Thermal, and Morphological Properties of Nanocellulose Reinforced ABS Nanocomposites. Cellulose. 2024;31:9715–9729.
Karagöz I., Tamer L.M., Cavusoglu A., Sepetcioglu H. Investigation of Mechanical, Thermal, and Morphological Properties of Walnut Shell and Nano Clay Reinforced HDPE Composites. Mater. Today Commun. 2024;41:110905.
Lapčík L., Vašina M., Murtaja Y., Sepetcioglu H., Lapčíková B., Ovsík M., Staněk M., Karagöz I., Vadanagekara S.A. ABS nanocomposites for advanced technical and biomedical applications. Zenodo. 2025 doi: 10.5281/zenodo.14928686. DOI