ABS Nanocomposites for Advanced Technical and Biomedical Applications

. 2025 Mar 27 ; 17 (7) : . [epub] 20250327

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40219299

Grantová podpora
NW25-08-00288 Czech Health Research Council (AZV), Ministry of Health of the Czech Republic
IGA_PrF_2025_022 Palacky University in Olomouc
EU Project No. CZ.02.01.01/00/22_008/0004631 European Union
Creativity, Inteligence and Talent for Zlin County Zlin County

This study investigated the mechanical, thermal, and morphological properties of acrylonitrile butadiene styrene (ABS)-based nanocomposites reinforced with different types and concentrations of nanofillers. The uniaxial tensile testing results indicated that Young's modulus (E) generally decreased with increasing filler content, except at 0.500 w.% filler concentration, where a slight increase in stiffness was observed. A statistically significant interaction between sample type and filler concentration was identified (p = 0.045). Fracture toughness measurements revealed a significant reduction in impact resistance at 1.000 w.% filler concentration, with values dropping by up to 67% compared with neat acrylonitrile butadiene styrene. Dynamic mechanical vibration testing confirmed a decrease in stiffness, as evidenced by a shift of the first resonance frequency (fR1) to lower values. Hardness measurements including indentation and Shore D hardness exhibited an increasing trend with rising filler concentration, with statistically significant differences observed at specific concentration levels (p < 0.05). Scanning electron microscopy analysis showed that nanofillers were well dispersed at lower concentrations, but agglomeration began above 0.500 w.%, resulting in void formation and a noticeable decline in mechanical properties. The results suggest that an optimal filler concentration range of 0.250-0.500 w.% offers an ideal balance between enhanced mechanical properties and material integrity.

Zobrazit více v PubMed

Lapčík L., Ruszala M.J.A., Vašina M., Lapčíková B., Vlček J., Rowson N.A., Grover L.M., Greenwood R.W. Hollow Spheres as Nanocomposite Fillers for Aerospace and Automotive Composite Materials Applications. Compos. Part B Eng. 2016;106:74–80. doi: 10.1016/j.compositesb.2016.09.031. DOI

Lapcik L., Vasina M., Lapcikova B., Hui D., Otyepkova E., Greenwood R.W., Waters K.E., Vlcek J. Materials Characterization of Advanced Fillers for Composites Engineering Applications. Nanotechnol. Rev. 2019;8:503–512. doi: 10.1515/ntrev-2019-0045. DOI

Lapcík L., Sepetcioglu H., Murtaja Y., Lapcíková B., Vasina M., Ovsík M., Stanek M., Gautam S. Study of Mechanical Properties of Epoxy/Graphene and Epoxy/Halloysite Nanocomposites. Nanotechnol. Rev. 2023;12:20220520. doi: 10.1515/ntrev-2022-0520. DOI

Donath E., Sukhorukov G.B., Caruso F., Davis S.A., Mohwald H. Novel Hollow Polymer Shells by Colloid-Templated Assembly of Polyelectrolytes. Angew. Chem. Int. Ed. 1998;37:2202–2205. doi: 10.1002/(SICI)1521-3773(19980904)37:16<2201::AID-ANIE2201>3.0.CO;2-E. PubMed DOI

Ras R.H.A., Kemell M., de Wit J., Ritala M., ten Brinke G., Leskela M., Ikkala O. Hollow Inorganic Nanospheres and Nanotubes with Tunable Wall Thicknesses by Atomic Layer Deposition on Self-Assembled Polymeric Templates. Adv. Mater. 2007;19:102–106. doi: 10.1002/adma.200600728. DOI

Ruszala M., Rowson N.A., Grover L.M., Choudhery R.A. Low Carbon Footprint TiO2 Substitutes in Paint: A Review. Int. J. Chem. Eng. Appl. 2015;6:331. doi: 10.7763/IJCEA.2015.V6.505. DOI

Qi S.J., Kiratzis I., Adoni P., Tuekprakhon A., Hill H.J., Stamataki Z., Nabi A., Waugh D., Rodriguez J.R., Clarke S.M., et al. Porous Cellulose Thin Films as Sustainable and Effective Antimicrobial Surface Coatings. ACS Appl. Mater. Interfaces. 2023;15:20638–20648. doi: 10.1021/acsami.2c23251. PubMed DOI PMC

Cai J., Kimura S., Wada M., Kuga S. Nanoporous Cellulose as Metal Nanoparticles Support. Biomacromolecules. 2009;10:87–94. doi: 10.1021/bm800919e. PubMed DOI

Klemm D., Kramer F., Moritz S., Lindström T., Ankerfors M., Gray D., Dorris A. Nanocelluloses: A New Family of Nature-Based Materials. Angew. Chem. Int. Ed. 2011;50:5438–5466. doi: 10.1002/anie.201001273. PubMed DOI

Dufresne A. Cellulose Nanomaterials as Green Nanoreinforcements for Polymer Nanocomposites. Philos. Trans. R. Soc. A-Math. Phys. Eng. Sci. 2018;376:20170040. doi: 10.1098/rsta.2017.0040. PubMed DOI PMC

Dufresne A. Nanocellulose: From Nature to High Performance Tailored Materials. Walter de Gruyter GmbH & Co. KG; Berlin, Germany: 2017.

Bacakova L., Pajorova J., Bacakova M., Skogberg A., Kallio P., Kolarova K., Svorcik V. Versatile Application of Nanocellulose: From Industry to Skin Tissue Engineering and Wound Healing. Nanomaterials. 2019;9:164. doi: 10.3390/nano9020164. PubMed DOI PMC

Spagnuolo L., D’Orsi R., Operamolla A. Nanocellulose for Paper and Textile Coating: The Importance of Surface Chemistry. ChemPlusChem. 2022;87:e202200204. doi: 10.1002/cplu.202200204. PubMed DOI

Bishnoi P., Siwal S.S., Kumar V., Thakur V.K. Cellulose-based Smart Materials: Novel Synthesis Techniques, Properties, and Applications in Energy Storage and Conversion Devices. Electron. 2024;2:e42.

Shaghaleh H., Xu X., Wang S.F. Current Progress in Production of Biopolymeric Materials Based on Cellulose, Cellulose Nanofibers, and Cellulose Derivatives. RSC Adv. 2018;8:825–842. PubMed PMC

Norizan M.N., Shazleen S.S., Alias A.H., Sabaruddin F.A., Asyraf M., Zainudin E.S., Abdullah N., Samsudin M.S., Kamarudin S.H., Norrrahim M. Nanocellulose-Based Nanocomposites for Sustainable Applications: A Review. Nanomaterials. 2022;12:3483. doi: 10.3390/nano12193483. PubMed DOI PMC

Ma L.B., Zhang Y., Meng Y.J., Anusonti-Inthra P., Wang S.Q. Preparing Cellulose Nanocrystal/Acrylonitrile-Butadiene-Styrene Nanocomposites using the Master-Batch Method. Carbohydr. Polym. 2015;125:352–359. PubMed

de León R.D., Guzmán E., González R.L., Elizondo A.D., Magaña I., Neira G., Facio A.C., Valencia L. Surface Modification of Cellulose Nanocrystals with Lactone Monomers Via Plasma-Induced Polymerization and their Application in ABS Nanocomposites. Polymers. 2021;13:2699. doi: 10.3390/polym13162699. PubMed DOI PMC

Feng X.H., Yang Z.Z., Rostom S., Dadmun M., Wang S.Q., Wang Q.W., Xie Y.J. Reinforcing 3D Printed Acrylonitrile Butadiene Styrene by Impregnation of Methacrylate Resin and Cellulose Nanocrystal Mixture: Structural Effects and Homogeneous Properties. Mater. Des. 2018;138:62–70. doi: 10.1016/j.matdes.2017.10.050. DOI

Kulich D.M., Gaggar S.K., Lowry V., Stepien R. Kirk-Othmer Encyclopedia of Chemical Technology. John Wiley & Sons, Inc.; Hoboken, NJ, USA: 2000. Acrylonitrile–butadiene–styrene (ABS) Polymers.

Barchiki F., Fracaro L., Dominguez A.C., Senegaglia A.C., Vaz I.M., Soares P., de Moura S., Brofman P. Biocompatibility of ABS and PLA Polymers with Dental Pulp Stem Cells Enhance their Potential Biomedical Applications. Polymers. 2023;15:4629. doi: 10.3390/polym15244629. PubMed DOI PMC

Rasulzade N.S., Abbasova L.S., Mamedov B.A., Muradov P.Z., Bakhshalieva K.F. Preparation and Research of Antibacterial Composite Materials Based on ABS and Oligoethylene Ether of Salicylic Acid. Inorg. Mater. Appl. Res. 2021;12:393–396. doi: 10.1134/S2075113321020428. DOI

Huang B., He H., Meng S.N., Jia Y.C. Optimizing 3D Printing Performance of Acrylonitrile-Butadiene-Styrene Composites with Cellulose Nanocrystals/Silica Nanohybrids. Polym. Int. 2019;68:1351–1360.

Sepet H., Tarakcioglu N., Misra R. Investigation of Mechanical, Thermal and Surface Properties of Nanoclay/HDPE Nanocomposites Produced Industrially by Melt Mixing Approach. J. Compos. Mater. 2016;50:3105–3116.

Sepet H., Aydemir B., Tarakcioglu N. Evaluation of Mechanical and Thermal Properties and Creep Behavior of Micro- and Nano-CaCO3Particle-Filled HDPE Nano- and Microcomposites Produced in Large Scale. Polym. Bull. 2020;77:3677–3695.

Lapcik L., Vasina M., Lapcikova B., Stanek M., Ovsik M., Murtaja Y. Study of the Material Engineering Properties of High-Density Poly(Ethylene)/Perlite Nanocomposite Materials. Nanotechnol. Rev. 2020;9:1491–1499.

Oliver W.C., Pharr G.M. Measurement of Hardness and Elastic Modulus by Instrumented Indentation: Advances in Understanding and Refinements to Methodology. J. Mater. Res. 2004;19:3–20.

Manas D., Mizera A., Manas M., Ovsik M., Hylova L., Sehnalek S., Stoklasek P. Mechanical Properties Changes of Irradiated Thermoplastic Elastomer. Polymers. 2018;10:87. doi: 10.3390/polym10010087. PubMed DOI PMC

Bonfiglio P., Pompoli F., Horoshenkov K.V., Rahim M.I.B.S.A. A Simplified Transfer Matrix Approach for the Determination of the Complex Modulus of Viscoelastic Materials. Polym. Test. 2016;53:180–187.

Çavdar S., Sepetcioglu H., Karagöz I. Mechanical, Thermal, and Morphological Properties of Nanocellulose Reinforced ABS Nanocomposites. Cellulose. 2024;31:9715–9729.

Karagöz I., Tamer L.M., Cavusoglu A., Sepetcioglu H. Investigation of Mechanical, Thermal, and Morphological Properties of Walnut Shell and Nano Clay Reinforced HDPE Composites. Mater. Today Commun. 2024;41:110905.

Lapčík L., Vašina M., Murtaja Y., Sepetcioglu H., Lapčíková B., Ovsík M., Staněk M., Karagöz I., Vadanagekara S.A. ABS nanocomposites for advanced technical and biomedical applications. Zenodo. 2025 doi: 10.5281/zenodo.14928686. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...