Potential Applications of Nanocellulose-Containing Materials in the Biomedical Field
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article, Review
PubMed
28825682
PubMed Central
PMC5578343
DOI
10.3390/ma10080977
PII: ma10080977
Knihovny.cz E-resources
- Keywords
- bone-cartilage regeneration, cellulose, dental application, drug-cell delivery, siRNA, wound healing,
- Publication type
- Journal Article MeSH
- Review MeSH
Because of its high biocompatibility, bio-degradability, low-cost and easy availability, cellulose finds application in disparate areas of research. Here we focus our attention on the most recent and attractive potential applications of cellulose in the biomedical field. We first describe the chemical/structural composition of cellulose fibers, the cellulose sources/features and cellulose chemical modifications employed to improve its properties. We then move to the description of cellulose potential applications in biomedicine. In this field, cellulose is most considered in recent research in the form of nano-sized particle, i.e., nanofiber cellulose (NFC) or cellulose nanocrystal (CNC). NFC is obtained from cellulose via chemical and mechanical methods. CNC can be obtained from macroscopic or microscopic forms of cellulose following strong acid hydrolysis. NFC and CNC are used for several reasons including the mechanical properties, the extended surface area and the low toxicity. Here we present some potential applications of nano-sized cellulose in the fields of wound healing, bone-cartilage regeneration, dental application and different human diseases including cancer. To witness the close proximity of nano-sized cellulose to the practical biomedical use, examples of recent clinical trials are also reported. Altogether, the described examples strongly support the enormous application potential of nano-sized cellulose in the biomedical field.
See more in PubMed
Klemm D., Schumann D., Kramer F., Hessler N., Hornung M., Schmauder H., Marsch S. Nanocelluloses as innovative polymers in research and application. Polysaccharides. 2006;205:49–96.
Henriksson M., Berglund L. Structure and properties of cellulose nanocomposite films containing melamine formaldehyde. J. Appl. Polym. Sci. 2007;106:2817–2824. doi: 10.1002/app.26946. DOI
Iwamoto S., Nakagaito A., Yano H. Nano-fibrillation of pulp fibers for the processing of transparent nanocomposites. Appl. Phys. A Mater. Sci. Process. 2007;89:461–466. doi: 10.1007/s00339-007-4175-6. DOI
Jonas R., Farah L. Production and application of microbial cellulose. Polym. Degrad. Stab. 1998;59:101–106. doi: 10.1016/S0141-3910(97)00197-3. DOI
Qin C., Soykeabkaew N., Xiuyuan N., Peijs T. The effect of fibre volume fraction and mercerization on the properties of all-cellulose composites. Carbohydr. Polym. 2008;71:458–467. doi: 10.1016/j.carbpol.2007.06.019. DOI
Yamanaka S., Watanabe K., Kitamura N., Iguchi M., Mitsuhashi S., Nishi Y., Uryu M. The structure and mechanical properties of sheets prepared from bacterial cellulose. J. Mater. Sci. 1989;24:3141–3145. doi: 10.1007/BF01139032. DOI
Endes C., Camarero-Espinosa S., Mueller S., Foster E.J., Petri-Fink A., Rothen-Rutishauser B., Weder C., Clift M.J. A critical review of the current knowledge regarding the biological impact of nanocellulose. J. Nanobiotechnol. 2016;14:78. doi: 10.1186/s12951-016-0230-9. PubMed DOI PMC
Mondal S. Preparation, properties and applications of nanocellulosic materials. Carbohydr. Polym. 2017;163:301–316. doi: 10.1016/j.carbpol.2016.12.050. PubMed DOI
Delmer D., Amor Y. Cellulose Biosynthesis. Plant Cell. 1995;7:987–1000. doi: 10.1105/tpc.7.7.987. PubMed DOI PMC
Kalia S., Dufresne A., Cherian B., Kaith B., Avérous L., Njuguna J., Nassiopoulos E. Cellulose-Based Bio- and Nanocomposites: A Review. Int. J. Polym. Sci. 2011:1–35. doi: 10.1155/2011/837875. DOI
Habibi Y., Lucia L., Rojas O. Cellulose Nanocrystals: Chemistry, Self-Assembly, and Applications. Chem. Rev. 2010;110:3479–3500. doi: 10.1021/cr900339w. PubMed DOI
Brown R.M.J. The Biosynthesis Of Cellulose. Pure Appl. Chem. 1996;33:1345–1373. doi: 10.1080/10601329608014912. DOI
Rowland S., Roberts E.J. The nature of accessible surfaces in the microstructure of cotton cellulose. J. Polym. Sci. Part A Polym. Chem. 1972;10:2447–2461. doi: 10.1002/pol.1972.150100819. DOI
Mood S., Golfeshan A., Tabatabaei M., Jouzani G., Najafi G., Gholami M., Ardjmand M. Lignocellulosic biomass to bioethanol, a comprehensive review with a focus on pretreatment. Renew. Sustain. Energy Rev. 2013;27:77–93. doi: 10.1016/j.rser.2013.06.033. DOI
El-Saied H., Basta A., Gobran R. Research progress in friendly environmental technology for the production of cellulose products (bacterial cellulose and its application) Polym.-Plast. Technol. Eng. 2004;43:797–820. doi: 10.1081/PPT-120038065. DOI
Dammström S., Salmén L., Gatenholm P. The effect of moisture on the dynamic properties of bacterial cellulose/glucuronoxylan nanocomposites. Polymer. 2005;46:10364–10371. doi: 10.1016/j.polymer.2005.07.105. DOI
Kalia S., Kaith B., Kaur I. Pre-treatments of natural fibers and their application as reinforcing material in polymer composites-a review. Polym. Eng. Sci. 2009;49:1253–1272. doi: 10.1002/pen.21328. DOI
Iguchi M., Yamanaka S., Budhiono A. Review Bacterial Cellulose—A masterpiece of nature’s arts. J. Mater. Sci. 2000;35:261–270. doi: 10.1023/A:1004775229149. DOI
Food and Drug Administration . Guidance for Industry. FDA; Silver Spring, MD, USA: 2012. Pyrogens and endotoxins testing: Questions and answers.
Zaar K. The biogenesis of cellulose by Acetobacter xylinum. Cytobiologie. 1977;16:1–15.
Brown R.M.J., Willison J., Richardson C. Cellulose biosynthesis in Acetobacter xylinum: Visualization of the site of synthesis and direct measurement of the in vivo process. Proc. Natl. Acad. Sci. USA. 1976;73:4565–4569. doi: 10.1073/pnas.73.12.4565. PubMed DOI PMC
Yamanaka S., Ishihara M., Sugiyama J. Structural modification of bacterial cellulose. Cellulose. 2000;7:213–225. doi: 10.1023/A:1009208022957. DOI
Ben-Hayyim G., Ohad I. Synthesis of cellulose by Acetobacter xylinum. VIII. On the Formation and Orientation of Bacterial Cellulose Fibrils in the Presence of Acidic Polysaccharides. J. Cell Biol. 1965;25:191–207. doi: 10.1083/jcb.25.2.191. PubMed DOI PMC
Czaja W., Krystynowicz A., Bielecki S., Brown R.M., Jr. Microbial cellulose-the natural power to heal wounds. Biomaterials. 2006;27:145–151. doi: 10.1016/j.biomaterials.2005.07.035. PubMed DOI
Hult E., Yamanaka S., Ishihara M., Sugiyama J. Aggregation of ribbons in bacterial cellulose induced by high pressure incubation. Carbohydr. Polym. 2003;53:9–14. doi: 10.1016/S0144-8617(02)00297-7. DOI
Wan W., Hutter J., Millon L., Guhados G. Bacterial cellulose and its nanocomposites for biomedical applications. In: Oksman K., Sain M., editors. Cellulose Nanocomposites. Processing Characterization, and Properties. American Chemical Society; Washington, DC, USA: 2006.
Barud H., Barrios C., Regiani T., Marques R., Verelst M., Dexpert-Ghys J., Messaddeq Y., Ribeiro S. Selfsupported silver nanoparticles containing bacterial cellulose membranes. Mater. Sci. Eng. C. 2008;28:515–518. doi: 10.1016/j.msec.2007.05.001. DOI
De Wulf P., Joris K., Vandamme E.J. Improved cellulose fromation by an Acetobacer xylinum mutant limited in (keto)gluconate synthesis. J. Chem. Technol. Biotechnol. 1996;67:376–380. doi: 10.1002/(SICI)1097-4660(199612)67:4<376::AID-JCTB569>3.0.CO;2-J. DOI
Oikawa T., Morino T., Ameyama M. Production of Cellulose from D Arabitol by Acetobacter xylinum KU-1. Biosci. Biotechnol. Biochem. 1995;59:1564–1565. doi: 10.1271/bbb.59.1564. DOI
Oikawa T., Ohtori T., Ameyama M. Production of Cellulose from D Mannitol by Acetobacter xylinum KU-1. Biosci. Biotechnol. Biochem. 1995;59:331–332. doi: 10.1271/bbb.59.331. DOI
Masaoka S., Ohe T., Sakota N. Production of cellulose from glucose by Acetobacter xylinum. J. Ferment. Bioeng. 1993;75:18–22. doi: 10.1016/0922-338X(93)90171-4. DOI
Toyosaki H., Naritomi T., Seto A., Matsuoka M., Tsuchida T., Yoshinaga F. Screening of Bacterial Cellulose-producing Acetobacter Strains Suitable for Agitated Culture. Biosci. Biotechnol. Biochem. 1995;59:1498–1502. doi: 10.1271/bbb.59.1498. DOI
Surip S., Wan Jaafar W., Azmi N., Anwar U. Microscopy Observation on Nanocellulose from Kenaf Fibre. Adv. Mater. Res. 2012;488:72–75. doi: 10.4028/www.scientific.net/AMR.488-489.72. DOI
Siró I., Plackett D. Microfibrillated cellulose and new nanocomposite materials: A review. Cellulose. 2010;17:459–494. doi: 10.1007/s10570-010-9405-y. DOI
Shin E.J., Choi S.M., Singh D., Zo S.M., Lee Y.H., Kim J.H., Han S.S. Fabrication of cellulose-based scaffold with microarchitecture using a leaching technique for biomedical applications. Cellulose. 2014;21:3515–3525. doi: 10.1007/s10570-014-0368-2. DOI
Randy B. The cellulose micelles. Tappi. 1952;35:53–58.
Hubbe M., Rojas O., Lucia L., Sain M. Cellulosic nanocomposites: A review. BioResources. 2008;3:929–980.
Šturcova A., Davies G., Eichhorn S. Elastic modulus and stress-transfer properties of tunicate cellulose whiskers. Biomacromolecules. 2005;6:1055–1061. doi: 10.1021/bm049291k. PubMed DOI
Samir M., Alloin F., Dufresne A. Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules. 2005;6:612–626. doi: 10.1021/bm0493685. PubMed DOI
Dufresne A. Comparing the mechanical properties of high performances polymer nanocomposites from biological sources. J. Nanosci. Nanotechnol. 2006;6:322–330. doi: 10.1166/jnn.2006.906. PubMed DOI
Dufresne A. Polysaccharide nanocrystals reinforced nanocomposites. J. Chem. 2008;86:484–494. doi: 10.1504/IJNT.2011.044425. DOI
Araki J., Wada M., Kuga S., Okano T. Flow properties of microcrystalline cellulose suspension prepared by acid treatment of native cellulose. Colloids Surf. A. 1998;142:75–82. doi: 10.1016/S0927-7757(98)00404-X. DOI
Roman M., Winter W. Effect of Sulfate Groups from Sulfuric Acid Hydrolysis on the Thermal Degradation Behavior of Bacterial Cellulose. Biomacromolecules. 2004;5:1671–1677. doi: 10.1021/bm034519+. PubMed DOI
Johari N., Ahmad I., Halib N. Comparison Study of Hydrogels Properties Synthesized with Micro- and Nano- Size Bacterial Cellulose Particles Extracted from Nata de coco. Chem. Biochem. Eng. Q. 2012;26:399–404.
Yin O., Ahmad I., Amin M. Effect of Cellulose Nanocrystals Content and pH on Swelling Behaviour of Gelatin Based Hydrogel. Sains Malays. 2015;44:793–799.
Ludueña L., Fasce D., Alvarez V., Stefani P. Nanocellulose from rice husk following alkaline treatment to remove silica. BioResource. 2011;6:1440–1453.
Sheltami R., Abdullah I., Ahmad I., Dufresne A., Kargarzadeh H. Extraction of cellulose nanocrystals from mengkuang leaves (Pandanus tectorius) Carbohydr. Polym. 2012;88:772–779. doi: 10.1016/j.carbpol.2012.01.062. DOI
Ahmad N., Ahmad I. Extraction and Characterization of Nanocellulose from Coconut Fiber. Malays. J. Anal. Sci. 2013;17:109–118.
Kargarzadeh H., Ahmad I., Abdullah I., Dufresne A., Zainudin S., Sheltami R. Effects of hydrolysis conditions on the morphology, crystallinity, and thermal stability of cellulose nanocrystals extracted from kenaf bast fibers. Cellulose. 2012;19:855–866. doi: 10.1007/s10570-012-9684-6. DOI
Mandal A., Chakrabarty D. Isolation of nanocellulose from waste sugarcane bagasse (SCB) and its Characterization. Carbohydr. Polym. 2011;86:1291–1299. doi: 10.1016/j.carbpol.2011.06.030. DOI
Morán J., Alvarez V., Cyras V., Vázquez A. Extraction of cellulose and preparation of nanocellulose from sisal fibers. Cellulose. 2008;15:149–159.
Reddy J., Rhim J.W. Characterization of bionanocomposite films prepared with agar and paper-mulberry pulp nanocellulose. Carbohydr. Polym. 2014;110:480–488. doi: 10.1016/j.carbpol.2014.04.056. PubMed DOI
Lani N., Ngadi N., Johari A., Jusoh M. Isolation, Characterization, and Application of Nanocellulose from Oil Palm Empty Fruit Bunch Fiber as Nanocomposites. J. Nanomater. 2014 doi: 10.1155/2014/702538. DOI
Pereira A., Do Nascimento D., Morais J., Vasconcelos N., Feitosa J., Brígida A., Rosa M. Improvement of polyvinyl alcohol properties by adding nanocrystalline cellulose isolated from banana pseudostems. Carbohydr. Polym. 2014;112:165–172. doi: 10.1016/j.carbpol.2014.05.090. PubMed DOI
Morais J., Rosa M., Souza Filho M. Extraction and characterization of nanocellulose structures from raw cotton linter. Carbohydr. Polym. 2013;91:229–235. doi: 10.1016/j.carbpol.2012.08.010. PubMed DOI
Oun A., Rhim J.W. Characterization of nanocelluloses isolated from Ushar (Calotropis procera) seed fiber: Effect of isolation method. Mater. Lett. 2016;168:146–150. doi: 10.1016/j.matlet.2016.01.052. DOI
Satyamurthy P., Vigneshwaran N. A novel process for synthesis of spherical nanocellulose by controlled hydrolysis of microcrystalline cellulose using anaerobic microbial consortium. Enzym. Microb. Technol. 2013;52:20–25. doi: 10.1016/j.enzmictec.2012.09.002. PubMed DOI
Levis S., Deasy P. Production and evaluation of size reduced grades of microcrystalline cellulose. Int. J. Pharm. 2001;213:13–24. doi: 10.1016/S0378-5173(00)00652-9. PubMed DOI
Janardhnan S., Sain M. Isolation of cellulose microfibrils—An enzymathic approach. Bioresources. 2006;1:176–188.
Sassi J., Chanzy H. Ultrastructural aspects of the acetylation of cellulose. Cellulose. 1995;2:111–127. doi: 10.1007/BF00816384. DOI
Li J., Zhang L., Peng F., Bian J., Yuan T., Xu F., Sun R. Microwave-Assisted Solvent-Free Acetylation of Cellulose with Acetic Anhydride in the Presence of Iodine as a Catalyst. Molecules. 2009;14:3551–3566. doi: 10.3390/molecules14093551. PubMed DOI PMC
Wu J., Zhang J., Zhang H., He J., Ren Q., Guo M. Homogeneous Acetylation of Cellulose in a New Ionic Liquid. Biomacromolecules. 2004;5:266–268. doi: 10.1021/bm034398d. PubMed DOI
Charpentier D., Mocanu G., Carpov A., Chapelle S., Merle L., Muller G. New hydrophobically modified carboxymethyl cellulose derivatives. Carbohydr. Polym. 1997;33:177–186. doi: 10.1016/S0144-8617(97)00031-3. DOI
Toðrul H., Arslan N. Production of carboxymethyl cellulose from sugar beet pulp cellulose and rheological behaviour of carboxymethyl cellulose. Carbohydr. Polym. 2003;54:73–82.
Harper B.J., Clendaniel A., Sinche F., Way D., Hughes M., Schardt J., Simonsen J., Stefaniak A.B., Harper S.L. Impacts of chemical modification on the toxicity of diverse nanocellulose materials to developing zebrafish. Cellulose. 2016;23:1763–1775. doi: 10.1007/s10570-016-0947-5. PubMed DOI PMC
Liu Y., Ye H., Satkunendrarajah K., Yao G.S., Bayon Y., Fehlings M.G. A self-assembling peptide reduces glial scarring, attenuates post-traumatic inflammation and promotes neurological recovery following spinal cord injury. Acta Biomater. 2013;9:8075–8088. doi: 10.1016/j.actbio.2013.06.001. PubMed DOI
Liekens S., De C.E., Neyts J. Angiogenesis: Regulators and clinical applications. Biochem. Pharmacol. 2001;61:253–270. doi: 10.1016/S0006-2952(00)00529-3. PubMed DOI
Sharpe J.R., Martin Y. Strategies Demonstrating Efficacy in Reducing Wound Contraction In Vivo. Adv. Wound Care. 2013;2:167–175. doi: 10.1089/wound.2012.0378. PubMed DOI PMC
Heo D.N., Yang D.H., Lee J.B., Bae M.S., Kim J.H., Moon S.H., Chun H.J., Kim C.H., Lim H.N., Kwon I.K. Burn-wound healing effect of gelatin/polyurethane nanofiber scaffold containing silver-sulfadiazine. J. Biomed. Nanotechnol. 2013;9:511–515. doi: 10.1166/jbn.2013.1509. PubMed DOI
Mo Y., Guo R., Zhang Y., Xue W., Cheng B., Zhang Y. Controlled Dual Delivery of Angiogenin and Curcumin by Electrospun Nanofibers for Skin Regeneration. Tissue Eng. Part A. 2017;23:597–608. doi: 10.1089/ten.tea.2016.0268. PubMed DOI
Grassi M., Cavallaro G., Scirè S., Scaggiante B., Daps B., Farra R., Baiz D., Giansante C., Guarnieri G., Perin D., et al. Current Strategies to Improve the Efficacy and the Delivery of Nucleic Acid Based Drugs. Curr. Signal Transduct. Ther. 2010;5:92–120. doi: 10.2174/157436210791112163. DOI
Posocco B., Dreussi E., De Santa J., Toffoli G., Abrami M., Musiani F., Grassi M., Farra R., Tonon F., Grassi G., et al. Polysaccharides for the Delivery of Antitumor Drugs. Materials. 2015;8:2569–2615. doi: 10.3390/ma8052569. DOI
Guo R., Lan Y., Xue W., Cheng B., Zhang Y., Wang C., Ramakrishna S. Collagen-cellulose nanocrystal scaffolds containing curcumin-loaded microspheres on infected full-thickness burns repair. J. Tissue Eng. Regen. Med. 2017 doi: 10.1002/term.2272. PubMed DOI
Alkhatib Y., Dewaldt M., Moritz S., Nitzsche R., Kralisch D., Fischer D. Controlled extended octenidine release from a bacterial nanocellulose/Poloxamer hybrid system. Eur. J. Pharm. Biopharm. 2017;112:164–176. doi: 10.1016/j.ejpb.2016.11.025. PubMed DOI
Dumortier G., Grossiord J.L., Agnely F., Chaumeil J.C. A review of poloxamer 407 pharmaceutical and pharmacological characteristics. Pharm. Res. 2006;23:2709–2728. doi: 10.1007/s11095-006-9104-4. PubMed DOI
Khalid A., Khan R., Ul-Islam M., Khan T., Wahid F. Bacterial cellulose-zinc oxide nanocomposites as a novel dressingsystem for burn woundsAyesha. Carbohydr. Polym. 2017;164:214–221. doi: 10.1016/j.carbpol.2017.01.061. PubMed DOI
Reckhenrich A.K., Kirsch B.M., Wahl E.A., Schenck T.L., Rezaeian F., Harder Y., Foehr P., Machens H.G., Egana J.T. Surgical sutures filled with adipose-derived stem cells promote wound healing. PLoS ONE. 2014;9:e91169. doi: 10.1371/journal.pone.0091169. PubMed DOI PMC
Barbash I.M., Chouraqui P., Baron J., Feinberg M.S., Etzion S., Tessone A., Miller L., Guetta E., Zipori D., Kedes L.H., et al. Systemic delivery of bone marrow-derived mesenchymal stem cells to the infarcted myocardium: Feasibility, cell migration, and body distribution. Circulation. 2003;108:863–868. doi: 10.1161/01.CIR.0000084828.50310.6A. PubMed DOI
Mertaniemi H., Escobedo-Lucea C., Sanz-Garcia A., Gandia C., Makitie A., Partanen J., Ikkala O., Yliperttula M. Human stem cell decorated nanocellulose threads for biomedical applications. Biomaterials. 2016;82:208–220. doi: 10.1016/j.biomaterials.2015.12.020. PubMed DOI
Fang B., Wan Y.Z., Tang T.T., Gao C., Dai K.R. Proliferation and osteoblastic differentiation of human bone marrow stromal cells on hydroxyapatite/bacterial cellulose nanocomposite scaffolds. Tissue Eng. Part A. 2009;15:1091–1098. doi: 10.1089/ten.tea.2008.0110. PubMed DOI
Singh B.N., Panda N.N., Mund R., Pramanik K. Carboxymethyl cellulose enables silk fibroin nanofibrous scaffold with enhanced biomimetic potential for bone tissue engineering application. Carbohydr. Polym. 2016;151:335–347. doi: 10.1016/j.carbpol.2016.05.088. PubMed DOI
Gaihre B., Jayasuriya A.C. Fabrication and characterization of carboxymethyl cellulose novel microparticles for bone tissue engineering. Mater. Sci. Eng. C. 2016;69:733–743. doi: 10.1016/j.msec.2016.07.060. PubMed DOI PMC
Chen Y., Roohani-Esfahani S.I., Lu Z., Zreiqat H., Dunstan C.R. Zirconium ions up-regulate the BMP/SMAD signaling pathway and promote the proliferation and differentiation of human osteoblasts. PLoS ONE. 2015;10:e0113426. doi: 10.1371/journal.pone.0113426. PubMed DOI PMC
Ao C., Niu Y., Zhang X., He X., Zhang W., Lu C. Fabrication and characterization of electrospun cellulose/nano-hydroxyapatite nanofibers for bone tissue engineering. Int. J. Biol. Macromol. 2017;97:568–573. doi: 10.1016/j.ijbiomac.2016.12.091. PubMed DOI
Saugspier M., Felthaus O., Viale-Bouroncle S., Driemel O., Reichert T.E., Schmalz G., Morsczeck C. The differentiation and gene expression profile of human dental follicle cells. Stem Cells Dev. 2010;19:707–717. doi: 10.1089/scd.2010.0027. PubMed DOI
Atila D., Keskin D., Tezcaner A. Crosslinked pullulan/cellulose acetate fibrous scaffolds for bone tissue engineering. Mater. Sci. Eng. C. 2016;69:1103–1115. doi: 10.1016/j.msec.2016.08.015. PubMed DOI
Fricain J.C., Schlaubitz S., Le V.C., Arnault I., Derkaoui S.M., Siadous R., Catros S., Lalande C., Bareille R., Renard M., et al. A nano-hydroxyapatite: Pullulan/dextran polysaccharide composite macroporous material for bone tissue engineering. Biomaterials. 2013;34:2947–2959. doi: 10.1016/j.biomaterials.2013.01.049. PubMed DOI
Liu L., He D., Wang G.S., Yu S.H. Bioinspired crystallization of CaCO3 coatings on electrospun cellulose acetate fiber scaffolds and corresponding CaCO3 microtube networks. Langmuir. 2011;27:7199–7206. doi: 10.1021/la200738n. PubMed DOI
Oliveira H., Catros S., Castano O., Rey S., Siadous R., Clift D., Marti-Munoz J., Batista M., Bareille R., Planell J., et al. The proangiogenic potential of a novel calcium releasing composite biomaterial: Orthotopic in vivo evaluation. Acta Biomater. 2017;54:377–385. doi: 10.1016/j.actbio.2017.02.039. PubMed DOI
Weiss P., Layrolle P., Clergeau L.P., Enckel B., Pilet P., Amouriq Y., Daculsi G., Giumelli B. The safety and efficacy of an injectable bone substitute in dental sockets demonstrated in a human clinical trial. Biomaterials. 2007;28:3295–3305. doi: 10.1016/j.biomaterials.2007.04.006. PubMed DOI
Oliveira H., Catros S., Boiziau C., Siadous R., Marti-Munoz J., Bareille R., Rey S., Castano O., Planell J., Amedee J., et al. The proangiogenic potential of a novel calcium releasing biomaterial: Impact on cell recruitment. Acta Biomater. 2016;29:435–445. doi: 10.1016/j.actbio.2015.10.003. PubMed DOI
Aguirre A., Gonzalez A., Planell J.A., Engel E. Extracellular calcium modulates in vitro bone marrow-derived Flk-1+ CD34+ progenitor cell chemotaxis and differentiation through a calcium-sensing receptor. Biochem. Biophys. Res. Commun. 2010;393:156–161. doi: 10.1016/j.bbrc.2010.01.109. PubMed DOI
Laschke M.W., Harder Y., Amon M., Martin I., Farhadi J., Ring A., Torio-Padron N., Schramm R., Rucker M., Junker D., et al. Angiogenesis in tissue engineering: Breathing life into constructed tissue substitutes. Tissue Eng. 2006;12:2093–2104. doi: 10.1089/ten.2006.12.2093. PubMed DOI
Markstedt K., Mantas A., Tournier I., Martinez A.H., Hagg D., Gatenholm P. 3D Bioprinting Human Chondrocytes with Nanocellulose-Alginate Bioink for Cartilage Tissue Engineering Applications. Biomacromolecules. 2015;16:1489–1496. doi: 10.1021/acs.biomac.5b00188. PubMed DOI
Turco G., Donati I., Grassi M., Marchioli G., Lapasin R., Paoletti S. Mechanical spectroscopy and relaxometry on alginate hydrogels: A comparative analysis for structural characterization and network mesh size determination. Biomacromolecules. 2011;12:1272–1282. doi: 10.1021/bm101556m. PubMed DOI
Möller T., Amoroso M., Hägg D., Brantsing C., Rotter N., Apelgren P., Lindahl A., Kölby L., Gatenholm P. In Vivo Chondrogenesis in 3D Bioprinted Human Cell-laden Hydrogel Constructs. Plast. Reconstr. Surg. Glob. Open. 2017:1–7. doi: 10.1097/GOX.0000000000001227. PubMed DOI PMC
De Windt T.S., Hendriks J.A., Zhao X., Vonk L.A., Creemers L.B., Dhert W.J., Randolph M.A., Saris D.B. Concise review: Unraveling stem cell cocultures in regenerative medicine: Which cell interactions steer cartilage regeneration and how? Stem Cells Transl. Med. 2014;3:723–733. doi: 10.5966/sctm.2013-0207. PubMed DOI PMC
Martinez A.H., Feldmann E.M., Pleumeekers M.M., Nimeskern L., Kuo W., De Jong W.C., Schwarz S., Muller R., Hendriks J., Rotter N., et al. Novel bilayer bacterial nanocellulose scaffold supports neocartilage formation in vitro and in vivo. Biomaterials. 2015;44:122–133. doi: 10.1016/j.biomaterials.2014.12.025. PubMed DOI
Silva R., Pereira F., Mota F., Watanabe E., Soares S., Santos M. Dental glass ionomer cement reinforced by cellulose microfibers and cellulose nanocrystals. Mater. Sci. Eng. 2016;58:389–395. doi: 10.1016/j.msec.2015.08.041. PubMed DOI
Nitanda J., Matsui H., Matsui A., Kasahara Y., Wakasa K., Yamaki M. Denture base materials reinforced with glass fibres. Part1. The application of industrial glass fibres distributed at random. J. Mater. Sci. 1987;22:1875–1878. doi: 10.1007/BF01132420. DOI
Nakamura M., Takahashi H., Hayakawa I. Reinforcement of denture base resin with short-rod glass fiber. Dent. Mater. J. 2007;26:733–738. doi: 10.4012/dmj.26.733. PubMed DOI
Xu D., Cheng X., Zhang Y., Wang J., Cheng H. The flexural behaviour of denture base reinforced by different contents of ultrahigh-modulus polyethylene fiber. J. Wuhan Univ. Technol. (Mater. Sci. Ed.) 2003;18:69–71.
Xua J., Lia Y., Yua T., Cong L. Reinforcement of denture base resin with short vegetable fiber. Dent. Mater. 2013;29:1273–1279. doi: 10.1016/j.dental.2013.09.013. PubMed DOI
Sukumar S., Drizhal I. Bone Grafts in Periodontal Therapy. Acta Med. (Hradec Kralove) 2008;51:203–207. doi: 10.14712/18059694.2017.25. PubMed DOI
Nasr H., Aichelmann-Reidy M., Yukna R. Bone and bone substitutes. Periodontology Guided Tissue Regeneration. Br. Dent. J. 1991;171:125–127. PubMed
Fassman A. Øízená Tkáòová a Kostní Regenerace ve Stomatologii. Volume 13. Grada Publishing Inc.; Praha, Czech Republic: 2002. p. 14.
Takata T., Wang H.L., Miyauchi M. Migration of osteoblastic cells on various guided bone regeneration membranes. Clin. Oral. Implant Res. 2001;12:332–338. doi: 10.1034/j.1600-0501.2001.012004332.x. PubMed DOI
Olyveira G., Acasigua G., Costa L., Scher C., Filho L., Pranke P., Basmaji P. Human Dental Pulp Stem Cell Behavior Using Natural Nanotolith/Bacterial Cellulose Scaffolds for Regenerative Medicine. J. Biomed. Nanotechnol. 2013;9:1–8. doi: 10.1166/jbn.2013.1620. PubMed DOI
Bhandari J., Mishra H., Mishra P.K., Wimmer R., Ahmad F.J., Talegaonkar S. Cellulose nanofiber aerogel as a promising biomaterial for customized oral drug delivery. Int. J. Nanomed. 2017;12:2021–2031. doi: 10.2147/IJN.S124318. PubMed DOI PMC
Meneguin A.B., Ferreira Cury B.S., Dos Santos A.M., Franco D.F., Barud H.S., Da Silva Filho E.C. Resistant starch/pectin free-standing films reinforced with nanocellulose intended for colonic methotrexate release. Carbohydr. Polym. 2017;157:1013–1023. doi: 10.1016/j.carbpol.2016.10.062. PubMed DOI
Kumar S.U., Gopinath P. Controlled delivery of bPEI-niclosamide complexes by PEO nanofibers and evaluation of its anti-neoplastic potentials. Colloids Surf. B Biointerfaces. 2015;131:170–181. doi: 10.1016/j.colsurfb.2015.04.063. PubMed DOI
Nurani M., Akbari V., Taheri A. Preparation and characterization of metformin surface modified cellulose nanofiber gel and evaluation of its anti-metastatic potentials. Carbohydr. Polym. 2017;165:322–333. doi: 10.1016/j.carbpol.2017.02.067. PubMed DOI
Fischer U.M., Harting M.T., Jimenez F., Monzon-Posadas W.O., Xue H., Savitz S.I., Laine G.A., Cox C.S., Jr. Pulmonary passage is a major obstacle for intravenous stem cell delivery: The pulmonary first-pass effect. Stem Cells Dev. 2009;18:683–692. doi: 10.1089/scd.2008.0253. PubMed DOI PMC
Moussa L., Pattappa G., Doix B., Benselama S.L., Demarquay C., Benderitter M., Semont A., Tamarat R., Guicheux J., Weiss P., et al. A biomaterial-assisted mesenchymal stromal cell therapy alleviates colonic radiation-induced damage. Biomaterials. 2017;115:40–52. doi: 10.1016/j.biomaterials.2016.11.017. PubMed DOI
Grassi G., Marini J.C. Ribozymes: Structure, function, and potential therapy for dominant genetic disorders. Ann. Med. 1996;28:499–510. doi: 10.3109/07853899608999114. PubMed DOI
Grassi G., Dawson P., Guarnieri G., Kandolf R., Grassi M. Therapeutic potential of hammerhead ribozymes in the treatment of hyper-proliferative diseases. Curr. Pharm. Biotechnol. 2004;5:369–386. doi: 10.2174/1389201043376760. PubMed DOI
Dapas B., Farra R., Grassi M., Giansante C., Fiotti N., Uxa L., Rainaldi G., Mercatanti A., Colombatti A., Spessotto P., et al. Role of E2F1-cyclin E1-cyclin E2 circuit in human coronary smooth muscle cell proliferation and therapeutic potential of its downregulation by siRNAs. Mol. Med. 2009;15:297–306. doi: 10.2119/molmed.2009.00030. PubMed DOI PMC
Grassi G., Schneider A., Engel S., Racchi G., Kandolf R., Kuhn A. Hammerhead ribozymes targeted against cyclin E and E2F1 cooperate to down-regulate coronary smooth muscle cell proliferation. J. Gene Med. 2005;7:1223–1234. doi: 10.1002/jgm.755. PubMed DOI
Farra R., Dapas B., Pozzato G., Giansante C., Heidenreich O., Uxa L., Zennaro C., Guarnieri G., Grassi G. Serum response factor depletion affects the proliferation of the hepatocellular carcinoma cells HepG2 and JHH6. Biochimie. 2010;92:455–463. doi: 10.1016/j.biochi.2010.01.007. PubMed DOI
Farra R., Dapas B., Pozzato G., Scaggiante B., Agostini F., Zennaro C., Grassi M., Rosso N., Giansante C., Fiotti N., et al. Effects of E2F1-cyclin E1–E2 circuit down regulation in hepatocellular carcinoma cells. Dig. Liver Dis. 2011;43:1006–1014. doi: 10.1016/j.dld.2011.07.007. PubMed DOI
Scaggiante B., Dapas B., Bonin S., Grassi M., Zennaro C., Farra R., Cristiano L., Siracusano S., Zanconati F., Giansante C., et al. Dissecting the expression of EEF1A1/2 genes in human prostate cancer cells: The potential of EEF1A2 as a hallmark for prostate transformation and progression. Br. J. Cancer. 2012;106:166–173. doi: 10.1038/bjc.2011.500. PubMed DOI PMC
Grassi G., Scaggiante B., Dapas B., Farra R., Tonon F., Lamberti G., Barba A., Fiorentino S., Fiotti N., Zanconati F., et al. Therapeutic potential of nucleic acid-based drugs in coronary hyper- proliferative vascular diseases. Curr. Med. Chem. 2013;20:3515–3538. doi: 10.2174/09298673113209990031. PubMed DOI
Scaggiante B., Dapas B., Farra R., Grassi M., Pozzato G., Giansante C., Fiotti N., Grassi G. Improving siRNA bio-distribution and minimizing side effects. Curr. Drug Metab. 2011;12:11–23. doi: 10.2174/138920011794520017. PubMed DOI
Scarabel L., Perrone F., Garziera M., Farra R., Grassi M., Musiani F., Russo S.C., Salis B., De S.L., Toffoli G., et al. Strategies to optimize siRNA delivery to hepatocellular carcinoma cells. Expert Opin. Drug Deliv. 2017;14:797–810. doi: 10.1080/17425247.2017.1292247. PubMed DOI
Grassi G., Farra R., Noro E., Voinovivh D., Lapasin R., Dapas B., Alpar O., Zennaro C., Carraro M., Giansante C., et al. Charactherization of nucleid acid molecule/liposome complexes and rheological effects on pluronic/alginate matrices. J. Drug Deliv. Sci. Technol. 2007;17:325–331. doi: 10.1016/S1773-2247(07)50050-X. DOI
Ntoutoume G.M.A., Grassot V., Bregier F., Chabanais J., Petit J.M., Granet R., Sol V. PEI-cellulose nanocrystal hybrids as efficient siRNA delivery agents-Synthesis, physicochemical characterization and in vitro evaluation. Carbohydr. Polym. 2017;164:258–267. doi: 10.1016/j.carbpol.2017.02.004. PubMed DOI
Dong S., Cho H.J., Lee Y.W., Roman M. Synthesis and cellular uptake of folic acid-conjugated cellulose nanocrystals for cancer targeting. Biomacromolecules. 2014;15:1560–1567. doi: 10.1021/bm401593n. PubMed DOI
Furst T., Dakwar G.R., Zagato E., Lechanteur A., Remaut K., Evrard B., Braeckmans K., Piel G. Freeze-dried mucoadhesive polymeric system containing pegylated lipoplexes: Towards a vaginal sustained released system for siRNA. J. Control. Release. 2016;236:68–78. doi: 10.1016/j.jconrel.2016.06.028. PubMed DOI
Barba A.A., Lamberti G., Sardo C., Dapas B., Abrami M., Grassi M., Farra R., Tonon F., Forte G., Musiani F., et al. Novel Lipid and Polymeric Materials as Delivery Systems for Nucleic Acid Based Drugs. Curr. Drug Metab. 2015;16:427–452. doi: 10.2174/1389200216666150812142557. PubMed DOI
Gupta P.N., Pattani A., Curran R.M., Kett V.L., Andrews G.P., Morrow R.J., Woolfson A.D., Malcolm R.K. Development of liposome gel based formulations for intravaginal delivery of the recombinant HIV-1 envelope protein CN54gp140. Eur. J. Pharm. Sci. 2012;46:315–322. doi: 10.1016/j.ejps.2012.02.003. PubMed DOI
Malik N.S., Ahmad M., Minhas M.U. Cross-linked beta-cyclodextrin and carboxymethyl cellulose hydrogels for controlled drug delivery of acyclovir. PLoS ONE. 2017;12:e0172727. doi: 10.1371/journal.pone.0172727. PubMed DOI PMC
Lademann J., Richter H., Schanzer S., Knorr F., Meinke M., Sterry W., Patzelt A. Penetration and storage of particles in human skin: Perspectives and safety aspects. Eur. J. Pharm. Biopharm. 2011;77:465–468. doi: 10.1016/j.ejpb.2010.10.015. PubMed DOI
Pan-In P., Wongsomboon A., Kokpol C., Chaichanawongsaroj N., Wanichwecharungruang S. Depositing alpha-mangostin nanoparticles to sebaceous gland area for acne treatment. J. Pharmacol. Sci. 2015;129:226–232. doi: 10.1016/j.jphs.2015.11.005. PubMed DOI
Suwannateep N., Banlunara W., Wanichwecharungruang S.P., Chiablaem K., Lirdprapamongkol K., Svasti J. Mucoadhesive curcumin nanospheres: Biological activity, adhesion to stomach mucosa and release of curcumin into the circulation. J. Control. Release. 2011;151:176–182. doi: 10.1016/j.jconrel.2011.01.011. PubMed DOI
Ahn J.H., Lim H.W., Hong H.R. The clinical application and efficacy of sodium hyaluronate-carboxymethylcellulose during tympanomastoid surgery. Laryngoscope. 2012;122:912–915. doi: 10.1002/lary.23213. PubMed DOI
Mencucci R., Boccalini C., Caputo R., Favuzza E. Effect of a hyaluronic acid and carboxymethylcellulose ophthalmic solution on ocular comfort and tear-film instability after cataract surgery. J. Cataract Refract. Surg. 2015;41:1699–1704. doi: 10.1016/j.jcrs.2014.12.056. PubMed DOI
Valerieva A., Popov T.A., Staevska M., Kralimarkova T., Petkova E., Valerieva E., Mustakov T., Lazarova T., Dimitrov V., Church M.K. Effect of micronized cellulose powder on the efficacy of topical oxymetazoline in allergic rhinitis. Allergy Asthma Proc. 2015;36:134–139. doi: 10.2500/aap.2015.36.3879. PubMed DOI
Peppas N., Buri P. Surface, interfacial and molecular aspects of polymer bioadhesion on soft tissues. J. Control. Release. 1985;2:257–275. doi: 10.1016/0168-3659(85)90050-1. DOI
Lee J.H., Ahn H.S., Kim E.K., Kim T.I. Efficacy of sodium hyaluronate and carboxymethylcellulose in treating mild to moderate dry eye disease. Cornea. 2011;30:175–179. doi: 10.1097/ICO.0b013e3181e9adcc. PubMed DOI
Abeer M.M., Mohd Amin M.C., Martin C. A review of bacterial cellulose-based drug delivery systems: Their biochemistry, current approaches and future prospects. J. Pharm. Pharmacol. 2014;66:1047–1061. doi: 10.1111/jphp.12234. PubMed DOI
Versatile Application of Nanocellulose: From Industry to Skin Tissue Engineering and Wound Healing