Pd Nanocatalyst Adorned on Magnetic Chitosan@N-Heterocyclic Carbene: Eco-Compatible Suzuki Cross-Coupling Reaction
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
31443412
PubMed Central
PMC6749225
DOI
10.3390/molecules24173048
PII: molecules24173048
Knihovny.cz E-zdroje
- Klíčová slova
- MWCNTs, N-heterocyclic carbene, Suzuki cross-coupling reaction, cross-linked chitosan,
- MeSH
- chitosan chemie MeSH
- imidazoly chemie farmakologie MeSH
- katalýza MeSH
- magnetické jevy * MeSH
- methan analogy a deriváty chemie MeSH
- nanotrubičky uhlíkové chemie MeSH
- palladium chemie MeSH
- spektroskopie infračervená s Fourierovou transformací MeSH
- termogravimetrie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- carbene MeSH Prohlížeč
- chitosan MeSH
- imidazole MeSH Prohlížeč
- imidazoly MeSH
- methan MeSH
- nanotrubičky uhlíkové MeSH
- palladium MeSH
A novel magnetic-functionalized-multi-walled carbon nanotubes@chitosan N-heterocyclic carbene-palladium (M-f-MWCNTs@chitosan-NHC-Pd) nanocatalyst is developed in two steps. The first step entails the fabrication of a three-component cross-linking of chitosan utilizing the Debus-Radziszewski imidazole approach. The second step comprised the covalent grafting of prepared cross-linked chitosan to the outer walls of magnetically functionalized MWCNTs (M-f-MWCNTs) followed by introducing PdCl2 to generate the m-f-MWCNTs@cross-linked chitosan with a novel NHC ligand. The repeated units of the amino group in the chitosan polymer chain provide the synthesis of several imidazole units which also increase the number of Pd linkers thus leading to higher catalyst efficiency. The evaluation of catalytic activity was examined in the expeditious synthesis of biaryl compounds using the Suzuki cross-coupling reaction of various aryl halides and aryl boronic acids; ensuing results show the general applicability of nanocatalyst with superior conversion reaction yields, high turnover frequencies (TOFs) and turnover numbers (TON). Meanwhile, nanocatalyst showed admirable potential in reusability tests, being recycled for five runs without losing significant activities under optimum reaction conditions. The successfully synthesis of catalyst and its characterization was confirmed using the Fourier transform infrared spectrometer (FT-IR), spectrometer transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray photo-electron spectroscopy (XPS) and thermogravimetric analysis (TGA).
Zobrazit více v PubMed
Magano J., Dunetz J.R. Large-Scale Applications of Transition Metal-Catalyzed Couplings for the Synthesis of Pharmaceuticals. Chem. Rev. 2011;111:2177–2250. doi: 10.1021/cr100346g. PubMed DOI
Torborg C., Beller M. Recent Applications of Palladium-Catalyzed Coupling Reactions in the Pharmaceutical, Agrochemical, and Fine Chemical Industries. Adv. Synth. Catal. 2009;351:3027–3043. doi: 10.1002/adsc.200900587. DOI
Corbet J.-P., Mignani G., Corbet J. Selected Patented Cross-Coupling Reaction Technologies. Chem. Rev. 2006;37:2651–2710. doi: 10.1021/cr0505268. PubMed DOI
Hooshmand S.E., Heidari B., Sedghi R., Varma R.S., Hiedari B. Recent advances in the Suzuki–Miyaura cross-coupling reaction using efficient catalysts in eco-friendly media. Green Chem. 2019;21:381–405. doi: 10.1039/C8GC02860E. DOI
Martin R., Buchwald S.L. Palladium-Catalyzed Suzuki-Miyaura Cross-coupling Reactions Employing Dialkylbiaryl Phosphine Ligands. Acc. Chem. Res. 2008;41:1461–1473. doi: 10.1021/ar800036s. PubMed DOI PMC
Barder T.E., Walker S.D., Martinelli J.R., Buchwald S.L. Catalysts for Suzuki−Miyaura Coupling Processes: Scope and Studies of the Effect of Ligand Structure. J. Am. Chem. Soc. 2005;127:4685–4696. doi: 10.1021/ja042491j. PubMed DOI
Miura M. Rational Ligand Design in Constructing Efficient Catalyst Systems for Suzuki—Miyaura Coupling. Angew. Chem. Int. Ed. 2004;35:2201–2203. doi: 10.1002/anie.200301753. PubMed DOI
Marziale A.N., Jantke D., Faul S.H., Reiner T., Herdtweck E., Eppinger J. An efficient protocol for the palladium-catalysed Suzuki–Miyaura cross-coupling. Green Chem. 2011;13:169–177. doi: 10.1039/C0GC00522C. DOI
Kim J.-H., Jun B.-H., Byun J.-W., Lee Y.-S. N-Heterocyclic carbene–palladium complex on polystyrene resin surface as polymer-supported catalyst and its application in Suzuki cross-coupling reaction. Tetrahedron Lett. 2004;45:5827–5831. doi: 10.1016/j.tetlet.2004.06.006. DOI
Li J.-H., Liu W.-J. Dabco as an Inexpensive and Highly Efficient Ligand for Palladium-Catalyzed Suzuki−Miyaura Cross-Coupling Reaction. Org. Lett. 2004;6:2809–2811. doi: 10.1021/ol048907f. PubMed DOI
Someya H., Ohmiya H., Yorimitsu H., Oshima K. N-Heterocyclic Carbene Ligands in Cobalt-Catalyzed Sequential Cyclization/Cross-Coupling Reactions of 6-Halo-1-hexene Derivatives with Grignard Reagents. Org. Lett. 2007;38:1565–1567. doi: 10.1021/ol070392f. PubMed DOI
Peris E., Crabtree R.H. Recent homogeneous catalytic applications of chelate and pincer N-heterocyclic carbenes. Coord. Chem. Rev. 2004;248:2239–2246. doi: 10.1016/j.ccr.2004.04.014. DOI
Hu X., Castro-Rodriguez I., Olsen K., Meyer K. Group 11 Metal Complexes of N-Heterocyclic Carbene Ligands: Nature of the MetalCarbene Bond. Organometallics. 2004;23:755–764. doi: 10.1021/om0341855. DOI
Dorta R., Stevens E.D., Scott N.M., Costabile C., Cavallo L., Hoff C.D., Nolan S.P. Steric and Electronic Properties of N-Heterocyclic Carbenes (NHC): A Detailed Study on Their Interaction with Ni(CO)4. J. Am. Chem. Soc. 2005;127:2485–2495. doi: 10.1021/ja0438821. PubMed DOI
Fortman G.C., Nolan S.P. N-Heterocyclic carbene (NHC) ligands and palladium in homogeneous cross-coupling catalysis: A perfect union. Chem. Soc. Rev. 2011;40:5151–5169. doi: 10.1039/c1cs15088j. PubMed DOI
Li H., Seechurn C.C.C.J., Colacot T.J. Development of Preformed Pd Catalysts for Cross-Coupling Reactions, Beyond the 2010 Nobel Prize. ACS Catal. 2012;2:1147–1164. doi: 10.1021/cs300082f. DOI
Sydnes M.O. The Use of Palladium on Magnetic Support as Catalyst for Suzuki–Miyaura Cross-Coupling Reactions. Catalysts. 2017;7:35. doi: 10.3390/catal7010035. DOI
Fayazi M., Taher M.A., Afzali D., Mostafavi A. Fe3O4 and MnO2 assembled on halloysite nanotubes: A highly efficient solid-phase extractant for electrochemical detection of mercury(II) ions. Sens. Actuators B Chem. 2016;228:1–9. doi: 10.1016/j.snb.2015.12.107. DOI
Guo B., Deng F., Zhao Y., Luo X., Luo S., Au C.T. Magnetic ion-imprinted and –SH functionalized polymer for selective removal of Pb(II) from aqueous samples. Appl. Surf. Sci. 2014;292:438–446. doi: 10.1016/j.apsusc.2013.11.156. DOI
Deng F., Li Y., Luo X., Yang L., Tu X. Preparation of conductive polypyrrole/TiO2 nanocomposite via surface molecular imprinting technique and its photocatalytic activity under simulated solar light irradiation. Colloids Surfaces A Physicochem. Eng. Asp. 2012;395:183–189. doi: 10.1016/j.colsurfa.2011.12.029. DOI
Liu Y., Liu Z., Gao J., Dai J., Han J., Wang Y., Xie J., Yan Y. Selective adsorption behavior of Pb(II) by mesoporous silica SBA-15-supported Pb(II)-imprinted polymer based on surface molecularly imprinting technique. J. Hazard. Mater. 2011;186:197–205. doi: 10.1016/j.jhazmat.2010.10.105. PubMed DOI
Karaaslan N.M., Senkal B.F., Cengiz E., Yaman M. Novel Polymeric Resin for Solid Phase Extraction and Determination of Lead in Waters. CLEAN Soil Air Water. 2010;38:1047–1054. doi: 10.1002/clen.201000085. DOI
Liu Y., Liu Z., Wang Y., Dai J., Gao J., Xie J., Yan Y. A surface ion-imprinted mesoporous sorbent for separation and determination of Pb (II) ion by flame atomic absorption spectrometry. Microchim. Acta. 2011;172:309–317. doi: 10.1007/s00604-010-0491-1. DOI
Murugan E., Gopi V. Amphiphilic Multiwalled Carbon Nanotube Polymer Hybrid with Improved Conductivity and Dispersibility Produced by Functionalization with Poly(vinylbenzyl)triethylammonium Chloride. J. Phys. Chem. C. 2011;115:19897–19909. doi: 10.1021/jp204766x. DOI
Baig R.B.N., Varma R.S. Magnetically retrievable catalysts for organic synthesis. Chem. Commun. 2013;49:752–770. doi: 10.1039/C2CC35663E. PubMed DOI
Baig R.B.N., Varma R.S. Organic synthesis via magnetic attraction: Benign and sustainable protocols using magnetic nanoferrites. Green Chem. 2013;15:398–417. doi: 10.1039/C2GC36455G. DOI
Huang K., Xue L., Hu Y.-C., Huang M.-Y., Jiang Y.-Y. Catalytic behaviors of silica-supported starch–polysulfosiloxane–Pt complexes in asymmetric hydrogenation of 4-methyl-2-pentanone. React. Funct. Polym. 2002;50:199–203. doi: 10.1016/S1381-5148(01)00103-1. DOI
Zhang J., Xia C.-G. Natural biopolymer-supported bimetallic catalyst system for the carbonylation to esters of Naproxen. J. Mol. Catal. A Chem. 2003;206:59–65. doi: 10.1016/S1381-1169(03)00451-5. DOI
Leonhardt S.E.S., Ondruschka B., Ondruschka J. Comment on Aspects of Chitosan Preparation. Chem. Eng. Technol. 2008;31:917–921. doi: 10.1002/ceat.200800079. DOI
Agboh O., Qin Y. Chitin and chitosan fibers. Polym. Adv. Technol. 1997;8:355–365. doi: 10.1002/(SICI)1099-1581(199706)8:6<355::AID-PAT651>3.0.CO;2-T. DOI
Knaul J.Z., Hudson S.M., Creber K.A.M. Improved mechanical properties of chitosan fibers. J. Appl. Polym. Sci. 1999;72:1721–1732. doi: 10.1002/(SICI)1097-4628(19990624)72:13<1721::AID-APP8>3.0.CO;2-V. DOI
Silvestri D., Wacławek S., Sobel B., Torres-Mendieta R., Novotný V., Nguyen N.H.A., Ševců A., Padil V.V.T., Müllerová J., Stuchlik M., et al. A poly(3-hydroxybutyrate)–chitosan polymer conjugate for the synthesis of safer gold nanoparticles and their applications. Green Chem. 2018;20:4975–4982. doi: 10.1039/C8GC02495B. DOI
Baba Y., Hirakawa H., Yoshizuka K., Inuoe K., Kawano Y. Adsorption Equilibria of Silver(I) and Copper(II) Ions on N-(2-Hydroxylbenzyl)chitosan Derivative. Anal. Sci. 1994;10:601–605. doi: 10.2116/analsci.10.601. DOI
Guibal E. Interactions of metal ions with chitosan-based sorbents: A review. Sep. Purif. Technol. 2004;38:43–74. doi: 10.1016/j.seppur.2003.10.004. DOI
Heeres J., Backx L.J.J., Mostmans J.H., Van Cutsem J. Antimycotic imidazoles. Part 4. Synthesis and antifungal activity of ketoconazole, a new potent orally active broad-spectrum antifungal agent. J. Med. Chem. 1979;22:1003–1005. doi: 10.1021/jm00194a023. PubMed DOI
Debus H. Ueber die einwirkung des ammoniaks auf glyoxal. Eur. J. Org. Chem. 1858;107:199–208. doi: 10.1002/jlac.18581070209. DOI
Huong L.T.T., Nam N.H., Doan D.H., Nhung H.T.M., Quang B.T., Nam P.H., Thong P.Q., Phuc N.X., Thu H.P. Folate attached, curcumin loaded Fe3O4 nanoparticles: A novel multifunctional drug delivery system for cancer treatment. Mater. Chem. Phys. 2016;172:98–104. doi: 10.1016/j.matchemphys.2015.12.065. DOI
Miyaura N., Yamada K., Suzuki A. A new stereospecific cross-coupling by the palladium-catalyzed reaction of 1-alkenylboranes with 1-alkenyl or 1-alkynyl halides. Tetrahedron Lett. 1979;20:3437–3440. doi: 10.1016/S0040-4039(01)95429-2. DOI
Sonogashira K. Development of Pd–Cu catalyzed cross-coupling of terminal acetylenes with sp2-carbon halides. J. Organomet. Chem. 2002;653:46–49. doi: 10.1016/S0022-328X(02)01158-0. DOI
Heck R.F. Palladium-Catalyzed Vinylation of Organic Halides. Org. React. 1982:345–390.
Negishi E.-I., Hu Q., Huang Z., Qian M., Wang G., Brown H. Palladium-catalyzed alkenylation by the Negishi coupling. Aldrichim. Acta. 2005;38:71–87. doi: 10.1002/chin.200638271. DOI
Chang X., Jiang N., Zheng H., He Q., Hu Z., Zhai Y., Cui Y. Solid-phase extraction of iron(III) with an ion-imprinted functionalized silica gel sorbent prepared by a surface imprinting technique. Talanta. 2007;71:38–43. doi: 10.1016/j.talanta.2006.03.012. PubMed DOI
Rofouei M.K., Payehghadr M., Shamsipur M., Ahmadalinezhad A. Solid phase extraction of ultra traces silver(I) using octadecyl silica membrane disks modified by 1,3-bis(2-cyanobenzene) triazene (CBT) ligand prior to determination by flame atomic absorption. J. Hazard. Mater. 2009;168:1184–1187. doi: 10.1016/j.jhazmat.2009.02.165. PubMed DOI
Sarker R.B., Bhuiyan A. Electrical conduction mechanism in plasma polymerized 1-Benzyl-2-methylimidazole thin films under static electric field. Thin Solid Films. 2011;519:5912–5916. doi: 10.1016/j.tsf.2011.03.001. DOI
Silva S.M., Braga C.R., Fook M.V., Raposo C.M., Carvalho L.H., Canedo E.L. Infrared Spectroscopy—Materials Science, Engineering and Technology. InTech Open; Rijeka, Croatia: 2012. Application of Infrared Spectroscopy to Analysis of Chitosan/Clay Nanocomposites.
Chang X., Chen D., Jiao X. Chitosan-Based Aerogels with High Adsorption Performance. J. Phys. Chem. B. 2008;112:7721–7725. doi: 10.1021/jp8011359. PubMed DOI
Xu Y., Zhang L., Cui Y. Catalytic performance of cellulose supported palladium complex for Heck reaction in water. J. Appl. Polym. Sci. 2008;110:2996–3000. doi: 10.1002/app.28655. DOI
Wu X., Lu C., Zhang W., Yuan G., Xiong R., Zhang X. A novel reagentless approach for synthesizing cellulose nanocrystal-supported palladium nanoparticles with enhanced catalytic performance. J. Mater. Chem. A. 2013;1:8645–8652. doi: 10.1039/c3ta11236e. DOI
Xiong R., Lu C., Wang Y., Zhou Z., Zhang X. Nanofibrillated cellulose as the support and reductant for the facile synthesis of Fe3O4/Ag nanocomposites with catalytic and antibacterial activity. J. Mater. Chem. A. 2013;1:14910–14918. doi: 10.1039/c3ta13314a. DOI
Paul S., Islam M.M. Suzuki–Miyaura reaction by heterogeneously supported Pd in water: Recent studies. RSC Adv. 2015;5:42193–42221. doi: 10.1039/C4RA17308B. DOI
Yin L., Liebscher J. Carbon—Carbon Coupling Reactions Catalyzed by Heterogeneous Palladium Catalysts. Chem. Rev. 2007;38:133–173. doi: 10.1021/cr0505674. PubMed DOI
Sakai T., Matsunaga T., Yamamoto Y., Ito C., Yoshida R., Suzuki S., Sasaki N., Shibayama M., Chung U.-I. Design and Fabrication of a High-Strength Hydrogel with Ideally Homogeneous Network Structure from Tetrahedron-like Macromonomers. Macromolecules. 2008;41:5379–5384. doi: 10.1021/ma800476x. DOI
Hong M.C., Choi M.C., Chang Y.W., Lee Y., Kim J., Rhee H. ChemInform Abstract: Palladium Nanoparticles on Thermoresponsive Hydrogels and Their Application as Recyclable Suzuki-Miyaura Coupling Reaction Catalysts in Water. Adv. Synth. Catal. 2012;43:1257–1263. doi: 10.1002/adsc.201100965. DOI
Sheldon R.A., Wallau M., Arends I.W.C.E., Schuchardt U. Heterogeneous Catalysts for Liquid-Phase Oxidations: Philosophers’ Stones or Trojan Horses? Accounts Chem. Res. 1998;31:485–493. doi: 10.1021/ar9700163. DOI
Baig R.B.N., Leazer J., Varma R.S. Magnetically separable Fe3O4@DOPA–Pd: A heterogeneous catalyst for aqueous Heck reaction. Clean Technol. Environ. Policy. 2015;17:2073–2077. doi: 10.1007/s10098-015-0914-0. DOI
Sá S., Gawande M.B., Velhinho A., Veiga J.P., Bundaleski N., Trigueiro J., Tolstoguzov A., Teodoro O.M.N.D., Zbořil R., Varma R.S., et al. Magnetically recyclable magnetite–palladium (Nanocat-Fe–Pd) nanocatalyst for the Buchwald–Hartwig reaction. Green Chem. 2014;16:3494–3500. doi: 10.1039/C4GC00558A. DOI
Eremin D.B., Ananikov V.P. Understanding active species in catalytic transformations: From molecular catalysis to nanoparticles, leaching, “Cocktails” of catalysts and dynamic systems. Coord. Chem. Rev. 2017;346:2–19. doi: 10.1016/j.ccr.2016.12.021. DOI
Lee Y., Hong M.C., Ahn H., Yu J., Rhee H. Pd nanoparticles immobilized on poly(NIPAM-co-4-VP) hydrogel: Highly active and reusable catalyst for carbon–carbon coupling reactions in water. J. Organomet. Chem. 2014;769:80–93. doi: 10.1016/j.jorganchem.2014.07.013. DOI
Shang N., Feng C., Zhang H., Gao S., Tang R., Wang C., Wang Z. Suzuki–Miyaura reaction catalyzed by graphene oxide supported palladium nanoparticles. Catal. Commun. 2013;40:111–115. doi: 10.1016/j.catcom.2013.06.006. DOI
Shang N., Gao S., Feng C., Zhang H., Wang C., Wang Z. Graphene oxide supported N-heterocyclic carbene-palladium as a novel catalyst for the Suzuki–Miyaura reaction. RSC Adv. 2013;3:21863–21868. doi: 10.1039/c3ra44620d. DOI
Song H.-Q., Zhu Q., Zheng X.-J., Chen X.-G. One-step synthesis of three-dimensional graphene/multiwalled carbon nanotubes/Pd composite hydrogels: An efficient recyclable catalyst for Suzuki coupling reactions. J. Mater. Chem. A. 2015;3:10368–10377. doi: 10.1039/C5TA00280J. DOI
Zhang Y., Yang J., Zhang X., Bian F., Yu W. A novel thermo and pH-double sensitive hydrogel immobilized Pd catalyst for Heck and Suzuki reactions in aqueous media. React. Funct. Polym. 2012;72:233–241. doi: 10.1016/j.reactfunctpolym.2012.02.010. DOI
Sun Z., Yang J., Wang J., Li W., Kaliaguine S., Hou X., Deng Y., Zhao D. A versatile designed synthesis of magnetically separable nano-catalysts with well-defined core–shell nanostructures. J. Mater. Chem. A. 2014;2:6071–6074. doi: 10.1039/C3TA14046F. DOI
Woo H., Lee K., Park J.C., Park K.H. Facile synthesis of Pd/Fe3O4 /charcoal bifunctional catalysts with high metal loading for high product yields in Suzuki–Miyaura coupling reactions. New J. Chem. 2014;38:5626–5632. doi: 10.1039/C4NJ01329H. DOI