Pd Nanocatalyst Adorned on Magnetic Chitosan@N-Heterocyclic Carbene: Eco-Compatible Suzuki Cross-Coupling Reaction

. 2019 Aug 22 ; 24 (17) : . [epub] 20190822

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31443412

A novel magnetic-functionalized-multi-walled carbon nanotubes@chitosan N-heterocyclic carbene-palladium (M-f-MWCNTs@chitosan-NHC-Pd) nanocatalyst is developed in two steps. The first step entails the fabrication of a three-component cross-linking of chitosan utilizing the Debus-Radziszewski imidazole approach. The second step comprised the covalent grafting of prepared cross-linked chitosan to the outer walls of magnetically functionalized MWCNTs (M-f-MWCNTs) followed by introducing PdCl2 to generate the m-f-MWCNTs@cross-linked chitosan with a novel NHC ligand. The repeated units of the amino group in the chitosan polymer chain provide the synthesis of several imidazole units which also increase the number of Pd linkers thus leading to higher catalyst efficiency. The evaluation of catalytic activity was examined in the expeditious synthesis of biaryl compounds using the Suzuki cross-coupling reaction of various aryl halides and aryl boronic acids; ensuing results show the general applicability of nanocatalyst with superior conversion reaction yields, high turnover frequencies (TOFs) and turnover numbers (TON). Meanwhile, nanocatalyst showed admirable potential in reusability tests, being recycled for five runs without losing significant activities under optimum reaction conditions. The successfully synthesis of catalyst and its characterization was confirmed using the Fourier transform infrared spectrometer (FT-IR), spectrometer transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray photo-electron spectroscopy (XPS) and thermogravimetric analysis (TGA).

Zobrazit více v PubMed

Magano J., Dunetz J.R. Large-Scale Applications of Transition Metal-Catalyzed Couplings for the Synthesis of Pharmaceuticals. Chem. Rev. 2011;111:2177–2250. doi: 10.1021/cr100346g. PubMed DOI

Torborg C., Beller M. Recent Applications of Palladium-Catalyzed Coupling Reactions in the Pharmaceutical, Agrochemical, and Fine Chemical Industries. Adv. Synth. Catal. 2009;351:3027–3043. doi: 10.1002/adsc.200900587. DOI

Corbet J.-P., Mignani G., Corbet J. Selected Patented Cross-Coupling Reaction Technologies. Chem. Rev. 2006;37:2651–2710. doi: 10.1021/cr0505268. PubMed DOI

Hooshmand S.E., Heidari B., Sedghi R., Varma R.S., Hiedari B. Recent advances in the Suzuki–Miyaura cross-coupling reaction using efficient catalysts in eco-friendly media. Green Chem. 2019;21:381–405. doi: 10.1039/C8GC02860E. DOI

Martin R., Buchwald S.L. Palladium-Catalyzed Suzuki-Miyaura Cross-coupling Reactions Employing Dialkylbiaryl Phosphine Ligands. Acc. Chem. Res. 2008;41:1461–1473. doi: 10.1021/ar800036s. PubMed DOI PMC

Barder T.E., Walker S.D., Martinelli J.R., Buchwald S.L. Catalysts for Suzuki−Miyaura Coupling Processes: Scope and Studies of the Effect of Ligand Structure. J. Am. Chem. Soc. 2005;127:4685–4696. doi: 10.1021/ja042491j. PubMed DOI

Miura M. Rational Ligand Design in Constructing Efficient Catalyst Systems for Suzuki—Miyaura Coupling. Angew. Chem. Int. Ed. 2004;35:2201–2203. doi: 10.1002/anie.200301753. PubMed DOI

Marziale A.N., Jantke D., Faul S.H., Reiner T., Herdtweck E., Eppinger J. An efficient protocol for the palladium-catalysed Suzuki–Miyaura cross-coupling. Green Chem. 2011;13:169–177. doi: 10.1039/C0GC00522C. DOI

Kim J.-H., Jun B.-H., Byun J.-W., Lee Y.-S. N-Heterocyclic carbene–palladium complex on polystyrene resin surface as polymer-supported catalyst and its application in Suzuki cross-coupling reaction. Tetrahedron Lett. 2004;45:5827–5831. doi: 10.1016/j.tetlet.2004.06.006. DOI

Li J.-H., Liu W.-J. Dabco as an Inexpensive and Highly Efficient Ligand for Palladium-Catalyzed Suzuki−Miyaura Cross-Coupling Reaction. Org. Lett. 2004;6:2809–2811. doi: 10.1021/ol048907f. PubMed DOI

Someya H., Ohmiya H., Yorimitsu H., Oshima K. N-Heterocyclic Carbene Ligands in Cobalt-Catalyzed Sequential Cyclization/Cross-Coupling Reactions of 6-Halo-1-hexene Derivatives with Grignard Reagents. Org. Lett. 2007;38:1565–1567. doi: 10.1021/ol070392f. PubMed DOI

Peris E., Crabtree R.H. Recent homogeneous catalytic applications of chelate and pincer N-heterocyclic carbenes. Coord. Chem. Rev. 2004;248:2239–2246. doi: 10.1016/j.ccr.2004.04.014. DOI

Hu X., Castro-Rodriguez I., Olsen K., Meyer K. Group 11 Metal Complexes of N-Heterocyclic Carbene Ligands: Nature of the MetalCarbene Bond. Organometallics. 2004;23:755–764. doi: 10.1021/om0341855. DOI

Dorta R., Stevens E.D., Scott N.M., Costabile C., Cavallo L., Hoff C.D., Nolan S.P. Steric and Electronic Properties of N-Heterocyclic Carbenes (NHC): A Detailed Study on Their Interaction with Ni(CO)4. J. Am. Chem. Soc. 2005;127:2485–2495. doi: 10.1021/ja0438821. PubMed DOI

Fortman G.C., Nolan S.P. N-Heterocyclic carbene (NHC) ligands and palladium in homogeneous cross-coupling catalysis: A perfect union. Chem. Soc. Rev. 2011;40:5151–5169. doi: 10.1039/c1cs15088j. PubMed DOI

Li H., Seechurn C.C.C.J., Colacot T.J. Development of Preformed Pd Catalysts for Cross-Coupling Reactions, Beyond the 2010 Nobel Prize. ACS Catal. 2012;2:1147–1164. doi: 10.1021/cs300082f. DOI

Sydnes M.O. The Use of Palladium on Magnetic Support as Catalyst for Suzuki–Miyaura Cross-Coupling Reactions. Catalysts. 2017;7:35. doi: 10.3390/catal7010035. DOI

Fayazi M., Taher M.A., Afzali D., Mostafavi A. Fe3O4 and MnO2 assembled on halloysite nanotubes: A highly efficient solid-phase extractant for electrochemical detection of mercury(II) ions. Sens. Actuators B Chem. 2016;228:1–9. doi: 10.1016/j.snb.2015.12.107. DOI

Guo B., Deng F., Zhao Y., Luo X., Luo S., Au C.T. Magnetic ion-imprinted and –SH functionalized polymer for selective removal of Pb(II) from aqueous samples. Appl. Surf. Sci. 2014;292:438–446. doi: 10.1016/j.apsusc.2013.11.156. DOI

Deng F., Li Y., Luo X., Yang L., Tu X. Preparation of conductive polypyrrole/TiO2 nanocomposite via surface molecular imprinting technique and its photocatalytic activity under simulated solar light irradiation. Colloids Surfaces A Physicochem. Eng. Asp. 2012;395:183–189. doi: 10.1016/j.colsurfa.2011.12.029. DOI

Liu Y., Liu Z., Gao J., Dai J., Han J., Wang Y., Xie J., Yan Y. Selective adsorption behavior of Pb(II) by mesoporous silica SBA-15-supported Pb(II)-imprinted polymer based on surface molecularly imprinting technique. J. Hazard. Mater. 2011;186:197–205. doi: 10.1016/j.jhazmat.2010.10.105. PubMed DOI

Karaaslan N.M., Senkal B.F., Cengiz E., Yaman M. Novel Polymeric Resin for Solid Phase Extraction and Determination of Lead in Waters. CLEAN Soil Air Water. 2010;38:1047–1054. doi: 10.1002/clen.201000085. DOI

Liu Y., Liu Z., Wang Y., Dai J., Gao J., Xie J., Yan Y. A surface ion-imprinted mesoporous sorbent for separation and determination of Pb (II) ion by flame atomic absorption spectrometry. Microchim. Acta. 2011;172:309–317. doi: 10.1007/s00604-010-0491-1. DOI

Murugan E., Gopi V. Amphiphilic Multiwalled Carbon Nanotube Polymer Hybrid with Improved Conductivity and Dispersibility Produced by Functionalization with Poly(vinylbenzyl)triethylammonium Chloride. J. Phys. Chem. C. 2011;115:19897–19909. doi: 10.1021/jp204766x. DOI

Baig R.B.N., Varma R.S. Magnetically retrievable catalysts for organic synthesis. Chem. Commun. 2013;49:752–770. doi: 10.1039/C2CC35663E. PubMed DOI

Baig R.B.N., Varma R.S. Organic synthesis via magnetic attraction: Benign and sustainable protocols using magnetic nanoferrites. Green Chem. 2013;15:398–417. doi: 10.1039/C2GC36455G. DOI

Huang K., Xue L., Hu Y.-C., Huang M.-Y., Jiang Y.-Y. Catalytic behaviors of silica-supported starch–polysulfosiloxane–Pt complexes in asymmetric hydrogenation of 4-methyl-2-pentanone. React. Funct. Polym. 2002;50:199–203. doi: 10.1016/S1381-5148(01)00103-1. DOI

Zhang J., Xia C.-G. Natural biopolymer-supported bimetallic catalyst system for the carbonylation to esters of Naproxen. J. Mol. Catal. A Chem. 2003;206:59–65. doi: 10.1016/S1381-1169(03)00451-5. DOI

Leonhardt S.E.S., Ondruschka B., Ondruschka J. Comment on Aspects of Chitosan Preparation. Chem. Eng. Technol. 2008;31:917–921. doi: 10.1002/ceat.200800079. DOI

Agboh O., Qin Y. Chitin and chitosan fibers. Polym. Adv. Technol. 1997;8:355–365. doi: 10.1002/(SICI)1099-1581(199706)8:6<355::AID-PAT651>3.0.CO;2-T. DOI

Knaul J.Z., Hudson S.M., Creber K.A.M. Improved mechanical properties of chitosan fibers. J. Appl. Polym. Sci. 1999;72:1721–1732. doi: 10.1002/(SICI)1097-4628(19990624)72:13<1721::AID-APP8>3.0.CO;2-V. DOI

Silvestri D., Wacławek S., Sobel B., Torres-Mendieta R., Novotný V., Nguyen N.H.A., Ševců A., Padil V.V.T., Müllerová J., Stuchlik M., et al. A poly(3-hydroxybutyrate)–chitosan polymer conjugate for the synthesis of safer gold nanoparticles and their applications. Green Chem. 2018;20:4975–4982. doi: 10.1039/C8GC02495B. DOI

Baba Y., Hirakawa H., Yoshizuka K., Inuoe K., Kawano Y. Adsorption Equilibria of Silver(I) and Copper(II) Ions on N-(2-Hydroxylbenzyl)chitosan Derivative. Anal. Sci. 1994;10:601–605. doi: 10.2116/analsci.10.601. DOI

Guibal E. Interactions of metal ions with chitosan-based sorbents: A review. Sep. Purif. Technol. 2004;38:43–74. doi: 10.1016/j.seppur.2003.10.004. DOI

Heeres J., Backx L.J.J., Mostmans J.H., Van Cutsem J. Antimycotic imidazoles. Part 4. Synthesis and antifungal activity of ketoconazole, a new potent orally active broad-spectrum antifungal agent. J. Med. Chem. 1979;22:1003–1005. doi: 10.1021/jm00194a023. PubMed DOI

Debus H. Ueber die einwirkung des ammoniaks auf glyoxal. Eur. J. Org. Chem. 1858;107:199–208. doi: 10.1002/jlac.18581070209. DOI

Huong L.T.T., Nam N.H., Doan D.H., Nhung H.T.M., Quang B.T., Nam P.H., Thong P.Q., Phuc N.X., Thu H.P. Folate attached, curcumin loaded Fe3O4 nanoparticles: A novel multifunctional drug delivery system for cancer treatment. Mater. Chem. Phys. 2016;172:98–104. doi: 10.1016/j.matchemphys.2015.12.065. DOI

Miyaura N., Yamada K., Suzuki A. A new stereospecific cross-coupling by the palladium-catalyzed reaction of 1-alkenylboranes with 1-alkenyl or 1-alkynyl halides. Tetrahedron Lett. 1979;20:3437–3440. doi: 10.1016/S0040-4039(01)95429-2. DOI

Sonogashira K. Development of Pd–Cu catalyzed cross-coupling of terminal acetylenes with sp2-carbon halides. J. Organomet. Chem. 2002;653:46–49. doi: 10.1016/S0022-328X(02)01158-0. DOI

Heck R.F. Palladium-Catalyzed Vinylation of Organic Halides. Org. React. 1982:345–390.

Negishi E.-I., Hu Q., Huang Z., Qian M., Wang G., Brown H. Palladium-catalyzed alkenylation by the Negishi coupling. Aldrichim. Acta. 2005;38:71–87. doi: 10.1002/chin.200638271. DOI

Chang X., Jiang N., Zheng H., He Q., Hu Z., Zhai Y., Cui Y. Solid-phase extraction of iron(III) with an ion-imprinted functionalized silica gel sorbent prepared by a surface imprinting technique. Talanta. 2007;71:38–43. doi: 10.1016/j.talanta.2006.03.012. PubMed DOI

Rofouei M.K., Payehghadr M., Shamsipur M., Ahmadalinezhad A. Solid phase extraction of ultra traces silver(I) using octadecyl silica membrane disks modified by 1,3-bis(2-cyanobenzene) triazene (CBT) ligand prior to determination by flame atomic absorption. J. Hazard. Mater. 2009;168:1184–1187. doi: 10.1016/j.jhazmat.2009.02.165. PubMed DOI

Sarker R.B., Bhuiyan A. Electrical conduction mechanism in plasma polymerized 1-Benzyl-2-methylimidazole thin films under static electric field. Thin Solid Films. 2011;519:5912–5916. doi: 10.1016/j.tsf.2011.03.001. DOI

Silva S.M., Braga C.R., Fook M.V., Raposo C.M., Carvalho L.H., Canedo E.L. Infrared Spectroscopy—Materials Science, Engineering and Technology. InTech Open; Rijeka, Croatia: 2012. Application of Infrared Spectroscopy to Analysis of Chitosan/Clay Nanocomposites.

Chang X., Chen D., Jiao X. Chitosan-Based Aerogels with High Adsorption Performance. J. Phys. Chem. B. 2008;112:7721–7725. doi: 10.1021/jp8011359. PubMed DOI

Xu Y., Zhang L., Cui Y. Catalytic performance of cellulose supported palladium complex for Heck reaction in water. J. Appl. Polym. Sci. 2008;110:2996–3000. doi: 10.1002/app.28655. DOI

Wu X., Lu C., Zhang W., Yuan G., Xiong R., Zhang X. A novel reagentless approach for synthesizing cellulose nanocrystal-supported palladium nanoparticles with enhanced catalytic performance. J. Mater. Chem. A. 2013;1:8645–8652. doi: 10.1039/c3ta11236e. DOI

Xiong R., Lu C., Wang Y., Zhou Z., Zhang X. Nanofibrillated cellulose as the support and reductant for the facile synthesis of Fe3O4/Ag nanocomposites with catalytic and antibacterial activity. J. Mater. Chem. A. 2013;1:14910–14918. doi: 10.1039/c3ta13314a. DOI

Paul S., Islam M.M. Suzuki–Miyaura reaction by heterogeneously supported Pd in water: Recent studies. RSC Adv. 2015;5:42193–42221. doi: 10.1039/C4RA17308B. DOI

Yin L., Liebscher J. Carbon—Carbon Coupling Reactions Catalyzed by Heterogeneous Palladium Catalysts. Chem. Rev. 2007;38:133–173. doi: 10.1021/cr0505674. PubMed DOI

Sakai T., Matsunaga T., Yamamoto Y., Ito C., Yoshida R., Suzuki S., Sasaki N., Shibayama M., Chung U.-I. Design and Fabrication of a High-Strength Hydrogel with Ideally Homogeneous Network Structure from Tetrahedron-like Macromonomers. Macromolecules. 2008;41:5379–5384. doi: 10.1021/ma800476x. DOI

Hong M.C., Choi M.C., Chang Y.W., Lee Y., Kim J., Rhee H. ChemInform Abstract: Palladium Nanoparticles on Thermoresponsive Hydrogels and Their Application as Recyclable Suzuki-Miyaura Coupling Reaction Catalysts in Water. Adv. Synth. Catal. 2012;43:1257–1263. doi: 10.1002/adsc.201100965. DOI

Sheldon R.A., Wallau M., Arends I.W.C.E., Schuchardt U. Heterogeneous Catalysts for Liquid-Phase Oxidations: Philosophers’ Stones or Trojan Horses? Accounts Chem. Res. 1998;31:485–493. doi: 10.1021/ar9700163. DOI

Baig R.B.N., Leazer J., Varma R.S. Magnetically separable Fe3O4@DOPA–Pd: A heterogeneous catalyst for aqueous Heck reaction. Clean Technol. Environ. Policy. 2015;17:2073–2077. doi: 10.1007/s10098-015-0914-0. DOI

Sá S., Gawande M.B., Velhinho A., Veiga J.P., Bundaleski N., Trigueiro J., Tolstoguzov A., Teodoro O.M.N.D., Zbořil R., Varma R.S., et al. Magnetically recyclable magnetite–palladium (Nanocat-Fe–Pd) nanocatalyst for the Buchwald–Hartwig reaction. Green Chem. 2014;16:3494–3500. doi: 10.1039/C4GC00558A. DOI

Eremin D.B., Ananikov V.P. Understanding active species in catalytic transformations: From molecular catalysis to nanoparticles, leaching, “Cocktails” of catalysts and dynamic systems. Coord. Chem. Rev. 2017;346:2–19. doi: 10.1016/j.ccr.2016.12.021. DOI

Lee Y., Hong M.C., Ahn H., Yu J., Rhee H. Pd nanoparticles immobilized on poly(NIPAM-co-4-VP) hydrogel: Highly active and reusable catalyst for carbon–carbon coupling reactions in water. J. Organomet. Chem. 2014;769:80–93. doi: 10.1016/j.jorganchem.2014.07.013. DOI

Shang N., Feng C., Zhang H., Gao S., Tang R., Wang C., Wang Z. Suzuki–Miyaura reaction catalyzed by graphene oxide supported palladium nanoparticles. Catal. Commun. 2013;40:111–115. doi: 10.1016/j.catcom.2013.06.006. DOI

Shang N., Gao S., Feng C., Zhang H., Wang C., Wang Z. Graphene oxide supported N-heterocyclic carbene-palladium as a novel catalyst for the Suzuki–Miyaura reaction. RSC Adv. 2013;3:21863–21868. doi: 10.1039/c3ra44620d. DOI

Song H.-Q., Zhu Q., Zheng X.-J., Chen X.-G. One-step synthesis of three-dimensional graphene/multiwalled carbon nanotubes/Pd composite hydrogels: An efficient recyclable catalyst for Suzuki coupling reactions. J. Mater. Chem. A. 2015;3:10368–10377. doi: 10.1039/C5TA00280J. DOI

Zhang Y., Yang J., Zhang X., Bian F., Yu W. A novel thermo and pH-double sensitive hydrogel immobilized Pd catalyst for Heck and Suzuki reactions in aqueous media. React. Funct. Polym. 2012;72:233–241. doi: 10.1016/j.reactfunctpolym.2012.02.010. DOI

Sun Z., Yang J., Wang J., Li W., Kaliaguine S., Hou X., Deng Y., Zhao D. A versatile designed synthesis of magnetically separable nano-catalysts with well-defined core–shell nanostructures. J. Mater. Chem. A. 2014;2:6071–6074. doi: 10.1039/C3TA14046F. DOI

Woo H., Lee K., Park J.C., Park K.H. Facile synthesis of Pd/Fe3O4 /charcoal bifunctional catalysts with high metal loading for high product yields in Suzuki–Miyaura coupling reactions. New J. Chem. 2014;38:5626–5632. doi: 10.1039/C4NJ01329H. DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

The Use of a Biopolymer Conjugate for an Eco-Friendly One-Pot Synthesis of Palladium-Platinum Alloys

. 2019 Nov 27 ; 11 (12) : . [epub] 20191127

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...