The Use of a Biopolymer Conjugate for an Eco-Friendly One-Pot Synthesis of Palladium-Platinum Alloys

. 2019 Nov 27 ; 11 (12) : . [epub] 20191127

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31783572

Grantová podpora
Student Grant Scheme 2019 Technická Univerzita v Liberci
LM2015073 Ministerstvo Školství, Mládeže a Tělovýchovy

Raising health and environmental concerns over the nanoparticles synthesized from hazardous chemicals have urged researchers to focus on safer, environmentally friendlier and cheaper alternatives as well as prompted the development of green synthesis. Apart from many advantages, green synthesis is often not selective enough (among other issues) to create shape-specific nanoparticle structures. Herein, we have used a biopolymer conjugate and Pd and Pt precursors to prepare sustainable bimetallic nanoparticles with various morphology types. The nanoparticles were synthesized by a novel green approach using a bio-conjugate of chitosan and polyhydroxybutyrate (Cs-PHB). The bio-conjugate plays the simultaneous roles of a reducing and a capping agent, which was confirmed by attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) and energy dispersive X-ray spectrometry (EDS) analysis, proving the presence of a Cs-PHB layer on the surface of the prepared nanoparticles. The EDS profile also revealed the elemental structure of these nanoparticles and confirmed the formation of a Pd/Pt alloy. TEM morphological analysis showed the formation of star-like, octahedron or decahedron Pd/Pt nanoparticles, depending on the synthesis conditions. The bimetallic Pd/Pt nanoparticles synthesized with various Pd/Pt molar ratios were successfully applied for the catalytic reduction of 4-nitrophenol to 4-aminophenol by borohydride. The calculated κc values (ratio of kapp to the concentration of the catalyst) revealed that the decahedron nanoparticles (size of 15 ± 4 nm), synthesized at the molar ratio of 2:1 (Pd/Pt), temperature of 130 °C, 10 g/L of Cs-PHB conjugate and time of 30 min, exhibited excellent catalytic activity compared to other bimetallic nanoparticles reported in the literature.

Zobrazit více v PubMed

Virkutyte J., Varma R.S. Green synthesis of metal nanoparticles: Biodegradable polymers and enzymes in stabilization and surface functionalization. Chem. Sci. 2011;2:837–846. doi: 10.1039/C0SC00338G. DOI

Moulton M.C., Braydich-Stolle L.K., Nadagouda M.N., Kunzelman S., Hussain S.M., Varma R.S. Synthesis, characterization and biocompatibility of “green” synthesized silver nanoparticles using tea polyphenols. Nanoscale. 2010;2:763–770. doi: 10.1039/c0nr00046a. PubMed DOI

Vinod V.T.P., Saravanan P., Sreedhar B., Devi D.K., Sashidhar R.B. A facile synthesis and characterization of Ag, Au and Pt nanoparticles using a natural hydrocolloid gum kondagogu (Cochlospermum gossypium) Colloids Surf. B Biointerfaces. 2011;83:291–298. doi: 10.1016/j.colsurfb.2010.11.035. PubMed DOI

Padil V.V.T., Černík M., Thekkae Padil V.V., Černík M. Green synthesis of copper oxide nanoparticles using gum karaya as a biotemplate and their antibacterial application. Int. J. Nanomed. 2013;8:889–898. doi: 10.2147/IJN.S40599. PubMed DOI PMC

Nadagouda M.N., Speth T.F., Varma R.S. Microwave-assisted green synthesis of silver nanostructures. Acc. Chem. Res. 2011;44:469–478. doi: 10.1021/ar1001457. PubMed DOI

Hebbalalu D., Lalley J., Nadagouda M.N., Varma R.S. Greener techniques for the synthesis of silver nanoparticles using plant extracts, enzymes, bacteria, biodegradable polymers, and microwaves. ACS Sustain. Chem. Eng. 2013;1:703–712. doi: 10.1021/sc4000362. DOI

Seo E., Kim J., Hong Y., Kim Y.S., Lee D., Kim B.S. Double hydrophilic block copolymer templated au nanoparticles with enhanced catalytic activity toward nitroarene reduction. J. Phys. Chem. C. 2013;117:11686–11693. doi: 10.1021/jp4027139. DOI

Machmudah S., Sato T., Wahyudiono, Sasaki M., Goto M. Silver nanoparticles generated by pulsed laser ablation in supercritical CO2 medium. High Press. Res. 2012;32:60–66. doi: 10.1080/08957959.2011.649277. DOI

Zhao L., Song J., Xue Y., Zhao X., Deng Y., Li Q., Xia Y. Green synthesis of Ag–Au bimetallic nanoparticles with alginate for sensitive detection of H2O2. Catal. Lett. 2018;148:3248–3256. doi: 10.1007/s10562-018-2522-1. DOI

Padil V.V.T., Wacławek S., Černík M. Green Synthesis: Nanoparticles and Nanofibres Based on Tree Gums for Environmental Applications. Ecol. Chem. Eng. S. 2016;23:533–557. doi: 10.1515/eces-2016-0038. DOI

Sun L., Li J., Cai J., Zhong L., Ren G., Ma Q. One pot synthesis of gold nanoparticles using chitosan with varying degree of deacetylation and molecular weight. Carbohydr. Polym. 2017;178:105–114. doi: 10.1016/j.carbpol.2017.09.032. PubMed DOI

Chen X., Xu X.J., Zheng X.C., Guan X.X., Liu P. Chitosan supported palladium nanoparticles: The novel catalysts for hydrogen generation from hydrolysis of ammonia borane. Mater. Res. Bull. 2018;103:89–95. doi: 10.1016/j.materresbull.2018.03.013. DOI

Oliveira Â.A.S., Medeiros R.L.B.A., Figueredo G.P., Macedo H.P., Braga R.M., Maziviero F.V., Melo M.A.F., Melo D.M.A., Vieira M.M. One-step synthesis of LaNiO3 with chitosan for dry reforming of methane. Int. J. Hydrogen Energy. 2018;43:9696–9704. doi: 10.1016/j.ijhydene.2018.03.212. DOI

Anitha A., Sowmya S., Kumar P.T.S., Deepthi S., Chennazhi K.P., Ehrlich H., Tsurkan M., Jayakumar R. Chitin and chitosan in selected biomedical applications. Prog. Polym. Sci. 2014;39:1644–1667. doi: 10.1016/j.progpolymsci.2014.02.008. DOI

Ali A., Ahmed S. A review on chitosan and its nanocomposites in drug delivery. Int. J. Biol. Macromol. 2018;109:273–286. doi: 10.1016/j.ijbiomac.2017.12.078. PubMed DOI

Hahn T., Zibek S. Chitin-Chitosan—Myriad Functionalities in Science and Technology. InTechOpen; London, UK: 2018. Sewage Polluted Water Treatment via Chitosan: A Review.

Logithkumar R., Keshavnarayan A., Dhivya S., Chawla A., Saravanan S., Selvamurugan N. A review of chitosan and its derivatives in bone tissue engineering. Carbohydr. Polym. 2016;151:172–188. doi: 10.1016/j.carbpol.2016.05.049. PubMed DOI

Baig R.B.N., Varma R.S. Copper on chitosan: A recyclable heterogeneous catalyst for azide-alkyne cycloaddition reactions in water. Green Chem. 2013;15:1839. doi: 10.1039/c3gc40401c. DOI

Sedghi R., Heidari B., Shahmohamadi H., Zarshenas P., Varma R.S. Pd Nanocatalyst Adorned on Magnetic Chitosan@N-Heterocyclic Carbene: Eco-Compatible Suzuki Cross-Coupling Reaction. Molecules. 2019;24:3048. doi: 10.3390/molecules24173048. PubMed DOI PMC

Devi R., Dhamodharan R. Pretreatment in Hot Glycerol for Facile and Green Separation of Chitin from Prawn Shell Waste. ACS Sustain. Chem. Eng. 2018;6:846–853. doi: 10.1021/acssuschemeng.7b03195. DOI

Al Rowaihi I.S., Paillier A., Rasul S., Karan R., Grötzinger S.W., Takanabe K., Eppinger J. Poly(3-hydroxybutyrate) production in an integrated electromicrobial setup: Investigation under stress-inducing conditions. PLoS ONE. 2018;13:e0196079. doi: 10.1371/journal.pone.0196079. PubMed DOI PMC

Silva F., Campanari S., Matteo S., Valentino F., Majone M., Villano M. Impact of nitrogen feeding regulation on polyhydroxyalkanoates production by mixed microbial cultures. New Biotechnol. 2017;37:90–98. doi: 10.1016/j.nbt.2016.07.013. PubMed DOI

Valentino F., Morgan-Sagastume F., Campanari S., Villano M., Werker A., Majone M. Carbon recovery from wastewater through bioconversion into biodegradable polymers. New Biotechnol. 2017;37:9–23. doi: 10.1016/j.nbt.2016.05.007. PubMed DOI

Baric M., Pierro L., Pietrangeli B., Papini M.P. Polyhydroxyalkanoate (PHB) as a slow-release electron donor for advanced in situ bioremediation of chlorinated solvent-contaminated aquifers. New Biotechnol. 2014;31:377–382. doi: 10.1016/j.nbt.2013.10.008. PubMed DOI

Michalak M., Marek A.A., Zawadiak J., Kawalec M., Kurcok P. Synthesis of PHB-based carrier for drug delivery systems with pH-controlled release. Eur. Polym. J. 2013;49:4149–4156. doi: 10.1016/j.eurpolymj.2013.09.021. DOI

Getachew A., Woldesenbet F. Production of biodegradable plastic by polyhydroxybutyrate (PHB) accumulating bacteria using low cost agricultural waste material. BMC Res. Notes. 2016;9:1–9. doi: 10.1186/s13104-016-2321-y. PubMed DOI PMC

Wacławek S., Chronopoulou L., Petrangeli Papini M., Vtp V., Palocci C., Kupčík J., Černík M. Enhancement of stability and reactivity of nanosized zero-valent iron with polyhydroxybutyrate. Desalin. Water Treat. 2017;69 doi: 10.5004/dwt.2017.0704. DOI

Torkelson T.R., Oyen F., Rowe V.K. The toxicity of chloroform as determined by single and repeated exposure of laboratory animals. Am. Ind. Hyg. Assoc. J. 1976;37:697–705. doi: 10.1080/0002889768507551. PubMed DOI

Rannug U. Genotoxic effects of 1,2-dibromoethane and 1,2-dichloroethane. Mutat. Res. Rev. Genet. Toxicol. 1980;76:269–295. doi: 10.1016/0165-1110(80)90020-2. PubMed DOI

Silvestri D., Wacławek S., Sobel B., Torres-Mendieta R., Novotný V., Nguyen N.H.A., Ševců A., Padil V.V.T., Müllerová J., Stuchlík M., et al. A poly(3-hydroxybutyrate)-chitosan polymer conjugate for the synthesis of safer gold nanoparticles and their applications. Green Chem. 2018;20:4975–4982. doi: 10.1039/C8GC02495B. DOI

Sharma G., Kumar A., Sharma S., Naushad M., Prakash Dwivedi R., ALOthman Z.A., Mola G.T. Novel development of nanoparticles to bimetallic nanoparticles and their composites: A review. J. King Saud Univ. Sci. 2019;31:257–269. doi: 10.1016/j.jksus.2017.06.012. DOI

Shifrina Z.B., Matveeva V.G., Bronstein L.M. Role of polymer structures in catalysis by transition metal and metal oxide Nanoparticle Composites. Chem. Rev. 2019 doi: 10.1021/acs.chemrev.9b00137. PubMed DOI

Mei Y., Lu Y., Polzer F., Ballauff M., Drechsler M. Catalytic activity of palladium nanoparticles encapsulated in spherical poly electrolyte brushes and core-shell microgels. Chem. Mater. 2007;19:1062–1069. doi: 10.1021/cm062554s. DOI

Mei Y., Sharma G., Lu Y., Ballauff M., Drechsler M., Irrgang T., Kempe R. High catalytic activity of platinum nanoparticles immobilized on spherical polyelectrolyte brushes. Langmuir. 2005;21:12229–12234. doi: 10.1021/la052120w. PubMed DOI

Li Z., Yao C., Wang Y.C., Mikael S., Gunasekaran S., Ma Z., Cai Z., Wang X. High-density platinum nanoparticle-decorated titanium dioxide nanofiber networks for efficient capillary photocatalytic hydrogen generation. J. Mater. Chem. A. 2016;4:11672–11679. doi: 10.1039/C6TA04846C. DOI

Wu M.C., Hsiao K.C., Chang Y.H., Chan S.H. Photocatalytic hydrogen evolution of palladium nanoparticles decorated black TiO2 calcined in argon atmosphere. Appl. Surf. Sci. 2018;430:407–414. doi: 10.1016/j.apsusc.2017.08.071. DOI

Elsey J., Bubley J.A., Zhu L., Rao S., Sasaki M., Pollack B.P., Yang L., Arbiser J.L. Palladium based nanoparticles for the treatment of advanced melanoma. Sci. Rep. 2019;9:3255. doi: 10.1038/s41598-019-40258-6. PubMed DOI PMC

Samadi A., Klingberg H., Jauffred L., Kjær A., Bendix P.M., Oddershede L.B. Platinum nanoparticles: A non-toxic, effective and thermally stable alternative plasmonic material for cancer therapy and bioengineering. Nanoscale. 2018;10:9097–9107. doi: 10.1039/C8NR02275E. PubMed DOI

Lai J., Luque R., Xu G. Recent Advances in the Synthesis and Electrocatalytic Applications of Platinum-Based Bimetallic Alloy Nanostructures. ChemCatChem. 2015;7:3206–3228. doi: 10.1002/cctc.201500471. DOI

Wang L., Yamauchi Y. Metallic nanocages: Synthesis of bimetallic Pt-Pd hollow nanoparticles with dendritic shells by selective chemical etching. J. Am. Chem. Soc. 2013;135:16762–16765. doi: 10.1021/ja407773x. PubMed DOI

Lim B., Wang J., Camargo P.H.C., Cobley C.M., Kim M.J., Xia Y. Twin-induced growth of palladium-platinum alloy nanocrystals. Angew. Chem. Int. Ed. 2009;48:6304–6308. doi: 10.1002/anie.200902235. PubMed DOI

Venkateshaiah A., Silvestri D., Ramakrishnan R.K., Wacławek S., Padil V.V.T., Černík M., Varma R.S. Gum Kondagogu/Reduced Graphene Oxide Framed Platinum Nanoparticles and Their Catalytic Role. Molecules. 2019;24:3643. doi: 10.3390/molecules24203643. PubMed DOI PMC

Baruah B., Gabriel G.J., Akbashev M.J., Booher M.E. Facile synthesis of silver nanoparticles stabilized by cationic polynorbornenes and their catalytic activity in 4-nitrophenol reduction. Langmuir. 2013;29:4225–4234. doi: 10.1021/la305068p. PubMed DOI

Queiroz M.F., Melo K.R.T., Sabry D.A., Sassaki G.L., Rocha H.A.O. Does the use of chitosan contribute to oxalate kidney stone formation? Mar. Drugs. 2015;13:141–158. doi: 10.3390/md13010141. PubMed DOI PMC

Dang Nguyen Vô K., Kowandy C., Dupont L., Coqueret X. Evidence of chitosan-mediated reduction of Au(III) to Au(0) nanoparticles under electron beam by using OH and e-aq scavengers. Chem. Commun. 2015;51:4017–4020. doi: 10.1039/C4CC09346A. PubMed DOI

Dorjnamjin D., Ariunaa M., Shim Y.K. Synthesis of silver nanoparticles using hydroxyl functionalized ionic liquids and their antimicrobial activity. Int. J. Mol. Sci. 2008;9:807–820. doi: 10.3390/ijms9050807. PubMed DOI PMC

Hu P., Song Y., Rojas-Andrade M.D., Chen S. Platinum Nanoparticles Functionalized with Ethynylphenylboronic Acid Derivatives: Selective Manipulation of Nanoparticle Photoluminescence by Fluoride Ions. Langmuir. 2014;30:5224–5229. doi: 10.1021/la5001123. PubMed DOI

Mendoza-Pérez R., Guisbiers G. Bimetallic Pt-Pd nano-catalyst: Size, shape and composition matter. Nanotechnology. 2019;30:305702. doi: 10.1088/1361-6528/ab1759. PubMed DOI

Zhang Q., Li N., Goebl J., Lu Z., Yin Y. A systematic study of the synthesis of silver nanoplates: Is citrate a “magic” reagent? J. Am. Chem. Soc. 2011;133:18931–18939. doi: 10.1021/ja2080345. PubMed DOI

Ghosh A., Dutta S., Mukherjee I., Biswas S., Chatterjee S., Saha R. Template-free synthesis of flower-shaped zero-valent iron nanoparticle: Role of hydroxyl group in controlling morphology and nitrate reduction. Adv. Powder Technol. 2017;28:2256–2264. doi: 10.1016/j.apt.2017.06.006. DOI

Long N.V., Hien T.D., Asaka T., Ohtaki M., Nogami M. Synthesis and characterization of Pt–Pd nanoparticles with core-shell morphology: Nucleation and overgrowth of the Pd shells on the as-prepared and defined Pt seeds. J. Alloys Compd. 2011;509:7702–7709. doi: 10.1016/j.jallcom.2011.04.031. DOI

Tuo Y., Liu G., Dong B., Yu H., Zhou J., Wang J., Jin R. Microbial synthesis of bimetallic PdPt nanoparticles for catalytic reduction of 4-nitrophenol. Environ. Sci. Pollut. Res. 2017;24:5249–5258. doi: 10.1007/s11356-016-8276-7. PubMed DOI

Li H., Han L., Cooper-White J., Kim I. Palladium nanoparticles decorated carbon nanotubes: Facile synthesis and their applications as highly efficient catalysts for the reduction of 4-nitrophenol. Green Chem. 2012;14:586. doi: 10.1039/c2gc16359d. DOI

Huang X., Li Y., Li Y., Zhou H., Duan X., Huang Y. Synthesis of PtPd bimetal nanocrystals with controllable shape, composition, and their tunable catalytic properties. Nano Lett. 2012;12:4265–4270. doi: 10.1021/nl301931m. PubMed DOI

Zhu C., Guo S., Dong S. Rapid, general synthesis of pdpt bimetallic alloy nanosponges and their enhanced catalytic performance for ethanol/methanol electrooxidation in an alkaline medium. Chem. A Eur. J. 2013;19:1104–1111. doi: 10.1002/chem.201202909. PubMed DOI

Yin A.X., Min X.Q., Zhang Y.W., Yan C.H. Shape-selective synthesis and facet-dependent enhanced electrocatalytic activity and durability of monodisperse Sub-10 nm Pt-Pd tetrahedrons and cubes. J. Am. Chem. Soc. 2011;133:3816–3819. doi: 10.1021/ja200329p. PubMed DOI

Lee Y.W., Ko A.R., Han S.B., Kim H.S., Park K.W. Synthesis of octahedral Pt–Pd alloy nanoparticles for improved catalytic activity and stability in methanol electrooxidation. Phys. Chem. Chem. Phys. 2011;13:5569. doi: 10.1039/c0cp02167a. PubMed DOI

Liu X.Y., Zhang Y., Gong M.X., Tang Y.W., Lu T.H., Chen Y., Lee J.M. Facile synthesis of corallite-like Pt-Pd alloy nanostructures and their enhanced catalytic activity and stability for ethanol oxidation. J. Mater. Chem. A. 2014;2:13840–13844. doi: 10.1039/C4TA02522A. DOI

Scott R.W.J., Datye A.K., Crooks R.M. Bimetallic Palladium-Platinum Dendrimer-Encapsulated Catalysts. J. Am. Chem. Soc. 2003;125:3708–3709. doi: 10.1021/ja034176n. PubMed DOI

Datta K.J., Datta K.K.R., Gawande M.B., Ranc V., Čépe K., Malgras V., Yamauchi Y., Varma R.S., Zboril R. Pd@Pt Core-Shell Nanoparticles with Branched Dandelion-like Morphology as Highly Efficient Catalysts for Olefin Reduction. Chem. A Eur. J. 2016;22:1577–1581. doi: 10.1002/chem.201503441. PubMed DOI

Wang X., Vara M., Luo M., Huang H., Ruditskiy A., Park J., Bao S., Liu J., Howe J., Chi M., et al. Pd@Pt Core—Shell Concave Decahedra: A Class of Catalysts for the Oxygen Reduction Reaction with Enhanced Activity and Durability. J. Am. Chem. Soc. 2015;137:15036–15042. doi: 10.1021/jacs.5b10059. PubMed DOI

Lim B., Jiang M., Camargo P.H.C., Cho E.C., Tao J., Lu X., Zhu Y., Xia Y. Pd-Pt bimetallic nanodendrites with high activity for oxygen reduction. Science. 2009;324:1302–1305. doi: 10.1126/science.1170377. PubMed DOI

Wacławek S., Gončuková Z., Adach K., Fijałkowski M., Černík M. Green synthesis of gold nanoparticles using Artemisia dracunculus extract: Control of the shape and size by varying synthesis conditions. Environ. Sci. Pollut. Res. 2018;25:24210–24219. doi: 10.1007/s11356-018-2510-4. PubMed DOI

Stumm W., Morgan J.J. Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters. Wiley; Hoboken, NJ, USA: 2012.

Kästner C., Thünemann A.F. Catalytic Reduction of 4-Nitrophenol Using Silver Nanoparticles with Adjustable Activity. Langmuir. 2016;32:7383–7391. doi: 10.1021/acs.langmuir.6b01477. PubMed DOI

Gangula A., Podila R., Karanam L., Janardhana C., Rao A.M. Catalytic reduction of 4-nitrophenol using biogenic gold and silver nanoparticles derived from breynia rhamnoides. Langmuir. 2011;27:15268–15274. doi: 10.1021/la2034559. PubMed DOI

Lara L.R.S., Zottis A.D., Elias W.C., Faggion D., Maduro De Campos C.E., Acuña J.J.S., Domingos J.B. The catalytic evaluation of in situ grown Pd nanoparticles on the surface of Fe3O4@dextran particles in the p-nitrophenol reduction reaction. RSC Adv. 2015;5:8289–8296. doi: 10.1039/C4RA16440G. DOI

Ma T., Liang F., Chen R., Liu S., Zhang H. Synthesis of Au-Pd bimetallic nanoflowers for catalytic reduction of 4-nitrophenol. Nanomaterials. 2017;7:239. doi: 10.3390/nano7090239. PubMed DOI PMC

Chen X., Cai Z., Chen X., Oyama M. AuPd bimetallic nanoparticles decorated on graphene nanosheets: Their green synthesis, growth mechanism and high catalytic ability in 4-nitrophenol reduction. J. Mater. Chem. A. 2014;2:5668–5674. doi: 10.1039/C3TA15141G. DOI

Wu W., Lei M., Yang S., Zhou L., Liu L., Xiao X., Jiang C., Roy V.A.L. A one-pot route to the synthesis of alloyed Cu/Ag bimetallic nanoparticles with different mass ratios for catalytic reduction of 4-nitrophenol. J. Mater. Chem. A. 2015;3:3450–3455. doi: 10.1039/C4TA06567K. DOI

El-Bahy Z.M., Hanafy A.I., El-Bahy S.M. Preparation of Pt, Pd and Cu nano single and bimetallic systems-supported NaY zeolite and test their activity in p-nitrophenol reduction and as anticancer agents. J. Environ. Chem. Eng. 2019;7:103117. doi: 10.1016/j.jece.2019.103117. DOI

Wang Y., Li Q., Zhang P., O’Connor D., Varma R.S., Yu M., Hou D. One-pot green synthesis of bimetallic hollow palladium-platinum nanotubes for enhanced catalytic reduction of p-nitrophenol. J. Colloid Interf. Sci. 2019;539:161–167. doi: 10.1016/j.jcis.2018.12.053. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...