Gum Kondagogu/Reduced Graphene Oxide Framed Platinum Nanoparticles and Their Catalytic Role
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.02.1.01/0.0/0.0/16_013/0001821; CZ.02.1.01/0
Technical University of Liberec and Ministry of Education, Youth and Sports, Czech Republic
PubMed
31601003
PubMed Central
PMC6832613
DOI
10.3390/molecules24203643
PII: molecules24203643
Knihovny.cz E-zdroje
- Klíčová slova
- 4-nitrophenol reduction, Pt nanoparticle, RGO, greener catalysts, kondagogu gum,
- MeSH
- Bixaceae chemie MeSH
- difrakce rentgenového záření MeSH
- grafit chemie MeSH
- katalýza MeSH
- kovové nanočástice chemie ultrastruktura MeSH
- nitrofenoly MeSH
- oxidace-redukce MeSH
- platina chemie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- 4-nitrophenol MeSH Prohlížeč
- grafit MeSH
- graphene oxide MeSH Prohlížeč
- nitrofenoly MeSH
- platina MeSH
This study investigates an environmentally benign approach to generate platinum nanoparticles (Pt NP) supported on the reduced graphene oxide (RGO) by non-edible gum waste of gum kondagogu (GK). The reaction adheres to the green chemistry approach by using an aqueous medium and a nontoxic natural reductant-GK-whose abundant hydroxyl groups facilitate in the reduction process of platinum salt and helps as well in the homogenous distribution of ensued Pt NP on RGO sheets. Scanning Electron Microscopy (SEM) confirmed the formation of kondagogu gum/reduced graphene oxide framed spherical platinum nanoparticles (RGO-Pt) with an average particle size of 3.3 ± 0.6 nm, as affirmed by Transmission Electron Microscopy (TEM). X-ray Diffraction (XRD) results indicated that the Pt NPs formed are crystalline with a face-centered cubic structure, while morphological analysis by XRD and Raman spectroscopy revealed a simultaneous reduction of GO and Pt. The hydrogenation of 4-nitrophenol could be accomplished in the superior catalytic performance of RGO-Pt. The current strategy emphasizes a simple, fast and environmentally benign technique to generate low-cost gum waste supported nanoparticles with a commendable catalytic activity that can be exploited in environmental applications.
Zobrazit více v PubMed
Schauermann S., Nilius N., Shaikhutdinov S., Freund H.-J. Nanoparticles for heterogeneous catalysis: New mechanistic insights. Acc. Chem. Res. 2013;46:1673–1681. doi: 10.1021/ar300225s. PubMed DOI
Polshettiwar V., Varma R.S. Green chemistry by nano-catalysis. Green Chem. 2010;12:743. doi: 10.1039/b921171c. DOI
Lee K.S., El-Sayed M.A. Gold and silver nanoparticles in sensing and imaging: Sensitivity of plasmon response to size, shape, and metal composition. J. Phys. Chem. B. 2006;110:19220–19225. doi: 10.1021/jp062536y. PubMed DOI
McNamara K., Tofail S.A.M. Nanoparticles in biomedical applications. Adv. Phys. X. 2017;2:54–88. doi: 10.1080/23746149.2016.1254570. PubMed DOI
Azharuddin M., Zhu G.H., Das D., Ozgur E., Uzun L., Turner A.P.F., Patra H.K. A repertoire of biomedical applications of noble metal nanoparticles. Chem. Commun. 2019;55:6964–6996. doi: 10.1039/C9CC01741K. PubMed DOI
Iravani S., Varma R.S. Biofactories: Engineered nanoparticles via genetically engineered organisms. Green Chem. 2019;21:4583–4603. doi: 10.1039/C9GC01759C. DOI
Iravani S., Varma R.S. Plant-derived edible nanoparticles and miRNAs: Emerging frontier for therapeutics and targeted drug-delivery. ACS Sustain. Chem. Eng. 2019;7:8055–8069. doi: 10.1021/acssuschemeng.9b00954. DOI
Mei W., Wu Q. Metal Nanoparticles. Wiley-VCH Verlag GmbH & Co. KGaA; Weinheim, Germany: 2017. Applications of metal nanoparticles in medicine/metal nanoparticles as anticancer agents; pp. 169–190.
Rai M., Ingle A.P., Gupta I., Brandelli A. Bioactivity of noble metal nanoparticles decorated with biopolymers and their application in drug delivery. Int. J. Pharm. 2015;496:159–172. doi: 10.1016/j.ijpharm.2015.10.059. PubMed DOI
Varma R.S. Greener approach to nanomaterials and their sustainable applications. Curr. Opin. Chem. Eng. 2012;1:123–128. doi: 10.1016/j.coche.2011.12.002. DOI
Gawande M.B., Bonifácio V.D.B., Luque R., Branco P.S., Varma R.S. Benign by design: Catalyst-free in-water, on-water green chemical methodologies in organic synthesis. Chem. Soc. Rev. 2013;42:5522–5551. doi: 10.1039/c3cs60025d. PubMed DOI
Silvestri D., Wacławek S., Sobel B., Torres-Mendieta R., Novotny V., Nguyen N.H.A., Ševců A., Padil V.T.P., Mullerova J., Stuchlik M., et al. A poly(3-hydroxybutyrate)–chitosan polymer conjugate for the synthesis of safer gold nanoparticles and their applications. Green Chem. 2018;20:4975–4982. doi: 10.1039/C8GC02495B. DOI
Gour A., Jain N.K. Advances in green synthesis of nanoparticles. Artif. Cells Nanomed. Biotechnol. 2019;47:844–851. doi: 10.1080/21691401.2019.1577878. PubMed DOI
Iravani S. Green synthesis of metal nanoparticles using plants. Green Chem. 2011;13:2638. doi: 10.1039/c1gc15386b. DOI
Mohammadinejad R., Shavandi A., Raie D.S., Sangeetha J., Soleimani M., Hajibehzad S.S., Thangadurai D., Hospet R., Popoola J.O., Arzani A., et al. Plant molecular farming: Production of metallic nanoparticles and therapeutic proteins using green factories. Green Chem. 2019;21:1845–1865. doi: 10.1039/C9GC00335E. DOI
Padil V.V.T., Wacławek S., Černík M., Varma R.S. Tree gum-based renewable materials: Sustainable applications in nanotechnology, biomedical and environmental fields. Biotechnol. Adv. 2018;36:1984–2016. doi: 10.1016/j.biotechadv.2018.08.008. PubMed DOI PMC
Virkutyte J., Varma R.S. Green synthesis of metal nanoparticles: Biodegradable polymers and enzymes in stabilization and surface functionalization. Chem. Sci. 2011;2:837–846. doi: 10.1039/C0SC00338G. DOI
Mohammadinejad R., Karimi S., Iravani S., Varma R.S. Plant-derived nanostructures: Types and applications. Green Chem. 2015;18:20–52. doi: 10.1039/C5GC01403D. DOI
Thekkae Padil V.V., Černík M., Padil V.V.T., Černík M. Green synthesis of copper oxide nanoparticles using gum karaya as a biotemplate and their antibacterial application. Int. J. Nanomed. 2013;8:889–898. PubMed PMC
Xu W., Jin W., Lin L., Zhang C., Li Z., Li Y., Song R., Li B. Green synthesis of xanthan conformation-based silver nanoparticles: Antibacterial and catalytic application. Carbohydr. Polym. 2014;101:961–967. doi: 10.1016/j.carbpol.2013.10.032. PubMed DOI
Pandey S., Mishra S.B. Catalytic reduction of p-nitrophenol by using platinum nanoparticles stabilised by guar gum. Carbohydr. Polym. 2014;113:525–531. doi: 10.1016/j.carbpol.2014.07.047. PubMed DOI
Chen X., Han W., Zhao X., Tang W., Wang F. Epirubicin-loaded marine carrageenan oligosaccharide capped gold nanoparticle system for pH-triggered anticancer drug release. Sci. Rep. 2019;9:6754. doi: 10.1038/s41598-019-43106-9. PubMed DOI PMC
Vinod V.T.P., Sashidhar R.B., Sarma V.U.M., Vijaya Saradhi U.V.R. Compositional analysis and rheological properties of gum kondagogu (Cochlospermum gossypium): A tree gum from India. J. Agric. Food Chem. 2008;56:2199–2207. doi: 10.1021/jf072766p. PubMed DOI
Vinod V.T.P., Sashidhar R.B., Suresh K.I., Rama Rao B., Saradhi U.V.R.V., Rao T.P. Morphological, physico-chemical and structural characterization of gum kondagogu (Cochlospermum gossypium): A tree gum from India. Food Hydrocoll. 2008;22:899–915. doi: 10.1016/j.foodhyd.2007.05.006. DOI
Janaki B., Sashidhar R. Subchronic (90-day) ToxicityStudyinRatsFed gumKondagogu (Cochlospermumgossypium) Food Chem. Toxicol. 2000;38:523–534. doi: 10.1016/S0278-6915(00)00037-5. PubMed DOI
Wacławek S., Padil V.V.T., Černík M. Major advances and challenges in heterogeneous catalysis for environmental applications: A review. Ecol. Chem. Eng. S. 2018;25:9–34. doi: 10.1515/eces-2018-0001. DOI
Chen A., Holt-Hindle P. Platinum-based nanostructured materials: Synthesis, properties, and applications. Chem. Rev. 2010;110:3767–3804. doi: 10.1021/cr9003902. PubMed DOI
Xu Y., Zhang B. Recent advances in porous Pt-based nanostructures: Synthesis and electrochemical applications. Chem. Soc. Rev. 2014;43:2439. doi: 10.1039/c3cs60351b. PubMed DOI
Kim K.W., Kim S.M., Choi S., Kim J., Lee I.S. Electroless Pt deposition on Mn3O4 nanoparticles via the galvanic replacement process: Electrocatalytic nanocomposite with enhanced performance for oxygen reduction reaction. ACS Nano. 2012;6:5122–5129. doi: 10.1021/nn300782m. PubMed DOI
Dendooven J., Ramachandran R.K., Solano E., Kurttepeli M., Geerts L., Heremans G., Ronge J., Minjauw M.M., Doobelaere T., Devloo-Casier K., et al. Independent tuning of size and coverage of supported Pt nanoparticles using atomic layer deposition. Nat. Commun. 2017;8:1074. doi: 10.1038/s41467-017-01140-z. PubMed DOI PMC
Attard G.A., Ahmadi A., Jenkins D.J., Hazzazi O.A., Wells P.B., Griffin K.G., Johnston P., Gillies J.E. The characterisation of supported platinum nanoparticles on carbon used for enantioselective hydrogenation: A combined electrochemical-stm approach. Chem. Phys. Chem. 2003;4:123–130. doi: 10.1002/cphc.200390021. PubMed DOI
Wang Y.-J., Zhao N., Fang B., Li H., Bi X.T., Wang H. Carbon-supported Pt-based alloy electrocatalysts for the oxygen reduction reaction in polymer electrolyte membrane fuel cells: Particle size, shape, and composition manipulation and their impact to activity. Chem. Rev. 2015;115:3433–3467. doi: 10.1021/cr500519c. PubMed DOI
Wang J., Wang Z., Li S., Wang R., Song Y. Surface and interface engineering of FePt/C nanocatalysts for electro-catalytic methanol oxidation: Enhanced activity and durability. Nanoscale. 2017;9:4066–4075. doi: 10.1039/C6NR09122A. PubMed DOI
Zhang B.-W., Zhang Z.-C., Liao H.-G., Gong Y., Gu L., Qu X.-M., You L.-X., Liu S., Huang L., Tian X.-C., et al. Tuning Pt-skin to Ni-rich surface of Pt3Ni catalysts supported on porous carbon for enhanced oxygen reduction reaction and formic electro-oxidation. Nano Energy. 2016;19:198–209. doi: 10.1016/j.nanoen.2015.10.022. DOI
Yang G., Frenkel A.I., Su D., Teng X. Enhanced electrokinetics of C−C bond splitting during ethanol oxidation by using a Pt/Rh/Sn catalyst with a partially oxidized Pt and Rh core and a SnO2 shell. ChemCatChem. 2016;8:2876–2880. doi: 10.1002/cctc.201600429. DOI
Li B., Fan H., Cheng M., Song Y., Li F., Wang X., Wang R. Porous Pt–NiOx nanostructures with ultrasmall building blocks and enhanced electrocatalytic activity for the ethanol oxidation reaction. RSC Adv. 2018;8:698–705. doi: 10.1039/C7RA11575J. PubMed DOI PMC
Seselj N., Engelbrekt C., Zhang J. Graphene-supported platinum catalysts for fuel cells. Sci. Bull. 2015;60:864–876. doi: 10.1007/s11434-015-0745-8. DOI
Yarar Kaplan B., Haghmoradi N., Biçer E., Merino C., Alkan Gürsel S. High performance electrocatalysts supported on graphene based hybrids for polymer electrolyte membrane fuel cells. Int. J. Hydrogen Energy. 2018;43:23221–23230. doi: 10.1016/j.ijhydene.2018.10.222. DOI
Takenaka S., Miyamoto H., Utsunomiya Y., Matsune H., Kishida M. Catalytic activity of highly durable Pt/CNT catalysts covered with hydrophobic silica layers for the oxygen reduction reaction in PEFCs. J. Phys. Chem. C. 2014;118:774–783. doi: 10.1021/jp407928m. DOI
Novoselov K.S., Geim A.K., Morozov S.V., Jiang D., Zhang Y., Dubonos S.V., Grigorieva I.V., Firsov A.A. Electric field effect in atomically thin carbon films. Science. 2004;306:666–669. doi: 10.1126/science.1102896. PubMed DOI
Geim A.K., Novoselov K.S. The rise of graphene. Nat. Mater. 2007;6:183–191. doi: 10.1038/nmat1849. PubMed DOI
Guermoune A., Chari T., Popescu F., Sabri S.S., Guillemette J., Skulason H.S., Szkopek T., Siaj M. Chemical vapor deposition synthesis of graphene on copper with methanol, ethanol, and propanol precursors. Carbon N.Y. 2011;49:4204–4210. doi: 10.1016/j.carbon.2011.05.054. DOI
Habib M.R., Liang T., Yu X., Pi X., Liu Y., Xu M. A review of theoretical study of graphene chemical vapor deposition synthesis on metals: Nucleation, growth, and the role of hydrogen and oxygen. Rep. Prog. Phys. 2018;81:036501. doi: 10.1088/1361-6633/aa9bbf. PubMed DOI
Kosynkin D.V., Higginbotham A.L., Sinitskii A., Lomeda J.R., Dimiev A., Price B.K., Tour J.M. Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature. 2009;458:872–876. doi: 10.1038/nature07872. PubMed DOI
Akhavan O., Ghaderi E., Emamy H., Akhavan F. Genotoxicity of graphene nanoribbons in human mesenchymal stem cells. Carbon N.Y. 2013;54:419–431. doi: 10.1016/j.carbon.2012.11.058. DOI
Novoselov K.S., Fal′ko V.I., Colombo L., Gellert P.R., Schwab M.G., Kim K. A roadmap for graphene. Nature. 2012;490:192–200. doi: 10.1038/nature11458. PubMed DOI
Warner J.H., Schaffel F., Rummeli M., Bachmatiuk A. Graphene: Fundamentals and Emergent Applications. Elsevier; Amsterdam, The Netherlands: 2013.
Kattimuttathu S.I., Chidambaram K., Vinod V., Rajender N., Venkateswara R.M., Cernik M. Synthesis, characterization and optical properties of graphene oxide-polystyrene nanocomposites. Polym. Adv. Technol. 2015;26:214–222.
Gao X., Jang J., Nagase S. Hydrazine and thermal reduction of graphene oxide: Reaction mechanisms, product structures, and reaction design. J. Phys. Chem. C. 2010;114:832–842. doi: 10.1021/jp909284g. DOI
Yang Z., Zheng Q., Qiu H., Li J., Yang J. A simple method for the reduction of graphene oxide by sodium borohydride with CaCl2 as a catalyst. New Carbon Mater. 2015;30:41–47. doi: 10.1016/S1872-5805(15)60174-3. DOI
Liu Y., Zhang Y., Ma G., Wang Z., Liu K., Liu H. Ethylene glycol reduced graphene oxide/polypyrrole composite for supercapacitor. Electrochim. Acta. 2013;88:519–525. doi: 10.1016/j.electacta.2012.10.082. DOI
Xu C., Yuan R., Wang X. Selective reduction of graphene oxide. New Carbon Mater. 2014;29:61–66. doi: 10.1016/S1872-5805(14)60126-8. DOI
Li Z., Gao Q., Zhang H., Tian W., Tan Y., Qian W., Liu Z. Low content Pt nanoparticles anchored on N-doped reduced graphene oxide with high and stable electrocatalytic activity for oxygen reduction reaction. Sci. Rep. 2017;7:43352. doi: 10.1038/srep43352. PubMed DOI PMC
Abhilash V., Rajender N., Suresh K. Spectroscopy of Polymer Nanocomposites. Elsevier Inc.; Amsterdam, The Netherlands: 2016. X-ray diffraction spectroscopy of polymer nanocomposites; pp. 410–451.
Moon I.K., Lee J., Ruoff R.S., Lee H. Reduced graphene oxide by chemical graphitization. Nat. Commun. 2010;1:73. doi: 10.1038/ncomms1067. PubMed DOI
Sen F., Karatas Y., Gulcan M., Zahmakiran M. Amylamine stabilized platinum(0) nanoparticles: Active and reusable nanocatalyst in the room temperature dehydrogenation of dimethylamine-borane. RSC Adv. 2014;4:1526–1531. doi: 10.1039/C3RA43701A. DOI
Stankovich S., Dikin D.A., Piner R.D., Kohlhaas K.A., Kleinhammas A., Jia Y., Wu Y., Nguyen S.T., Ruoff R.S. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon N.Y. 2007;45:1558–1565. doi: 10.1016/j.carbon.2007.02.034. DOI
Muhammad Hafiz S., Ritikos R., Whitcher T.J., Md. Razib N., Bien D.C.S., Chanlek N., Nakajima H., Saisopa T., Songsiriritthigul P., Huang N.M., et al. A practical carbon dioxide gas sensor using room-temperature hydrogen plasma reduced graphene oxide. Sensors Actuators B Chem. 2014;193:692–700. doi: 10.1016/j.snb.2013.12.017. DOI
Tuinstra F., Koenig J.L. Raman spectrum of graphite. J. Chem. Phys. 1970;53:1126–1130. doi: 10.1063/1.1674108. DOI
Stumm W., Morgan J.J. Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters. John Wiley & Sons; Hoboken, NJ, USA: 1996.
Lara L.R.S., Zottis A.D., Elias W.C., Faggion D., Campos C.E.M., Acuna J.J.S., Domingos J.B. The catalytic evaluation of in situ grown Pd nanoparticles on the surface of Fe3O4 @dextran particles in the p-nitrophenol reduction reaction. RSC Adv. 2015;5:8289–8296. doi: 10.1039/C4RA16440G. DOI
Kästner C., Thünemann A.F. Catalytic reduction of 4-nitrophenol using silver nanoparticles with adjustable activity. Langmuir. 2016;32:7383–7391. doi: 10.1021/acs.langmuir.6b01477. PubMed DOI
Vilian A.T.E., Choe S.R., Giribabu K., Jang S.-C., Roh C., Huh Y.S., Han Y.-K. Pd nanospheres decorated reduced graphene oxide with multi-functions: Highly efficient catalytic reduction and ultrasensitive sensing of hazardous 4-nitrophenol pollutant. J. Hazard. Mater. 2017;333:54–62. doi: 10.1016/j.jhazmat.2017.03.015. PubMed DOI
Chen X., Cai Z., Chen X., Oyama M. AuPd bimetallic nanoparticles decorated on graphene nanosheets: Their green synthesis, growth mechanism and high catalytic ability in 4-nitrophenol reduction. J. Mater. Chem. A. 2014;2:5668–5674. doi: 10.1039/C3TA15141G. DOI
Alshehri S.M., Almuqati T., Almuqati N., Al-Farraj E., Alhokbany N., Ahamad T. Chitosan based polymer matrix with silver nanoparticles decorated multiwalled carbon nanotubes for catalytic reduction of 4-nitrophenol. Carbohydr. Polym. 2016;151:135–143. doi: 10.1016/j.carbpol.2016.05.018. PubMed DOI
Çıplak Z., Getiren B., Gökalp C., Yıldız A., Yıldız N. Green synthesis of reduced graphene oxide-AgAu bimetallic nanocomposite: Catalytic performance. Chem. Eng. Commun. 2019:1–15. doi: 10.1080/00986445.2019.1613227. DOI
Hummers W.S., Offeman R.E. Preparation of graphitic oxide. J. Am. Chem. Soc. 1958;80:1339. doi: 10.1021/ja01539a017. DOI
Baruah B., Gabriel G.J., Akbashev M.J., Booher M.E. Facile synthesis of silver nanoparticles stabilized by cationic polynorbornenes and their catalytic activity in 4-nitrophenol reduction. Langmuir. 2013;29:4225–4234. doi: 10.1021/la305068p. PubMed DOI
Raju M.M., Pattanayak D.K. A platinum supported reduced graphene catalyst to enhance the hydrogenation of nitro compound activity. RSC Adv. 2015;5:59541–59549. doi: 10.1039/C5RA07227A. DOI
Nie R., Wang J., Wang L., Qin Y., Chen P., Hou Z. Platinum supported on reduced graphene oxide as a catalyst for hydrogenation of nitroarenes. Carbon N.Y. 2012;50:586–596. doi: 10.1016/j.carbon.2011.09.017. DOI