A Polymeric Composite Material (rGO/PANI) for Acid Blue 129 Adsorption

. 2020 May 03 ; 12 (5) : . [epub] 20200503

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32375280

Grantová podpora
POIR.04.01.02-00-0062/16 National Centre for Research and Development in Poland
2014-2020, 4.1.2 European Regional Development Fund (Operational Program Intelligent Development)
LTAUSA18078 Ministry of Education, Youth and Sports in the Czech Republic
Project No. LM2015073 NanoEnviCz
Reg. No. CZ.02.1.01/0.0/0.0/16_019/0000843 Ministry of Education, Youth and Sports of the Czech Republic and the European Union - European Structural and Investment Funds in the frames of Operational Programme Research, Development and Education - project Hybrid Materials for Hierarchical Structur

Over the years, polyaniline (PANI) has received enormous attention due to its unique properties. Herein, it was chosen to develop a new polymeric composite material: reduced graphene oxide/polyaniline (rGO/PANI). The composite was prepared by a simple and cost-effective fabrication method of formation by mixing and sonication in various conditions. The obtained materials were characterized and identified using various techniques such as scanning electron microscopy (SEM), Raman and ATR-FTIR spectroscopy, and X-ray diffraction (XRD). The objective of the paper was to confirm its applicability for the removal of contaminants from water. Water could be contaminated by various types of pollutants, e.g., inorganics, heavy metals, and many other industrial compounds, including dyes. We confirmed that the Acid Blue 129 dyes can be substantially removed through adsorption on prepared rGO/PANI. The adsorption kinetic data were modeled using the pseudo-first-order and pseudo-second-order models and the adsorption isotherm model was identified.

Zobrazit více v PubMed

Novoselov K.S., Geim A.K., Morozov S.V., Jiang D., Zhang Y., Dubonos S.V., Grigorieva I.V., Firsov A.A. Electric field in atomically thin carbon films. Science. 2004;306:666–669. doi: 10.1126/science.1102896. PubMed DOI

Brodie B.C. On the Atomic Weight of Graphit. R. Soc. Lond. 1858;149:423–429.

Staudenmaier L. Verfahren zur Darstellung der Graphitsäure. Ber. der Dtsch. Chem. Ges. 1899;32:1394–1399. doi: 10.1002/cber.18990320208. DOI

Hummers W.S., Offeman R.E. Preparation of Graphitic Oxide. J. Am. Chem. Soc. 1958;80:1334–1339. doi: 10.1021/ja01539a017. DOI

Marcano D.C., Kosynkin D.V., Berlin J.M., Sinitskii A., Sun Z., Slesarev A., Alemany L.B., Lu W., Tour J.M. Improved synthesis of graphene oxide. ACS Nano. 2010;4:4806–4814. doi: 10.1021/nn1006368. PubMed DOI

Chen J., Yao B., Li C., Shi G. An improved Hummers method for eco-friendly synthesis of graphene oxide. Carbon. 2013;64:225–229. doi: 10.1016/j.carbon.2013.07.055. DOI

Stankovich S., Dikin D.A., Piner R.D., Kohlhaas K.A., Kleinhammes A., Jia Y., Wu Y., Nguyen S.T., Ruoff R.S. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon. 2007;45:1558–1565. doi: 10.1016/j.carbon.2007.02.034. DOI

Pei S., Cheng H.M. The reduction of graphene oxide. Carbon. 2012;50:3210–3228. doi: 10.1016/j.carbon.2011.11.010. DOI

Zhou M., Wang Y., Zhai Y., Zhai J., Ren W., Wang F., Dong S. Controlled synthesis of large-area and patterned electrochemically reduced graphene oxide films. Chem. A Eur. J. 2009;15:6116–6120. doi: 10.1002/chem.200900596. PubMed DOI

Becerril H.A., Mao J., Liu Z., Stoltenberg R.M., Bao Z., Chen Y. Evaluation of solution-processed reduced graphene oxide films as transparent conductors. ACS Nano. 2008;2:463–470. doi: 10.1021/nn700375n. PubMed DOI

Georgakilas V., Tiwari J.N., Kemp K.C., Perman J.A., Bourlinos A.B., Kim K.S., Zboril R. Noncovalent Functionalization of Graphene and Graphene Oxide for Energy Materials, Biosensing, Catalytic, and Biomedical Applications. Chem. Rev. 2016;116:5464–5519. doi: 10.1021/acs.chemrev.5b00620. PubMed DOI

Tan C., Cao X., Wu X.J., He Q., Yang J., Zhang X., Chen J., Zhao W., Han S., Nam G.H., et al. Recent Advances in Ultrathin Two-Dimensional Nanomaterials. Chem. Rev. 2017;117:6225–6331. doi: 10.1021/acs.chemrev.6b00558. PubMed DOI

Ruan K., Guo Y., Tang Y., Zhang Y., Zhang J., He M., Kong J., Gu J. Improved thermal conductivities in polystyrene nanocomposites by incorporating thermal reduced graphene oxide via electrospinning-hot press technique. Compos. Commun. 2018;10:68–72. doi: 10.1016/j.coco.2018.07.003. DOI

Sang L., Hao W., Zhao Y., Yao L., Cui P. Highly aligned graphene oxide/waterborne polyurethane fabricated by in-situ polymerization at low temperature. E-Polymers. 2018;18:75–84. doi: 10.1515/epoly-2017-0141. DOI

Yang H., Liu S., Cao L., Jiang S., Hou H. Superlithiation of non-conductive polyimide toward high-performance lithium-ion batteries. J. Mater. Chem. A. 2018;6:21216–21224. doi: 10.1039/C8TA05109G. DOI

Liao X., Ye W., Chen L., Jiang S., Hou H., Jiang S., Wang G., Zhang L. Flexible hdC-G reinforced polyimide composites with high dielectric permittivity. Compos. Part A Appl. Sci. Manuf. 2017;101:50–58. doi: 10.1016/j.compositesa.2017.06.011. DOI

Subramani A., Jacangelo J.G. Emerging desalination technologies for water treatment: A critical review. Water Res. 2015;75:164–187. doi: 10.1016/j.watres.2015.02.032. PubMed DOI

Kah M., Sigmund G., Xiao F., Hofmann T. Sorption of ionizable and ionic organic compounds to biochar, activated carbon and other carbonaceous materials. Water Res. 2017;124:673–692. doi: 10.1016/j.watres.2017.07.070. PubMed DOI

Yuan X., Wang H. Adsorptive removal of methylene blue by rhamnolipid-functionalized graphene oxide from wastewater. Water Res. 2014;67:330–344. PubMed

Wei Y., Zhang Y., Gao X., Ma Z., Wang X., Gao C. Multilayered graphene oxide membrane for water treatment: A review. Carbon. 2018;139:964–981. doi: 10.1016/j.carbon.2018.07.040. DOI

Venkateshaiah A., Silvestri D., Ramakrishnan R.K., Wacławek S., Padil V.V.T., Černík M., Varma R.S. Gum Kondagogu/Reduced Graphene Oxide Framed Platinum Nanoparticles and Their Catalytic Role. Molecules. 2019;24:3643. doi: 10.3390/molecules24203643. PubMed DOI PMC

Geniès E.M., Boyle A., Lapkowski M., Tsintavis C. Polyaniline: A historical survey. Synth. Met. 1990;36:139–182. doi: 10.1016/0379-6779(90)90050-U. DOI

Zhang J., Han J., Wang M., Guo R. Fe3O4/PANI/MnO2 core-shell hybrids as advanced adsorbents for heavy metal ions. J. Mater. Chem. A. 2017;5:4058–4066. doi: 10.1039/C6TA10499A. DOI

Liu Y., Song L., Du L., Gao P., Liang N., Wu S., Minami T., Zang L., Yu C., Xu X. Preparation of polyaniline/emulsion microsphere composite for efficient adsorption of organic dyes. Polymers. 2020;12:167. doi: 10.3390/polym12010167. PubMed DOI PMC

Muhammad A., Shah A.U.H.A., Bilal S. Effective Adsorption of Hexavalent Chromium and Divalent Nickel Ions from Water through Polyaniline, Iron Oxide, and Their Composites. Appl. Sci. 2020;10:2882. doi: 10.3390/app10082882. DOI

Mirmohseni A., Oladegaragoze A. Anti-corrosive properties of polyaniline coating on iron. Synth. Met. 2000;114:105–108. doi: 10.1016/S0379-6779(99)00298-2. DOI

Eftekhari A., Li L., Yang Y. Polyaniline supercapacitors. J. Power Sources. 2017;347:86–107. doi: 10.1016/j.jpowsour.2017.02.054. DOI

Male U., Modigunta J.K.R., Huh D.S. Design and synthesis of polyaniline-grafted reduced graphene oxide via azobenzene pendants for high-performance supercapacitors. Polymer. 2017;110:242–249. doi: 10.1016/j.polymer.2016.12.031. DOI

Zare E.N., Motahari A., Sillanpää M. Nanoadsorbents based on conducting polymer nanocomposites with main focus on polyaniline and its derivatives for removal of heavy metal ions/dyes: A review. Environ. Res. 2018;162:173–195. doi: 10.1016/j.envres.2017.12.025. PubMed DOI

Li R., Liu L., Yang F. Preparation of polyaniline/reduced graphene oxide nanocomposite and its application in adsorption of aqueous Hg(II) Chem. Eng. J. 2013;229:460–468. doi: 10.1016/j.cej.2013.05.089. DOI

Yang Y., Wang W., Li M., Wang H., Zhao M., Wang C. Preparation of PANI grafted at the edge of graphene oxide sheets and its adsorption of Pb(II) and methylene blue. Polym. Compos. 2018;39:1663–1673. doi: 10.1002/pc.24114. DOI

Ameen S., Seo H.K., Shaheer Akhtar M., Shin H.S. Novel graphene/polyaniline nanocomposites and its photocatalytic activity toward the degradation of rose Bengal dye. Chem. Eng. J. 2012;210:220–228. doi: 10.1016/j.cej.2012.08.035. DOI

Ansari R., Mosayebzadeh Z. Application of polyaniline as an efficient and novel adsorbent for azo dyes removal from textile wastewaters. Chem. Pap. 2011;65:1–8. doi: 10.2478/s11696-010-0083-x. DOI

Stoller M.D., Park S., Zhu Y., An J., Ruoff R.S. Graphene-Based Ultracapacitors. Nano Lett. 2008;8:3498–3502. doi: 10.1021/nl802558y. PubMed DOI

Yaseen D.A., Scholz M. Textile dye wastewater characteristics and constituents of synthetic effluents: A critical review. Int. J. Environ. Sci. Technol. 2019;16:1193–1226. doi: 10.1007/s13762-018-2130-z. DOI

Wacławek S., Lutze H.V., Grübel K., Padil V.V.T., Černík M., Dionysiou D.D. Chemistry of persulfates in water and wastewater treatment: A review. Chem. Eng. J. 2017;330:44–62. doi: 10.1016/j.cej.2017.07.132. DOI

Wacławek S., Černík M., Dionysiou D.D. The Development and Challenges of Oxidative Abatement for Contaminants of Emerging Concern. Springer; Singapore: 2020. pp. 131–152.

Sieradzka M., Fryczkowski R., Biniaś D., Biniaś W., Janicki J. A facile approach to obtaining PVDF/graphene fibers and the effect of nanoadditive on the structure and properties of nanocomposites. Polym. Test. 2019;81:106229. doi: 10.1016/j.polymertesting.2019.106229. DOI

Wu Q., Xu Y., Yao Z., Liu A., Shi G. Supercapacitors based on flexible graphene/polyaniline nanofiber composite films. ACS Nano. 2010;4:1963–1970. doi: 10.1021/nn1000035. PubMed DOI

An J., Liu J., Zhou Y., Zhao H., Ma Y., Li M., Yu M., Li S. Polyaniline-grafted graphene hybrid with amide groups and its use in supercapacitors. J. Phys. Chem. C. 2012;116:19699–19708. doi: 10.1021/jp306274n. DOI

Ansari M.O., Yadav S.K., Cho J.W., Mohammad F. Thermal stability in terms of DC electrical conductivity retention and the efficacy of mixing technique in the preparation of nanocomposites of graphene/polyaniline over the carbon nanotubes/polyaniline. Compos. Part B Eng. 2013;47:155–161. doi: 10.1016/j.compositesb.2012.10.042. DOI

Sibilska I., Feng Y., Li L., Yin J. Trimetaphosphate Activates Prebiotic Peptide Synthesis across a Wide Range of Temperature and pH. Orig. Life Evol. Biosph. 2018;48:277–287. doi: 10.1007/s11084-018-9564-7. PubMed DOI PMC

Hanwell M.D., Curtis D.E., Lonie D.C., Vandermeersch T., Zurek E., Hutchison G.R. Avogadro: An advanced semantic chemical editor, visualization, and analysis platform. J. Cheminform. 2012;4:17. doi: 10.1186/1758-2946-4-17. PubMed DOI PMC

Cardenas L., Macleod J., Lipton-Duffin J., Seifu D.G., Popescu F., Siaj M., Mantovani D., Rosei F. Reduced graphene oxide growth on 316L stainless steel for medical applications. Nanoscale. 2014;6:8664–8670. doi: 10.1039/C4NR02512A. PubMed DOI

Thekkae Padil V.V., Filip J., Suresh K.I., Wacławek S., Černík M. Electrospun membrane composed of poly[acrylonitrile-co-(methyl acrylate)-co-(itaconic acid)] terpolymer and ZVI nanoparticles and its application for the removal of arsenic from water. RSC Adv. 2016;6:110288–110300. doi: 10.1039/C6RA24036D. DOI

Aradhana R., Mohanty S., Nayak S.K. Comparison of mechanical, electrical and thermal properties in graphene oxide and reduced graphene oxide filled epoxy nanocomposite adhesives. Polymer. 2018;141:109–123. doi: 10.1016/j.polymer.2018.03.005. DOI

Łuzny W., Hasik M. Structural properties of polyaniline protonated with heteropolyacids. Solid State Commun. 1996;99:685–689.

Pouget J.P., Józefowicz M.E., Epstein A.J., Tang X., MacDiarmid A.G. X-ray Structure of Polyaniline. Macromolecules. 1991;24:779–789. doi: 10.1021/ma00003a022. DOI

Gao W., Sun X., Niu H., Song X., Li K., Gao H., Zhang W., Yu J., Jia M. Phosphomolybdic acid functionalized covalent organic frameworks: Structure characterization and catalytic properties in olefin epoxidation. Microporous Mesoporous Mater. 2015;213:59–67. doi: 10.1016/j.micromeso.2015.04.009. DOI

Jin L., Chai L., Ren L., Jiang Y., Yang W., Wang S., Liao Q., Wang H., Zhang L. Enhanced adsorption-coupled reduction of hexavalent chromium by 2D poly(m-phenylenediamine)-functionalized reduction graphene oxide. Environ. Sci. Pollut. Res. 2019;26:31099–31110. doi: 10.1007/s11356-019-06175-x. PubMed DOI

Villar-Rodil S., Paredes J.I., Martínez-Alonso A., Tascón J.M.D. Atomic Force Microscopy and Infrared Spectroscopy Studies of the Thermal Degradation of Nomex Aramid Fibers. Chem. Mater. 2001;13:4297–4304. doi: 10.1021/cm001219f. DOI

Yang C., Zhang L., Hu N., Yang Z., Su Y., Xu S., Li M., Yao L., Hong M., Zhang Y. Rational design of sandwiched polyaniline nanotube/layered graphene/polyaniline nanotube papers for high-volumetric supercapacitors. Chem. Eng. J. 2017;309:89–97. doi: 10.1016/j.cej.2016.09.115. DOI

Peng B., Chen L., Que C., Yang K., Deng F., Deng X., Shi G., Xu G., Wu M. Adsorption of Antibiotics on Graphene and Biochar in Aqueous Solutions Induced by π-π Interactions. Sci. Rep. 2016;6:31920. doi: 10.1038/srep31920. PubMed DOI PMC

Wang C., Zhao M., Li J., Yu J., Sun S., Ge S., Guo X., Xie F., Jiang B., Wujcik E.K., et al. Silver nanoparticles/graphene oxide decorated carbon fiber synergistic reinforcement in epoxy-based composites. Polymer. 2017;131:263–271. doi: 10.1016/j.polymer.2017.10.049. DOI

Duan G., Fang H., Huang C., Jiang S., Hou H. Microstructures and mechanical properties of aligned electrospun carbon nanofibers from binary composites of polyacrylonitrile and polyamic acid. J. Mater. Sci. 2018;53:15096–15106. doi: 10.1007/s10853-018-2700-y. DOI

Ferrari A., Robertson J. Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B Condens. Matter Mater. Phys. 2000;61:14095–14107. doi: 10.1103/PhysRevB.61.14095. DOI

Loryuenyong V., Totepvimarn K., Eimburanapravat P., Boonchompoo W., Buasri A. Preparation and Characterization of Reduced Graphene Oxide Sheets via Water-Based Exfoliation and Reduction Methods. Adv. Mater. Sci. Eng. 2013;2013:923403. doi: 10.1155/2013/923403. DOI

Zhou S., Zhou G., Jiang S., Fan P., Hou H. Flexible and refractory tantalum carbide-carbon electrospun nanofibers with high modulus and electric conductivity. Mater. Lett. 2017;200:97–100. doi: 10.1016/j.matlet.2017.04.115. DOI

Vatankhah A.R., Hosseini M.A., Malekie S. The characterization of gamma-irradiated carbon-nanostructured materials carried out using a multi-analytical approach including Raman spectroscopy. Appl. Surf. Sci. 2019;488:671–680. doi: 10.1016/j.apsusc.2019.05.294. DOI

Silvestri D., Mikšíček J., Wacławek S., Torres-Mendieta R., Padil V.V.T., Černík M. Production of electrospun nanofibers based on graphene oxide/gum Arabic. Int. J. Biol. Macromol. 2019;124:396–402. doi: 10.1016/j.ijbiomac.2018.11.243. PubMed DOI

Boyd G.E., Adamson A.W., Myers L.S. The Exchange Adsorption of Ions from Aqueous Solutions by Organic Zeolites. II. Kinetics1. J. Am. Chem. Soc. 1947;69:2836–2848. doi: 10.1021/ja01203a066. PubMed DOI

Langmuir I. The constitution and fundamental properties of solids and liquids. part i. solids. J. Am. Chem. Soc. 1916;38:2221–2295. doi: 10.1021/ja02268a002. DOI

Hoda N., Bayram E., Ayranci E. Kinetic and equilibrium studies on the removal of acid dyes from aqueous solutions by adsorption onto activated carbon cloth. J. Hazard. Mater. 2006;137:344–351. doi: 10.1016/j.jhazmat.2006.02.009. PubMed DOI

Fat’hi M.R., Asfaram A., Hadipour A., Roosta M. Kinetics and thermodynamic studies for removal of Acid Blue 129 from aqueous solution by almond shell. J. Environ. Health Sci. Eng. 2014;12:62. doi: 10.1186/2052-336X-12-62. PubMed DOI PMC

Nekouei F., Nekouei S., Tyagi I., Gupta V.K. Kinetic, thermodynamic and isotherm studies for acid blue 129 removal from liquids using copper oxide nanoparticle-modified activated carbon as a novel adsorbent. J. Mol. Liq. 2015;201:124–133. doi: 10.1016/j.molliq.2014.09.027. DOI

Ullah Z., Hussain S., Gul S., Khan S., Bangash F.K. Use of HCl-modified bentonite clay for the adsorption of Acid Blue 129 from aqueous solutions. Desalin. Water Treat. 2016;57:8894–8903. doi: 10.1080/19443994.2015.1027282. DOI

Hussain S., Ullah Z., Gul S., Khattak R., Kazmi N., Rehman F., Khan S., Ahmad K., Imad M., Khan A. Adsorption characteristics of magnesium-modified bentonite clay with respect to acid blue 129 in aqueous media. Polish J. Environ. Stud. 2016;25:1947–1953. doi: 10.15244/pjoes/62272. DOI

Ianoş R., Păcurariu C., Muntean S.G., Muntean E., Nistor M.A., Nižňanský D. Combustion synthesis of iron oxide/carbon nanocomposites, efficient adsorbents for anionic and cationic dyes removal from wastewaters. J. Alloys Compd. 2018;741:1235–1246. doi: 10.1016/j.jallcom.2018.01.240. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...