A Polymeric Composite Material (rGO/PANI) for Acid Blue 129 Adsorption
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
POIR.04.01.02-00-0062/16
National Centre for Research and Development in Poland
2014-2020, 4.1.2
European Regional Development Fund (Operational Program Intelligent Development)
LTAUSA18078
Ministry of Education, Youth and Sports in the Czech Republic
Project No. LM2015073
NanoEnviCz
Reg. No. CZ.02.1.01/0.0/0.0/16_019/0000843
Ministry of Education, Youth and Sports of the Czech Republic and the European Union - European Structural and Investment Funds in the frames of Operational Programme Research, Development and Education - project Hybrid Materials for Hierarchical Structur
PubMed
32375280
PubMed Central
PMC7285098
DOI
10.3390/polym12051051
PII: polym12051051
Knihovny.cz E-zdroje
- Klíčová slova
- Acid Blue 129, adsorption, graphene, nanocomposite,
- Publikační typ
- časopisecké články MeSH
Over the years, polyaniline (PANI) has received enormous attention due to its unique properties. Herein, it was chosen to develop a new polymeric composite material: reduced graphene oxide/polyaniline (rGO/PANI). The composite was prepared by a simple and cost-effective fabrication method of formation by mixing and sonication in various conditions. The obtained materials were characterized and identified using various techniques such as scanning electron microscopy (SEM), Raman and ATR-FTIR spectroscopy, and X-ray diffraction (XRD). The objective of the paper was to confirm its applicability for the removal of contaminants from water. Water could be contaminated by various types of pollutants, e.g., inorganics, heavy metals, and many other industrial compounds, including dyes. We confirmed that the Acid Blue 129 dyes can be substantially removed through adsorption on prepared rGO/PANI. The adsorption kinetic data were modeled using the pseudo-first-order and pseudo-second-order models and the adsorption isotherm model was identified.
Zobrazit více v PubMed
Novoselov K.S., Geim A.K., Morozov S.V., Jiang D., Zhang Y., Dubonos S.V., Grigorieva I.V., Firsov A.A. Electric field in atomically thin carbon films. Science. 2004;306:666–669. doi: 10.1126/science.1102896. PubMed DOI
Brodie B.C. On the Atomic Weight of Graphit. R. Soc. Lond. 1858;149:423–429.
Staudenmaier L. Verfahren zur Darstellung der Graphitsäure. Ber. der Dtsch. Chem. Ges. 1899;32:1394–1399. doi: 10.1002/cber.18990320208. DOI
Hummers W.S., Offeman R.E. Preparation of Graphitic Oxide. J. Am. Chem. Soc. 1958;80:1334–1339. doi: 10.1021/ja01539a017. DOI
Marcano D.C., Kosynkin D.V., Berlin J.M., Sinitskii A., Sun Z., Slesarev A., Alemany L.B., Lu W., Tour J.M. Improved synthesis of graphene oxide. ACS Nano. 2010;4:4806–4814. doi: 10.1021/nn1006368. PubMed DOI
Chen J., Yao B., Li C., Shi G. An improved Hummers method for eco-friendly synthesis of graphene oxide. Carbon. 2013;64:225–229. doi: 10.1016/j.carbon.2013.07.055. DOI
Stankovich S., Dikin D.A., Piner R.D., Kohlhaas K.A., Kleinhammes A., Jia Y., Wu Y., Nguyen S.T., Ruoff R.S. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon. 2007;45:1558–1565. doi: 10.1016/j.carbon.2007.02.034. DOI
Pei S., Cheng H.M. The reduction of graphene oxide. Carbon. 2012;50:3210–3228. doi: 10.1016/j.carbon.2011.11.010. DOI
Zhou M., Wang Y., Zhai Y., Zhai J., Ren W., Wang F., Dong S. Controlled synthesis of large-area and patterned electrochemically reduced graphene oxide films. Chem. A Eur. J. 2009;15:6116–6120. doi: 10.1002/chem.200900596. PubMed DOI
Becerril H.A., Mao J., Liu Z., Stoltenberg R.M., Bao Z., Chen Y. Evaluation of solution-processed reduced graphene oxide films as transparent conductors. ACS Nano. 2008;2:463–470. doi: 10.1021/nn700375n. PubMed DOI
Georgakilas V., Tiwari J.N., Kemp K.C., Perman J.A., Bourlinos A.B., Kim K.S., Zboril R. Noncovalent Functionalization of Graphene and Graphene Oxide for Energy Materials, Biosensing, Catalytic, and Biomedical Applications. Chem. Rev. 2016;116:5464–5519. doi: 10.1021/acs.chemrev.5b00620. PubMed DOI
Tan C., Cao X., Wu X.J., He Q., Yang J., Zhang X., Chen J., Zhao W., Han S., Nam G.H., et al. Recent Advances in Ultrathin Two-Dimensional Nanomaterials. Chem. Rev. 2017;117:6225–6331. doi: 10.1021/acs.chemrev.6b00558. PubMed DOI
Ruan K., Guo Y., Tang Y., Zhang Y., Zhang J., He M., Kong J., Gu J. Improved thermal conductivities in polystyrene nanocomposites by incorporating thermal reduced graphene oxide via electrospinning-hot press technique. Compos. Commun. 2018;10:68–72. doi: 10.1016/j.coco.2018.07.003. DOI
Sang L., Hao W., Zhao Y., Yao L., Cui P. Highly aligned graphene oxide/waterborne polyurethane fabricated by in-situ polymerization at low temperature. E-Polymers. 2018;18:75–84. doi: 10.1515/epoly-2017-0141. DOI
Yang H., Liu S., Cao L., Jiang S., Hou H. Superlithiation of non-conductive polyimide toward high-performance lithium-ion batteries. J. Mater. Chem. A. 2018;6:21216–21224. doi: 10.1039/C8TA05109G. DOI
Liao X., Ye W., Chen L., Jiang S., Hou H., Jiang S., Wang G., Zhang L. Flexible hdC-G reinforced polyimide composites with high dielectric permittivity. Compos. Part A Appl. Sci. Manuf. 2017;101:50–58. doi: 10.1016/j.compositesa.2017.06.011. DOI
Subramani A., Jacangelo J.G. Emerging desalination technologies for water treatment: A critical review. Water Res. 2015;75:164–187. doi: 10.1016/j.watres.2015.02.032. PubMed DOI
Kah M., Sigmund G., Xiao F., Hofmann T. Sorption of ionizable and ionic organic compounds to biochar, activated carbon and other carbonaceous materials. Water Res. 2017;124:673–692. doi: 10.1016/j.watres.2017.07.070. PubMed DOI
Yuan X., Wang H. Adsorptive removal of methylene blue by rhamnolipid-functionalized graphene oxide from wastewater. Water Res. 2014;67:330–344. PubMed
Wei Y., Zhang Y., Gao X., Ma Z., Wang X., Gao C. Multilayered graphene oxide membrane for water treatment: A review. Carbon. 2018;139:964–981. doi: 10.1016/j.carbon.2018.07.040. DOI
Venkateshaiah A., Silvestri D., Ramakrishnan R.K., Wacławek S., Padil V.V.T., Černík M., Varma R.S. Gum Kondagogu/Reduced Graphene Oxide Framed Platinum Nanoparticles and Their Catalytic Role. Molecules. 2019;24:3643. doi: 10.3390/molecules24203643. PubMed DOI PMC
Geniès E.M., Boyle A., Lapkowski M., Tsintavis C. Polyaniline: A historical survey. Synth. Met. 1990;36:139–182. doi: 10.1016/0379-6779(90)90050-U. DOI
Zhang J., Han J., Wang M., Guo R. Fe3O4/PANI/MnO2 core-shell hybrids as advanced adsorbents for heavy metal ions. J. Mater. Chem. A. 2017;5:4058–4066. doi: 10.1039/C6TA10499A. DOI
Liu Y., Song L., Du L., Gao P., Liang N., Wu S., Minami T., Zang L., Yu C., Xu X. Preparation of polyaniline/emulsion microsphere composite for efficient adsorption of organic dyes. Polymers. 2020;12:167. doi: 10.3390/polym12010167. PubMed DOI PMC
Muhammad A., Shah A.U.H.A., Bilal S. Effective Adsorption of Hexavalent Chromium and Divalent Nickel Ions from Water through Polyaniline, Iron Oxide, and Their Composites. Appl. Sci. 2020;10:2882. doi: 10.3390/app10082882. DOI
Mirmohseni A., Oladegaragoze A. Anti-corrosive properties of polyaniline coating on iron. Synth. Met. 2000;114:105–108. doi: 10.1016/S0379-6779(99)00298-2. DOI
Eftekhari A., Li L., Yang Y. Polyaniline supercapacitors. J. Power Sources. 2017;347:86–107. doi: 10.1016/j.jpowsour.2017.02.054. DOI
Male U., Modigunta J.K.R., Huh D.S. Design and synthesis of polyaniline-grafted reduced graphene oxide via azobenzene pendants for high-performance supercapacitors. Polymer. 2017;110:242–249. doi: 10.1016/j.polymer.2016.12.031. DOI
Zare E.N., Motahari A., Sillanpää M. Nanoadsorbents based on conducting polymer nanocomposites with main focus on polyaniline and its derivatives for removal of heavy metal ions/dyes: A review. Environ. Res. 2018;162:173–195. doi: 10.1016/j.envres.2017.12.025. PubMed DOI
Li R., Liu L., Yang F. Preparation of polyaniline/reduced graphene oxide nanocomposite and its application in adsorption of aqueous Hg(II) Chem. Eng. J. 2013;229:460–468. doi: 10.1016/j.cej.2013.05.089. DOI
Yang Y., Wang W., Li M., Wang H., Zhao M., Wang C. Preparation of PANI grafted at the edge of graphene oxide sheets and its adsorption of Pb(II) and methylene blue. Polym. Compos. 2018;39:1663–1673. doi: 10.1002/pc.24114. DOI
Ameen S., Seo H.K., Shaheer Akhtar M., Shin H.S. Novel graphene/polyaniline nanocomposites and its photocatalytic activity toward the degradation of rose Bengal dye. Chem. Eng. J. 2012;210:220–228. doi: 10.1016/j.cej.2012.08.035. DOI
Ansari R., Mosayebzadeh Z. Application of polyaniline as an efficient and novel adsorbent for azo dyes removal from textile wastewaters. Chem. Pap. 2011;65:1–8. doi: 10.2478/s11696-010-0083-x. DOI
Stoller M.D., Park S., Zhu Y., An J., Ruoff R.S. Graphene-Based Ultracapacitors. Nano Lett. 2008;8:3498–3502. doi: 10.1021/nl802558y. PubMed DOI
Yaseen D.A., Scholz M. Textile dye wastewater characteristics and constituents of synthetic effluents: A critical review. Int. J. Environ. Sci. Technol. 2019;16:1193–1226. doi: 10.1007/s13762-018-2130-z. DOI
Wacławek S., Lutze H.V., Grübel K., Padil V.V.T., Černík M., Dionysiou D.D. Chemistry of persulfates in water and wastewater treatment: A review. Chem. Eng. J. 2017;330:44–62. doi: 10.1016/j.cej.2017.07.132. DOI
Wacławek S., Černík M., Dionysiou D.D. The Development and Challenges of Oxidative Abatement for Contaminants of Emerging Concern. Springer; Singapore: 2020. pp. 131–152.
Sieradzka M., Fryczkowski R., Biniaś D., Biniaś W., Janicki J. A facile approach to obtaining PVDF/graphene fibers and the effect of nanoadditive on the structure and properties of nanocomposites. Polym. Test. 2019;81:106229. doi: 10.1016/j.polymertesting.2019.106229. DOI
Wu Q., Xu Y., Yao Z., Liu A., Shi G. Supercapacitors based on flexible graphene/polyaniline nanofiber composite films. ACS Nano. 2010;4:1963–1970. doi: 10.1021/nn1000035. PubMed DOI
An J., Liu J., Zhou Y., Zhao H., Ma Y., Li M., Yu M., Li S. Polyaniline-grafted graphene hybrid with amide groups and its use in supercapacitors. J. Phys. Chem. C. 2012;116:19699–19708. doi: 10.1021/jp306274n. DOI
Ansari M.O., Yadav S.K., Cho J.W., Mohammad F. Thermal stability in terms of DC electrical conductivity retention and the efficacy of mixing technique in the preparation of nanocomposites of graphene/polyaniline over the carbon nanotubes/polyaniline. Compos. Part B Eng. 2013;47:155–161. doi: 10.1016/j.compositesb.2012.10.042. DOI
Sibilska I., Feng Y., Li L., Yin J. Trimetaphosphate Activates Prebiotic Peptide Synthesis across a Wide Range of Temperature and pH. Orig. Life Evol. Biosph. 2018;48:277–287. doi: 10.1007/s11084-018-9564-7. PubMed DOI PMC
Hanwell M.D., Curtis D.E., Lonie D.C., Vandermeersch T., Zurek E., Hutchison G.R. Avogadro: An advanced semantic chemical editor, visualization, and analysis platform. J. Cheminform. 2012;4:17. doi: 10.1186/1758-2946-4-17. PubMed DOI PMC
Cardenas L., Macleod J., Lipton-Duffin J., Seifu D.G., Popescu F., Siaj M., Mantovani D., Rosei F. Reduced graphene oxide growth on 316L stainless steel for medical applications. Nanoscale. 2014;6:8664–8670. doi: 10.1039/C4NR02512A. PubMed DOI
Thekkae Padil V.V., Filip J., Suresh K.I., Wacławek S., Černík M. Electrospun membrane composed of poly[acrylonitrile-co-(methyl acrylate)-co-(itaconic acid)] terpolymer and ZVI nanoparticles and its application for the removal of arsenic from water. RSC Adv. 2016;6:110288–110300. doi: 10.1039/C6RA24036D. DOI
Aradhana R., Mohanty S., Nayak S.K. Comparison of mechanical, electrical and thermal properties in graphene oxide and reduced graphene oxide filled epoxy nanocomposite adhesives. Polymer. 2018;141:109–123. doi: 10.1016/j.polymer.2018.03.005. DOI
Łuzny W., Hasik M. Structural properties of polyaniline protonated with heteropolyacids. Solid State Commun. 1996;99:685–689.
Pouget J.P., Józefowicz M.E., Epstein A.J., Tang X., MacDiarmid A.G. X-ray Structure of Polyaniline. Macromolecules. 1991;24:779–789. doi: 10.1021/ma00003a022. DOI
Gao W., Sun X., Niu H., Song X., Li K., Gao H., Zhang W., Yu J., Jia M. Phosphomolybdic acid functionalized covalent organic frameworks: Structure characterization and catalytic properties in olefin epoxidation. Microporous Mesoporous Mater. 2015;213:59–67. doi: 10.1016/j.micromeso.2015.04.009. DOI
Jin L., Chai L., Ren L., Jiang Y., Yang W., Wang S., Liao Q., Wang H., Zhang L. Enhanced adsorption-coupled reduction of hexavalent chromium by 2D poly(m-phenylenediamine)-functionalized reduction graphene oxide. Environ. Sci. Pollut. Res. 2019;26:31099–31110. doi: 10.1007/s11356-019-06175-x. PubMed DOI
Villar-Rodil S., Paredes J.I., Martínez-Alonso A., Tascón J.M.D. Atomic Force Microscopy and Infrared Spectroscopy Studies of the Thermal Degradation of Nomex Aramid Fibers. Chem. Mater. 2001;13:4297–4304. doi: 10.1021/cm001219f. DOI
Yang C., Zhang L., Hu N., Yang Z., Su Y., Xu S., Li M., Yao L., Hong M., Zhang Y. Rational design of sandwiched polyaniline nanotube/layered graphene/polyaniline nanotube papers for high-volumetric supercapacitors. Chem. Eng. J. 2017;309:89–97. doi: 10.1016/j.cej.2016.09.115. DOI
Peng B., Chen L., Que C., Yang K., Deng F., Deng X., Shi G., Xu G., Wu M. Adsorption of Antibiotics on Graphene and Biochar in Aqueous Solutions Induced by π-π Interactions. Sci. Rep. 2016;6:31920. doi: 10.1038/srep31920. PubMed DOI PMC
Wang C., Zhao M., Li J., Yu J., Sun S., Ge S., Guo X., Xie F., Jiang B., Wujcik E.K., et al. Silver nanoparticles/graphene oxide decorated carbon fiber synergistic reinforcement in epoxy-based composites. Polymer. 2017;131:263–271. doi: 10.1016/j.polymer.2017.10.049. DOI
Duan G., Fang H., Huang C., Jiang S., Hou H. Microstructures and mechanical properties of aligned electrospun carbon nanofibers from binary composites of polyacrylonitrile and polyamic acid. J. Mater. Sci. 2018;53:15096–15106. doi: 10.1007/s10853-018-2700-y. DOI
Ferrari A., Robertson J. Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B Condens. Matter Mater. Phys. 2000;61:14095–14107. doi: 10.1103/PhysRevB.61.14095. DOI
Loryuenyong V., Totepvimarn K., Eimburanapravat P., Boonchompoo W., Buasri A. Preparation and Characterization of Reduced Graphene Oxide Sheets via Water-Based Exfoliation and Reduction Methods. Adv. Mater. Sci. Eng. 2013;2013:923403. doi: 10.1155/2013/923403. DOI
Zhou S., Zhou G., Jiang S., Fan P., Hou H. Flexible and refractory tantalum carbide-carbon electrospun nanofibers with high modulus and electric conductivity. Mater. Lett. 2017;200:97–100. doi: 10.1016/j.matlet.2017.04.115. DOI
Vatankhah A.R., Hosseini M.A., Malekie S. The characterization of gamma-irradiated carbon-nanostructured materials carried out using a multi-analytical approach including Raman spectroscopy. Appl. Surf. Sci. 2019;488:671–680. doi: 10.1016/j.apsusc.2019.05.294. DOI
Silvestri D., Mikšíček J., Wacławek S., Torres-Mendieta R., Padil V.V.T., Černík M. Production of electrospun nanofibers based on graphene oxide/gum Arabic. Int. J. Biol. Macromol. 2019;124:396–402. doi: 10.1016/j.ijbiomac.2018.11.243. PubMed DOI
Boyd G.E., Adamson A.W., Myers L.S. The Exchange Adsorption of Ions from Aqueous Solutions by Organic Zeolites. II. Kinetics1. J. Am. Chem. Soc. 1947;69:2836–2848. doi: 10.1021/ja01203a066. PubMed DOI
Langmuir I. The constitution and fundamental properties of solids and liquids. part i. solids. J. Am. Chem. Soc. 1916;38:2221–2295. doi: 10.1021/ja02268a002. DOI
Hoda N., Bayram E., Ayranci E. Kinetic and equilibrium studies on the removal of acid dyes from aqueous solutions by adsorption onto activated carbon cloth. J. Hazard. Mater. 2006;137:344–351. doi: 10.1016/j.jhazmat.2006.02.009. PubMed DOI
Fat’hi M.R., Asfaram A., Hadipour A., Roosta M. Kinetics and thermodynamic studies for removal of Acid Blue 129 from aqueous solution by almond shell. J. Environ. Health Sci. Eng. 2014;12:62. doi: 10.1186/2052-336X-12-62. PubMed DOI PMC
Nekouei F., Nekouei S., Tyagi I., Gupta V.K. Kinetic, thermodynamic and isotherm studies for acid blue 129 removal from liquids using copper oxide nanoparticle-modified activated carbon as a novel adsorbent. J. Mol. Liq. 2015;201:124–133. doi: 10.1016/j.molliq.2014.09.027. DOI
Ullah Z., Hussain S., Gul S., Khan S., Bangash F.K. Use of HCl-modified bentonite clay for the adsorption of Acid Blue 129 from aqueous solutions. Desalin. Water Treat. 2016;57:8894–8903. doi: 10.1080/19443994.2015.1027282. DOI
Hussain S., Ullah Z., Gul S., Khattak R., Kazmi N., Rehman F., Khan S., Ahmad K., Imad M., Khan A. Adsorption characteristics of magnesium-modified bentonite clay with respect to acid blue 129 in aqueous media. Polish J. Environ. Stud. 2016;25:1947–1953. doi: 10.15244/pjoes/62272. DOI
Ianoş R., Păcurariu C., Muntean S.G., Muntean E., Nistor M.A., Nižňanský D. Combustion synthesis of iron oxide/carbon nanocomposites, efficient adsorbents for anionic and cationic dyes removal from wastewaters. J. Alloys Compd. 2018;741:1235–1246. doi: 10.1016/j.jallcom.2018.01.240. DOI