Thermal Compatibility of New ACEI Derivatives with Popular Excipients Used to Produce Solid Pharmaceutical Formulations
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
PCN-2-010/N/2/F, BNW-2-104/K/3/F
Mateusz Broncel
PCN-1-021/K/2/F
Paweł Ramos
PubMed
39458964
PubMed Central
PMC11510466
DOI
10.3390/ph17101323
PII: ph17101323
Knihovny.cz E-zdroje
- Klíčová slova
- ACEI, FTIR, TGA, UV spectroscopy, c-DTA, colorimetry analysis, compatibility, pharmaceutical excipients,
- Publikační typ
- časopisecké články MeSH
Background/Objectives: Increasing drugs' stability and adequately protecting them against degradation will ensure a decrease in their price and broader availability of pharmaceutical substances. This is of great importance, especially for drugs used to treat the most common diseases in the population, such as hypertension. The study examined two newly synthesized substances from the angiotensin I-converting enzyme inhibitor (ACEI) group as potential drugs. ACEIs are among the leading drugs used in the treatment of hypertension in the world. The chemical modifications of the tested substances applied concerned the places most susceptible to degradation. The presented work analyzed the compatibility of new derivatives with selected excipients used in pharmacy. Methods: Thermogravimetric (TGA) and differential thermal analyses (c-DTA) were used as the main methods. In addition, non-thermal methods such as colorimetry analysis, Fourier-transform infrared (FTIR) and UV spectroscopy were used. Results: Based on the conducted studies, it can be concluded that the incompatibility of IND-1 with glucose anhydrous and lactose monohydrate occurs only when the mixture is stored at higher temperatures. For the remaining IND-1 and IND-2 mixtures with excipients, compatibility was demonstrated. Conclusions: The obtained results confirmed the usefulness of the applied thermal analyses (TGA and c-DTA) for assessing the compatibility of the tested potential drugs with excipients. However, in the case of incompatibility reactions of substances occurring under the influence of elevated temperatures, such as the Maillard reaction, it is necessary to use non-thermal methods to obtain the right result.
Zobrazit více v PubMed
Sznitowska M., editor. Farmacja Stosowana. PZWL; Warsaw, Poland: 2017.
Kostowski W., Herman Z.S., editors. Farmakologia. PZWL; Wasaw, Poland: 2016.
Tzourio C., Anderson C., Chapman N., Woodward M., Neal B., MacMahon S., Chalmers J. Effects of blood pressure lowering with perindopril and indapamide therapy on dementia and cognitive decline in patients with cerebrovascular disease. Arch. Intern. Med. 2003;163:1069–1075. PubMed
Sink K.M., Leng X., Williamson J., Kritchevsky S.B., Yaffe K., Kuller L., Yasar S., Atkinson H., Robbins M., Psaty B., et al. Angiotensin-converting enzyme inhibitors and cognitive decline in older adults with hypertension: Results from the Cardiovascular Health Study. Arch. Intern. Med. 2009;169:1195–1202. doi: 10.1001/archinternmed.2009.175. PubMed DOI PMC
Juszczak A., Ramos P., Szczołko W., Pilawa B., Stanisz B. Can angiotensin-converting enzyme inhibitors interfere with the free radicals? Measurement of antioxidant capacity using DPPH radical reduction examined by UV-VIS method. Acta Pol. Pharm. 2019;76:233–239.
Juszczak A., Ramos P., Szczołko W., Pilawa B., Stanisz B. Evaluation of antioxidant properties of angiotensin-converting enzyme inhibitors-interactions with free radicals model examined by EPR spectroscopy. Pharm. Pharmacol. Int. J. 2020;8:25–32. doi: 10.15406/ppij.2020.08.00276. DOI
Janiec W., editor. Farmakodynamika. PZWL; Warsaw, Poland: 2022.
Kollamaram G., Faucher A., Croker D.M., Walker G.M. Valvejet Technology for the Production of a Personalised Fixed Dose Combination of Ramipril and Glimepiride: An Investigative Study on the Stability of Ramipril. Pharm. Res. 2018;35:181. doi: 10.1007/s11095-018-2465-7. PubMed DOI
Paszun S., Stanisz B. Cilazapril decomposition kinetics and mechanism in the solid state versus stability of the other ester pro-drug angiotensin converting enzyme inhibitors. React. Kinet. Mech. Catal. 2013;109:285–300. doi: 10.1007/s11144-013-0558-1. DOI
Stanisz B. Evaluation of stability of enalapril maleate in solid phase. J. Pharm. Biomed. Anal. 2003;31:375–380. doi: 10.1016/S0731-7085(02)00325-4. PubMed DOI
Stanisz B. The influence of relative humidity and temperature on stability of moexipril hydrochloride in solid phase. Acta Polon. Pharm. 2004;61:91–97. PubMed
Polski A., Iwaniak K., Naleśniak M., Poleszak E. The excipients used in the non-coated tablests—A review. Med. Int. Revuo. 2014;102:10–18.
Elder D.P., Kuentz M., Holm R. Pharmaceutical excipients—Quality, regulatory and biopharmaceutical considerations. Eur. J. Pharm. Scien. 2016;87:88–99. doi: 10.1016/j.ejps.2015.12.018. PubMed DOI
Bharate S.S., Bharate S.B., Bajaj A.N. Interactions and incompatibilities of pharmaceutical excipients with active pharmaceutical ingredients: A comprehensive review. J. Excip. Food Chem. 2010;1:3–26.
Lundin P.M., Fu G.C. Asymmetric Suzuki cross-couplings of activated secondary alkyl electrophiles: Arylations of racemic alpha-chloroamides. J. Am. Chem. Soc. 2010;132:11027–11029. doi: 10.1021/ja105148g. PubMed DOI PMC
Oku N., Murakami M., Miura T. Photoassisted cross-coupling reaction of α-chlorocarbonyl compounds with arylboronic acids. Org. Lett. 2022;24:1616–1619. doi: 10.1021/acs.orglett.2c00121. PubMed DOI
Rowe R.C., Sheskey P.J., Quinn M.E. Habdbook of Pharmaceutical Excipients. 6th ed. Pharmaceutical Press; London, UK: Chicago, IL, USA: 2009.
Ramos P. Compatibility studies of selected mucolytic drugs with excipients used in solid dosage forms: Thermogravimetry analysis. Farmacia. 2021;69:585–594. doi: 10.31925/farmacia.2021.3.22. DOI
Ramos P. Thermal compatibility assessment of selected excipients used in the oral anti-cancer formulation containing busulfan. Farmacia. 2022;70:417–424. doi: 10.31925/farmacia.2022.3.6. DOI
Kurek-Górecka A., Ramos P., Kłósek M., Bobela E., Czuba Z.P., Balwierz R., Olczyk P. Propolis as a cariostatic agent in lozenges and impact of storage conditions on the stability of propolis. Pharmaceutics. 2023;15:1768. doi: 10.3390/pharmaceutics15061768. PubMed DOI PMC
Pitucha M., Ramos P., Wojtunik-Kulesza K., Głogowska A., Stefańska J., Kowalczuk D., Drózd M., Augustynowicz-Kopeć E. Thermal analysis, antimicrobial and antioxidant studies of thiosemicarbazone derivatives. J. Therm. Anal. Calorim. 2023;2023:4223–4234. doi: 10.1007/s10973-023-12029-z. DOI
Bartyzel A., Kaczor A.A., Głuchowska H., Pitucha M., Wróbel T.M., Matosiuk D. Thermal and spectroscopic studies of 2,3,5-trisubstituted and 1,2,3,5-tetrassubstituted indoles as non-competitive antagonists of GluK1/GluK2 receptors. J. Therm. Anal. Calorim. 2018;133:935–944. doi: 10.1007/s10973-018-7146-6. DOI
Saavedra-Leosa M.Z., Alvarez-Salasb C., EsneiderAlcala M.A., Toxqui-Terán A., Pérez-García S.A., RuizCabrera M.A. Towards an improved calorimetric methodology for glass transition temperature determination in amorphous sugars. CyTA—J. Food. 2012;10:258–267. doi: 10.1080/19476337.2011.639960. DOI
Wei-Hsien H., Wen-Ting C., Ling-Chun C., HongLiang L., Shan-Yang L. Non-isothermal dehydration kinetics of glucose monohydrate, maltose monohydrate and trehalose dihydrate by thermal analysis and DSC-FTIR study. J. Biomed. Pharm. Sci. 2018;1:1–6.
Zhao Z., Hayashi S., Xu W., Wu Z., Tanaka S., Sun S., Zhang M., Kanayama K., Umemura K. A Novel EcoFriendly Wood Adhesive Composed by Sucrose and Ammonium Dihydrogen Phosphate. Polymers. 2018;10:1251. doi: 10.3390/polym10111251. PubMed DOI PMC
Wang C., Dou B., Song Y., Chen H., Yang M., Xu Y. Kinetic study on non-isothermal pyrolysis of sucrose biomass. Energy Fuels. 2014;28:3793–3801. doi: 10.1021/ef500940q. DOI
Ilyes K., Casian T., Hales D., Borodi G., Rus L., Stiufius R., Tomuta I. Applying the principles of quality by design (QbD) coupled with multivariate data analysis (MVDA) in establishing the impact of raw material variability for extended release tablets. Farmacia. 2021;69:481–497. doi: 10.31925/farmacia.2021.3.11. DOI
Lavor E.P., Navarro M.V.M., Freire F.D., Aragão C.F.S., Raffin F.N., Barbosa E.G., de Lima e Moura T.F.A. Application of thermal analysis to the study of antituberculosis drugs–excipient compatibility. J. Therm. Anal. Calorim. 2014;115:2303–2309. doi: 10.1007/s10973-013-3050-2. DOI
Listiohadi Y., Hourigan J.A., Sleigh R.W., Steele R.J. Thermal analysis of amorphous lactose and α-lactose monohydrate. Dairy. Sci. Technol. 2009;89:43–67. doi: 10.1051/dst:2008027. DOI
Suxia R., Xiuxuan S., Tingzhou L., Qinglin W. The effect of chemical and high-pressure homogenization treatment conditions on the morphology of cellulose nanoparticles. J. Nanomat. 2014;2014:582913.
Kuthi F.A.A., Norzali N.R.A., Badri K.H. Thermal characteristics of microcrystalline cellulose from oil palm biomass. Malaysian J. Analyt. Sci. 2016;20:1112–1122.
Katugampola P., Winstead C., Adeleke A. Thermal stability of carboxymethyl chitosan varying the degree of substitution. Int. J. Pharm. Sci. Invent. 2014;3:42–48.
Liao S.K., Hung C.C., Lin M.F. A kinetic study of thermal degradations of chitosan/polycaprolactam blends. Macromolec. Res. 2004;12:466–473. doi: 10.1007/BF03218428. DOI
Zhu J., Zhang S., Zhang B., Qiao D. Structural features and thermal property of propionylated starches with different amylose/amylopectin ratio. Int. J. Biol. Macromol. 2017;97:123–130. doi: 10.1016/j.ijbiomac.2017.01.033. PubMed DOI
Kaczmarska K., Żymankowska-Kumon S., Grabowska B., Bobrowski A., Cukrowicz S. Study of thermal degradation of starch-based binder by TG-DTG-DSC Py-GC/MS and DRIFTS. Arch. Found. Engine. 2019;19:21–26. doi: 10.24425/afe.2019.129624. DOI
Tița B., Fuliaș A., Bandur G., Tiťa D., Babe V. Application of thermal analysis to study the compatibility of sodium diclofenac with different pharmaceutical excipients. Rev. Chim. 2011;62:443–454.
Fuliaş A., Ledeţi I., Vlase G., Popoiu C., Hegheş A., Bilanin M., Vlase T., Gheorgheosu D., Craina M., Ardelean S., et al. Thermal behaviour of procaine and benzocaine Part II: Compatibility study with some pharmaceutical excipients used in solid dosage forms. Chem. Cent. J. 2013;7:140. doi: 10.1186/1752-153X-7-140. PubMed DOI PMC
Wesołowski M., Rojek B. Thermogravimetric detection of incompatibilities between atenolol and excipients using multivariate techniques. J. Therm. Anal. Calorim. 2013;113:169–177. doi: 10.1007/s10973-013-3070-y. DOI
Rojek B., Wesołowski M. Compatibility studies of hydrocortisone with excipients using thermogravimetric analysis supported by multivariate statistical analysis. J. Therm. Anal. Calorim. 2017;127:543–553. doi: 10.1007/s10973-016-5441-7. DOI
Sip S., Paczkowska-Walendowska M., Rosiak N., Miklaszewski A., Grabańska-Martyńska K., Samarzewska K., Cielecka-Piontek J. Chitosan as Valuable Excipient for Oral and Topical Carvedilol Delivery Systems. Pharmaceuticals. 2021;14:712. doi: 10.3390/ph14080712. PubMed DOI PMC
Kepsutlu A.R., Savaser A., Ozkan Y., Dikmen N., Isimer A. Evaluation of chitosan used as an excipient in tablet formulations. Acta Pol. Pharm. 1999;56:227–235.
Ray S.D. Potential aspects of chitosan as pharmaceutical excipient. Acta Pol. Pharm. 2011;68:619–622. PubMed
Baldrick P. The safety of chitosan as a pharmaceutical excipient. Regul. Toxicol. Pharmacol. 2010;56:290–299. doi: 10.1016/j.yrtph.2009.09.015. PubMed DOI
Echavarría A., Pagán J., Ibarz A. Kinetics of color development in glucose/amino acid model systems at different temperatures. Sci. Agropecu. 2016;7:15–21. doi: 10.17268/sci.agropecu.2016.01.02. DOI
Subert J., Cizmárik J. Application of instrumental colour measurement in development and quality control of drugs and pharmaceutical excipients. Die Pharm. 2008;63:331–336. PubMed
MacDougall D.B., Mirjana Granov M. Woodhead Publishing Series in Food Science, Technology and Nutrition. Woodhead Publishing; Sawston, UK: 2005. Relationship between Ultraviolet and Visible Spectra in Maillard Reactions and CIELAB Colour Space and Visual Appearance; pp. 160–165.
Sun Y., Lin L., Zhang P. Color Development Kinetics of Maillard Reactions. Ind. Eng. Chem. Res. 2021;60:3495–3501. doi: 10.1021/acs.iecr.1c00026. DOI
Echavarría A.P., Pagán J., Ibarz A. Kinetics of color development of melanoidins formed from fructose/amino acid model systems. Food Sci. Tech. Intern. 2013;20:119–126. doi: 10.1177/1082013213476071. PubMed DOI
Arachchi S.J., Kim Y.J., Kim D.W., Oh S.C., Lee Y.B. Optimization of Maillard Reaction in Model System of Glucosamine and Cysteine Using Response Surface Methodology. Prev. Nutr. Food Sci. 2017;22:37–44. doi: 10.3746/pnf.2017.22.1.37. PubMed DOI PMC
Sakiroff L.M., Chennell P., Yessaad M., Pereira B., Bouattour Y., Sautou V. Evaluation of color changes during stability studies using spectrophotometric chromaticity measurements versus visual examination. Sci. Rep. 2022;12:8959. doi: 10.1038/s41598-022-13025-3. PubMed DOI PMC
Golonka I., Wilk S., Musiał W. The influence of UV radiation on the degradation of pharmaceutical formulations containing quercetin. Molecules. 2020;25:5454. doi: 10.3390/molecules25225454. PubMed DOI PMC
Akhtar F., Gul S., Ashfaq S., Rehman I., Mirza A.Z. UV spectroscopic method for optimization and determination of glibenclamide in bulk, pharmaceutical dosage form and its application for in vitro interaction studies. J. Anal. Test. 2020;4:281–290. doi: 10.1007/s41664-020-00146-9. DOI
Kukulski T., Wacławek S., Silvestri D., Krawczyk K., Padil V.V.T., Fryczkowski R., Janicki J., Černík M. A Polymeric Composite Material (rGO/PANI) for Acid Blue 129 Adsorption. Polymers. 2020;12:1051. doi: 10.3390/polym12051051. PubMed DOI PMC
Zhang H., Ou J., Yao Y., Wang H., Liu Z., Wei Y., Ye M. Facile Preparation of Titanium(IV)-Immobilized Hierarchically Porous Hybrid Monoliths. Anal. Chem. 2017;89:4655–4662. doi: 10.1021/acs.analchem.7b00242. PubMed DOI
Silvestri D., Wacławek S., Venkateshaiah A., Krawczyk K., Sobel B., Padil V.V.T., Černík M., Varma R.S. Synthesis of Ag Nanoparticles by a Chitosan-Poly(3-Hydroxybutyrate) Polymer Conjugate and Their Superb Catalytic Activity. Carbohydr. Polym. 2020;232:115806. doi: 10.1016/j.carbpol.2019.115806. PubMed DOI
Silvestri D., Wacławek S.K., Ramakrishnan R., Venkateshaiah A., Krawczyk K., Padil V.V.T., Sobel B., Černík M. The Use of a Biopolymer Conjugate for an Eco-Friendly One-Pot Synthesis of Palladium-Platinum Alloys. Polymers. 2019;11:1948. doi: 10.3390/polym11121948. PubMed DOI PMC
ICH . ICH Harmonised Tripartite Guideline: Stability Testing of New Drug Substances and Products, Q1A (R2) ICH; Geneva, Switzerland: 2003.
Ding P., Ling Y.S. Brownikg assessment methods and polyphenol oxidase in UV-C irradiated Berangan banana fruit. Intern. Food Res. J. 2014;21:1667–1674.