Microscopic Techniques for the Analysis of Micro and Nanostructures of Biopolymers and Their Derivatives

. 2020 Feb 27 ; 12 (3) : . [epub] 20200227

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid32120773

Grantová podpora
CZ.1.05/2.1.00/19.0386; . CZ.02.1.01/0.0/0.0/16_013/0001821; CZ.02.1.01/0.0/0.0/16_019/0000843; LTAB19007 and BTHA-JC-2019-26 and LTAUSA19091) - TUL internal No.: 18309/136. Ministry of Education, Youth and Sports of the Czech Republic and the European Union - European Structural and Investment Funds in the frames of Operational Program Research, Development and Education.

Natural biopolymers, a class of materials extracted from renewable sources, is garnering interest due to growing concerns over environmental safety; biopolymers have the advantage of biocompatibility and biodegradability, an imperative requirement. The synthesis of nanoparticles and nanofibers from biopolymers provides a green platform relative to the conventional methods that use hazardous chemicals. However, it is challenging to characterize these nanoparticles and fibers due to the variation in size, shape, and morphology. In order to evaluate these properties, microscopic techniques such as optical microscopy, atomic force microscopy (AFM), and transmission electron microscopy (TEM) are essential. With the advent of new biopolymer systems, it is necessary to obtain insights into the fundamental structures of these systems to determine their structural, physical, and morphological properties, which play a vital role in defining their performance and applications. Microscopic techniques perform a decisive role in revealing intricate details, which assists in the appraisal of microstructure, surface morphology, chemical composition, and interfacial properties. This review highlights the significance of various microscopic techniques incorporating the literature details that help characterize biopolymers and their derivatives.

Zobrazit více v PubMed

Bassas-Galià M. Consequences of Microbial Interactions with Hydrocarbons, Oils, and Lipids: Production of Fuels and Chemicals. Springer International Publishing; Cham, Switzerland: 2017. Rediscovering Biopolymers; pp. 529–550.

Hernández N., Williams R.C., Cochran E.W. The battle for the “green” polymer. Different approaches for biopolymer synthesis: Bioadvantaged vs. bioreplacement. Org. Biomol. Chem. 2014;12:2834–2849. doi: 10.1039/C3OB42339E. PubMed DOI

Cacciotti I., Mori S., Cherubini V., Nanni F. Eco-sustainable systems based on poly(lactic acid), diatomite and coffee grounds extract for food packaging. Int. J. Biol. Macromol. 2018;112:567–575. doi: 10.1016/j.ijbiomac.2018.02.018. PubMed DOI

Garavand F., Rouhi M., Razavi S.H., Cacciotti I., Mohammadi R. Improving the integrity of natural biopolymer films used in food packaging by crosslinking approach: A review. Int. J. Biol. Macromol. 2017;104:687–707. doi: 10.1016/j.ijbiomac.2017.06.093. PubMed DOI

Venkateshaiah A., Cheong J.Y., Habel C., Wacławek S., Lederer T., Černík M., Kim I.-D., Padil V.V.T., Agarwal S. Tree Gum–Graphene Oxide Nanocomposite Films as Gas Barriers. ACS Appl. Nano Mater. 2020;3:633–640. doi: 10.1021/acsanm.9b02166. DOI

Babu R.P., O’Connor K., Seeram R. Current progress on bio-based polymers and their future trends. Prog. Biomater. 2013;2:8. doi: 10.1186/2194-0517-2-8. PubMed DOI PMC

He M., Lu A., Zhang L. Advances in Cellulose Hydrophobicity Improvement. American Chemical Society; Washington, DC, USA: 2014.

Sajid M.A., Shahzad S.A., Hussain F., Skene W.G., Khan Z.A., Yar M. Synthetic modifications of chitin and chitosan as multipurpose biopolymers: A review. Synth. Commun. 2018;48:1893–1908. doi: 10.1080/00397911.2018.1465096. DOI

Abraham A., Soloman P.A., Rejini V.O. Preparation of Chitosan-Polyvinyl Alcohol Blends and Studies on Thermal and Mechanical Properties. Procedia Technol. 2016;24:741–748. doi: 10.1016/j.protcy.2016.05.206. DOI

Raj A., Prashantha K., Samuel C. Compatibility in biobased poly(L-lactide)/polyamide binary blends: From melt-state interfacial tensions to (thermo)mechanical properties. J. Appl. Polym. Sci. 2020;137:48440. doi: 10.1002/app.48440. DOI

Resano-Goizueta I., Ashokan B.K., Trezza T.A., Padua G.W. Effect of Nano-Fillers on Tensile Properties of Biopolymer Films. J. Polym. Environ. 2018;26:3817–3823. doi: 10.1007/s10924-018-1260-1. DOI

Agusnar H., Wirjosentono B., Rihayat T. Improving the quality of biopolymer (poly lactic acid) with the addition of bentonite as filler. IOP Conf. Ser. Mater. Sci. Eng. 2017;222:012008.

Mekonnen T., Mussone P., Khalil H., Bressler D. Progress in bio-based plastics and plasticizing modifications. J. Mater. Chem. A. 2013;1:13379–13398. doi: 10.1039/c3ta12555f. DOI

Dufresne A., Thomas S., Pothen L.A. Biopolymer Nanocomposites. John Wiley & Sons, Inc.; Hoboken, NJ, USA: 2013.

Okamoto M., John B. Synthetic biopolymer nanocomposites for tissue engineering scaffolds. Prog. Polym. Sci. 2013;38:1487–1503. doi: 10.1016/j.progpolymsci.2013.06.001. DOI

Jacob J., Haponiuk J.T., Thomas S., Gopi S. Biopolymer based nanomaterials in drug delivery systems: A review. Mater. Today Chem. 2018;9:43–55. doi: 10.1016/j.mtchem.2018.05.002. DOI

Joye I.J., McClements D.J. Biopolymer-based nanoparticles and microparticles: Fabrication, characterization, and application. Curr. Opin. Colloid Interface Sci. 2014;19:417–427. doi: 10.1016/j.cocis.2014.07.002. DOI

Gupta B., Tummalapalli M., Deopura B.L., Alam M.S. Preparation and characterization of in-situ crosslinked pectin–gelatin hydrogels. Carbohydr. Polym. 2014;106:312–318. doi: 10.1016/j.carbpol.2014.02.019. PubMed DOI

Padil V.V.T., Senan C., Wacſawek S., Ŀerník M. Electrospun fibers based on Arabic, karaya and kondagogu gums. Int. J. Biol. Macromol. 2016;91:299–309. doi: 10.1016/j.ijbiomac.2016.05.064. PubMed DOI

Silvestri D., Mikšíček J., Wacławek S., Torres-Mendieta R., Padil V.V., Černík M. Production of electrospun nanofibers based on graphene oxide/gum Arabic. Int. J. Biol. Macromol. 2019;124:396–402. doi: 10.1016/j.ijbiomac.2018.11.243. PubMed DOI

Vinod V.T.P., Saravanan P., Sreedhar B., Devi D.K., Sashidhar R.B. A facile synthesis and characterization of Ag, Au and Pt nanoparticles using a natural hydrocolloid gum kondagogu (Cochlospermum gossypium) Colloids Surf. B Biointerfaces. 2011;83:291–298. doi: 10.1016/j.colsurfb.2010.11.035. PubMed DOI

Thekkae Padil V.V., Černík M. Green synthesis of copper oxide nanoparticles using gum karaya as a biotemplate and their antibacterial application. Int. J. Nanomed. 2013;8:889–898. PubMed PMC

Silvestri D., Wacławek S., Sobel B., Torres-Mendieta R., Novotný V., Nguyen N.H., Ševců A., Padil V.V., Müllerová J., Stuchlík M., et al. A poly(3-hydroxybutyrate)–chitosan polymer conjugate for the synthesis of safer gold nanoparticles and their applications. Green Chem. 2018;20:4975–4982. doi: 10.1039/C8GC02495B. DOI

Venkateshaiah A., Silvestri D., Ramakrishnan R.K., Wacławek S., Padil V.V., Černík M., Varma R.S. Gum kondagoagu/reduced graphene oxide framed platinum nanoparticles and their catalytic role. Molecules. 2019;24:3643. doi: 10.3390/molecules24203643. PubMed DOI PMC

Padil V.V.T., Wacławek S., Černík M., Varma R.S. Tree gum-based renewable materials: Sustainable applications in nanotechnology, biomedical and environmental fields. Biotechnol. Adv. 2018;36:1984–2016. doi: 10.1016/j.biotechadv.2018.08.008. PubMed DOI PMC

Mülhaupt R. Green Polymer Chemistry and Bio-based Plastics: Dreams and Reality. Macromol. Chem. Phys. 2013;214:159–174. doi: 10.1002/macp.201200439. DOI

Hu B. Biopolymer-Based Lightweight Materials for Packaging Applications. ACS Symposium Series, Am. Chem. Soc. 2014;1175:239–255.

Yadav P., Yadav H., Shah V.G., Shah G., Dhaka G. Biomedical biopolymers, their origin and evolution in biomedical sciences: A systematic review. J. Clin. Diagn. Res. 2015;9:21–25. doi: 10.7860/JCDR/2015/13907.6565. PubMed DOI PMC

Cao Y., Wu J., Zhang J., Li H., Zhang Y., He J. Room temperature ionic liquids (RTILs): A new and versatile platform for cellulose processing and derivatization. Chem. Eng. J. 2009;147:13–21. doi: 10.1016/j.cej.2008.11.011. DOI

Rajinipriya M., Nagalakshmaiah M., Astruc J., Robert M., Elkoun S. Single stage purification of flax, hemp, and milkweed stem and their physical and morphological properties. Int. J. Polym. Anal. Charact. 2018;23:78–88. doi: 10.1080/1023666X.2017.1387688. DOI

Heinze T., El Seoud O.A., Koschella A. Production and Characteristics of Cellulose from Different Sources. Springer; Cham, Switzerland: 2018.

Gellerstedt G. Softwood kraft lignin: Raw material for the future. Ind. Crops Prod. 2015;77:845–854. doi: 10.1016/j.indcrop.2015.09.040. DOI

Iravani S., Varma R.S. Greener synthesis of lignin nanoparticles and their applications. Green Chem. 2020;22:612–636.

Agrawal A., Kaushik N., Biswas S. Derivatives and Applications of Lignin: An Insight. Scitech J. 2014;1:30–36.

Bertoft E. Understanding Starch Structure: Recent Progress. Agronomy. 2017;7:56. doi: 10.3390/agronomy7030056. DOI

Ogunsona E., Ojogbo E., Mekonnen T. Advanced material applications of starch and its derivatives. Eur. Polym. J. 2018;108:570–581. doi: 10.1016/j.eurpolymj.2018.09.039. DOI

Stamov D.R., Pompe T. Structure and function of ECM-inspired composite collagen type i scaffolds. Soft Matter. 2012;8:10200–10212. doi: 10.1039/c2sm26134k. DOI

Sionkowska A., Skrzyński S., Śmiechowski K., Kołodziejczak A. The review of versatile application of collagen. Polym. Adv. Technol. 2017;28:4–9. doi: 10.1002/pat.3842. DOI

Silvestri D., Wacławek S., KRamakrishnan R., Venkateshaiah A., Krawczyk K., Padil V.V., Sobel B., Černík M. The Use of a Biopolymer Conjugate for an Eco-Friendly One-Pot Synthesis of Palladium-Platinum Alloys. Polymers Basel. 2019;11:1948. doi: 10.3390/polym11121948. PubMed DOI PMC

Crini G. Historical review on chitin and chitosan biopolymers. Environ. Chem. Lett. 2019;17:1623–1643. doi: 10.1007/s10311-019-00901-0. DOI

Morin-Crini N., Lichtfouse E., Torri G., Crini G. Sustainable Agriculture Reviews. Springer; Cham, Switzerland: 2019. Fundamentals and Applications of Chitosan.

Zhao D., Yu S., Sun B., Gao S., Guo S., Zhao K. Biomedical applications of chitosan and its derivative nanoparticles. Polymers Basel. 2018;10:462. doi: 10.3390/polym10040462. PubMed DOI PMC

Shariatinia Z. Pharmaceutical applications of chitosan. Adv. Colloid Interface Sci. 2019;263:131–194. doi: 10.1016/j.cis.2018.11.008. PubMed DOI

Vahedikia N., Garavand F., Tajeddin B., Cacciotti I., Jafari S.M., Omidi T., Zahedi Z. Biodegradable zein film composites reinforced with chitosan nanoparticles and cinnamon essential oil: Physical, mechanical, structural and antimicrobial attributes. Colloids Surf. B Biointerfaces. 2019;177:25–32. doi: 10.1016/j.colsurfb.2019.01.045. PubMed DOI

Cacciotti I., Lombardelli C., Benucci I., Esti M. Clay/chitosan biocomposite systems as novel green carriers for covalent immobilization of food enzymes. J. Mater. Res. Technol. 2019;8:3644–3652. doi: 10.1016/j.jmrt.2019.06.002. DOI

Li Z., Yang J., Loh X.J. Polyhydroxyalkanoates: Opening doors for a sustainable future. NPG Asia Mater. 2016;8:e265. doi: 10.1038/am.2016.48. DOI

Winnacker M. Polyhydroxyalkanoates: Recent Advances in Their Synthesis and Applications. Eur. J. Lipid Sci. Technol. 2019;121:1900101. doi: 10.1002/ejlt.201900101. DOI

Możejko-Ciesielska J., Kiewisz R. Bacterial polyhydroxyalkanoates: Still fabulous? Microbiol. Res. 2016;192:271–282. doi: 10.1016/j.micres.2016.07.010. PubMed DOI

Balaji S., Gopi K., Muthuvelan B. A review on production of poly β hydroxybutyrates from cyanobacteria for the production of bio plastics. Algal Res. 2013;2:278–285. doi: 10.1016/j.algal.2013.03.002. DOI

Ray S., Kalia V.C. Biomedical Applications of Polyhydroxyalkanoates. Indian J. Microbiol. 2017;57:261–269. doi: 10.1007/s12088-017-0651-7. PubMed DOI PMC

Yeo J.C.C., Muiruri J.K., Thitsartarn W., Li Z., He C. Recent advances in the development of biodegradable PHB-based toughening materials: Approaches, advantages and applications. Mater. Sci. Eng. C. 2018;92:1092–1116. doi: 10.1016/j.msec.2017.11.006. PubMed DOI

Bianco A., Calderone M., Cacciotti I. Electrospun PHBV/PEO co-solution blends: Microstructure, thermal and mechanical properties. Mater. Sci. Eng. C. 2013;33:1067–1077. doi: 10.1016/j.msec.2012.11.030. PubMed DOI

Cacciotti I., Calderone M., Bianco A. Tailoring the properties of electrospun PHBV mats: Co-solution blending and selective removal of PEO. Eur. Polym. J. 2013;49:3210–3222. doi: 10.1016/j.eurpolymj.2013.06.024. DOI

Mehta R., Kumar V., Bhunia H., Upadhyay S.N. Synthesis of Poly(Lactic Acid): A Review. J. Macromol. Sci. Part C Polym. Rev. 2005;45:325–349. doi: 10.1080/15321790500304148. DOI

Singhvi M.S., Zinjarde S.S., Gokhale D.V. Polylactic acid: Synthesis and biomedical applications. J. Appl. Microbiol. 2019;127:1612–1626. doi: 10.1111/jam.14290. PubMed DOI

Hu Y., Daoud W., Cheuk K., Lin C. Newly Developed Techniques on Polycondensation, Ring-Opening Polymerization and Polymer Modification: Focus on Poly(Lactic Acid) Materials Basel. 2016;9:133. doi: 10.3390/ma9030133. PubMed DOI PMC

Chen Y., Geever L.M., Killion J.A., Lyons J.G., Higginbotham C.L., Devine D.M. Review of Multifarious Applications of Poly (Lactic Acid) Polym. Plast. Technol. Eng. 2016;55:1057–1075. doi: 10.1080/03602559.2015.1132465. DOI

Farah S., Anderson D.G., Langer R. Physical and mechanical properties of PLA, and their functions in widespread applications—A comprehensive review. Adv. Drug Deliv. Rev. 2016;107:367–392. doi: 10.1016/j.addr.2016.06.012. PubMed DOI

Sisson A.L., Ekinci D., Lendlein A. The contemporary role of ε-caprolactone chemistry to create advanced polymer architectures. Polymer. 2013;54:4333–4350. doi: 10.1016/j.polymer.2013.04.045. DOI

Fuoco T., Finne-Wistrand A. Enhancing the Properties of Poly(ε-caprolactone) by Simple and Effective Random Copolymerization of ε-Caprolactone with p -Dioxanone. Biomacromolecules. 2019;20:3171–3180. doi: 10.1021/acs.biomac.9b00745. PubMed DOI

Malikmammadov E., Tanir T.E., Kiziltay A., Hasirci V., Hasirci N. PCL and PCL-based materials in biomedical applications. J. Biomater. Sci. Polym. Ed. 2018;29:863–893. doi: 10.1080/09205063.2017.1394711. PubMed DOI

Espinoza S.M., Patil H.I., San Martin Martinez E., Casañas Pimentel R., Ige P.P. Poly-ε-caprolactone (PCL), a promising polymer for pharmaceutical and biomedical applications: Focus on nanomedicine in cancer. Int. J. Polym. Mater. Polym. Biomater. 2020;69:85–126. doi: 10.1080/00914037.2018.1539990. DOI

Bianco A., Di Federico E., Cacciotti I. Electrospun poly(ε-caprolactone)-based composites using synthesized β-tricalcium phosphate. Polym. Adv. Technol. 2011;22:1832–1841. doi: 10.1002/pat.1680. DOI

Michler G.H. Overview of Techniques. Springer; Berlin/Heidelberg, Germany: 2008.

Malheiro V.N., Caridade S.G., Alves N.M., Mano J.F. New poly(ε-caprolactone)/chitosan blend fibers for tissue engineering applications. Acta Biomater. 2010;6:418–428. doi: 10.1016/j.actbio.2009.07.012. PubMed DOI

Khalid S., Yu L., Meng L., Liu H., Ali A., Chen L. Poly(lactic acid)/starch composites: Effect of microstructure and morphology of starch granules on performance. J. Appl. Polym. Sci. 2017;134:45504. doi: 10.1002/app.45504. DOI

Govindaraju I., Pallen S., Umashankar S., Mal S.S., Kaniyala Melanthota S., Mahato D.R., Zhuo G.Y., Mahato K.K., Mazumder N. Microscopic and spectroscopic characterization of rice and corn starch. Microsc. Res. Tech. 2020:1–9. doi: 10.1002/jemt.23437. PubMed DOI

Vigneshwaran N., Ammayappan L., Huang Q. Effect of Gum arabic on distribution behavior of nanocellulose fillers in starch film. Appl. Nanosci. 2011;1:137–142. doi: 10.1007/s13204-011-0020-5. DOI

Zhang Y., Xu Y., Xi X., Shrestha S., Jiang P., Zhang W., Gao C. Amino acid-modified chitosan nanoparticles for Cu2+ chelation to suppress CuO nanoparticle cytotoxicity. J. Mater. Chem. B. 2017;5:3521–3530. doi: 10.1039/C7TB00344G. PubMed DOI

Majoinen J., Kontturi E., Ikkala O., Gray D.G. SEM imaging of chiral nematic films cast from cellulose nanocrystal suspensions. Cellulose. 2012;19:1599–1605. doi: 10.1007/s10570-012-9733-1. DOI

Rizzieri R., Baker F.S., Donald A.M. A study of the large strain deformation and failure behaviour of mixed biopolymer gels via in situ ESEM. Polymer. 2003;44:5927–5935. doi: 10.1016/S0032-3861(03)00543-3. DOI

Karhale S., Bhenki C., Rashinkar G., Helavi V. Covalently anchored sulfamic acid on cellulose as heterogeneous solid acid catalyst for the synthesis of structurally symmetrical and unsymmetrical 1,4-dihydropyridine derivatives. New J. Chem. 2017;41:5133–5141. doi: 10.1039/C7NJ00685C. DOI

Shankar S., Oun A.A., Rhim J.W. Preparation of antimicrobial hybrid nano-materials using regenerated cellulose and metallic nanoparticles. Int. J. Biol. Macromol. 2018;107:17–27. doi: 10.1016/j.ijbiomac.2017.08.129. PubMed DOI

Gopiraman M., Deng D., Saravanamoorthy S., Chung I.M., Kim I.S. Gold, silver and nickel nanoparticle anchored cellulose nanofiber composites as highly active catalysts for the rapid and selective reduction of nitrophenols in water. RSC Adv. 2018;8:3014–3023. doi: 10.1039/C7RA10489H. PubMed DOI PMC

Pakravan M., Heuzey M.-C., Ajji A. Core–Shell Structured PEO-Chitosan Nanofibers by Coaxial Electrospinning. Biomacromolecules. 2012;13:412–421. doi: 10.1021/bm201444v. PubMed DOI

Camesano T.A., Wilkinson K.J. Single Molecule Study of Xanthan Conformation Using Atomic Force Microscopy. Biomacromolecules. 2001;2:1184–1191. PubMed

Teckentrup J., Al-Hammood O., Steffens T., Bednarz H., Walhorn V., Niehaus K., Anselmetti D. Comparative analysis of different xanthan samples by atomic force microscopy. J. Biotechnol. 2017;257:2–8. doi: 10.1016/j.jbiotec.2016.11.032. PubMed DOI

Moffat J., Morris V.J., Al-Assaf S., Gunning A.P. Visualisation of xanthan conformation by atomic force microscopy. Carbohydr. Polym. 2016;148:380–389. doi: 10.1016/j.carbpol.2016.04.078. PubMed DOI PMC

Lahiji R.R., Xu X., Reifenberger R., Raman A., Rudie A., Moon R.J. Atomic Force Microscopy Characterization of Cellulose Nanocrystals. Langmuir. 2010;26:4480–4488. doi: 10.1021/la903111j. PubMed DOI

Robert R.W., Raman J.M.A. Mechanical properties of cellulose nanomaterials studied by contact resonance atomic force microscopy. Cellulose. 2016:23.

Nagalakshmaiah M., kissi NEl Mortha G., Dufresne A. Structural investigation of cellulose nanocrystals extracted from chili leftover and their reinforcement in cariflex-IR rubber latex. Carbohydr. Polym. 2016;136:945–954. doi: 10.1016/j.carbpol.2015.09.096. PubMed DOI

Haugstad K.E., Håti A.G., Nordgård C.T., Adl P.S., Maurstad G., Sletmoen M., Draget K.I., Dias R.S., Stokke B.T. Direct Determination of Chitosan–Mucin Interactions Using a Single-Molecule Strategy: Comparison to Alginate–Mucin Interactions. Polymers Basel. 2015;7:161–185. doi: 10.3390/polym7020161. DOI

Jaiswal M.K., Banerjee R., Pradhan P., Bahadur D. Thermal behavior of magnetically modalized poly(N-isopropylacrylamide)-chitosan based nanohydrogel. Colloids Surf. B Biointerfaces. 2010;81:185–194. doi: 10.1016/j.colsurfb.2010.07.009. PubMed DOI

Gunning A.P., McMaster T.J., Morris V.J. Scanning tunnelling microscopy of xanthan gum. Carbohydr. Polym. 1993;21:47–51. doi: 10.1016/0144-8617(93)90116-L. DOI

Nakajima K., Ikehara T., Nishi T. Observation of gellan gum by scanning tunneling microscopy. Carbohydr. Polym. 1996;30:77–81. doi: 10.1016/S0144-8617(96)00084-7. DOI

Zhang Y.Z. Size and arrangement of elementary fibrils in crystalline cellulose studied with scanning tunneling microscopy. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. 1997;15:1502. doi: 10.1116/1.589483. DOI

Abdullah O.G., Aziz B.K., Aziz S.B., Suhail M.H. Surfaces modification of methylcellulose: Cobalt nitrate polymer electrolyte by sulfurated hydrogen gas treatment. J. Appl. Polym. Sci. 2018;135:46676. doi: 10.1002/app.46676. DOI

Weisenburger S., Sandoghdar V. Light microscopy: An ongoing contemporary revolution. Contemp. Phys. 2015;56:123–143. doi: 10.1080/00107514.2015.1026557. DOI

Chen N., Rehman S., Sheppard C.J.R. Recent advances in optical microscopy methods for subcellular imaging of thick biological tissues. Crit. Rev. Biomed. Eng. 2013;41:393–403. doi: 10.1615/CritRevBiomedEng.2014010461. PubMed DOI

Agocs E., Attota R.K. Enhancing optical microscopy illumination to enable quantitative imaging. Sci. Rep. 2018;8:1–9. doi: 10.1038/s41598-018-22561-w. PubMed DOI PMC

Coceancigh H., Higgins D.A., Ito T. Optical Microscopic Techniques for Synthetic Polymer Characterization. Anal. Chem. 2019;91:405–424. doi: 10.1021/acs.analchem.8b04694. PubMed DOI

Ma Y., Wang X., Liu H., Wei L., Xiao L. Recent advances in optical microscopic methods for single-particle tracking in biological samples. Anal. Bioanal. Chem. 2019;411:4445–4463. doi: 10.1007/s00216-019-01638-z. PubMed DOI

Murphy D.B., Davidson M.W. Fundamentals of Light Microscopy and Electronic Imaging. 2nd ed. John Wiley and Sons; Hoboken, NJ, USA: 2012.

Vielreicher M., Schürmann S., Detsch R., Schmidt M.A., Buttgereit A., Boccaccini A., Friedrich O. Taking a deep look: Modern microscopy technologies to optimize the design and functionality of biocompatible scaffolds for tissue engineering in regenerative medicine. J. R. Soc. Interface. 2013;10:20130263. doi: 10.1098/rsif.2013.0263. PubMed DOI PMC

Hubbe M.A., Chandra R.P., Dogu D., Van Velzen S.T.J. Analytical Staining of Cellulosic Materials: A Review. BioRes. 2019;14:7387–7464.

Daemen S., van Zandvoort M.A.M.J., Parekh S.H., Hesselink M.K.C. Microscopy tools for the investigation of intracellular lipid storage and dynamics. Mol. Metab. 2016;5:153–163. doi: 10.1016/j.molmet.2015.12.005. PubMed DOI PMC

Westphal V., Hell S.W. Nanoscale resolution in the focal plane of an optical microscope. Phys. Rev. Lett. 2005;94:143903. doi: 10.1103/PhysRevLett.94.143903. PubMed DOI

Hayes B.S., Gammon L.M. Optical Microscopy of Fiber Reinforced Composites. ASM International; Materials Park, OH, USA: 2010.

Vanderghem C., Jacquet N., Danthine S., Blecker C., Paquot M. Effect of Physicochemical Characteristics of Cellulosic Substrates on Enzymatic Hydrolysis by Means of a Multi-Stage Process for Cellobiose Production. Appl. Biochem. Biotechnol. 2012;166:1423–1432. doi: 10.1007/s12010-011-9535-1. PubMed DOI

Gutiérrez T.J., Pérez E., Guzmán R., Tapia M.S., Famá L. Physicochemical and Functional Properties of Native and Modified by Crosslinking, Dark-Cush-Cush Yam (Dioscorea Trifida) and Cassava (Manihot Esculenta) Starch. J. Polym. Biopolym. Phys. Chem. 2014;2:1–5.

Gao C., Bao X., Yu L., Liu H., Simon G.P., Chen L., Liu X. Thermal properties and miscibility of semi-crystalline and amorphous PLA blends. J. Appl. Polym. Sci. 2014;131:41205. doi: 10.1002/app.41205. DOI

Gao M., Ren Z., Yan S., Sun J., Chen X. An optical microscopy study on the phase structure of poly(L-lactide acid)/poly(propylene carbonate) blends. J. Phys. Chem. B. 2012;116:9832–9837. doi: 10.1021/jp3041378. PubMed DOI

Sokhal K.S., Dasaroju G., Bulasara V.K. Formation, stability and comparison of water/oil emulsion using gum arabic and guar gum and effect of aging of polymers on drag reduction percentage in water/oil flow. Vacuum. 2018;159:247–253. doi: 10.1016/j.vacuum.2018.10.044. DOI

Rousi Z., Malhiac C., Fatouros D.G., Paraskevopoulou A. Complex coacervates formation between gelatin and gum Arabic with different arabinogalactan protein fraction content and their characterization. Food Hydrocoll. 2019;96:577–588. doi: 10.1016/j.foodhyd.2019.06.009. DOI

Lippincott-Schwartz J., Manley S. Putting super-resolution fluorescence microscopy to work. Nat. Methods. 2009;6:21–23. doi: 10.1038/nmeth.f.233. PubMed DOI PMC

Thorley J.A., Pike J., Rappoport J.Z. Super-Resolution Microscopy: A Comparison of Commercially Available Options. Elsevier Inc.; Philadelphia, PA, USA: 2014.

Jia S., Han B., Kutz J.N. Example-Based Super-Resolution Fluorescence Microscopy. Sci. Rep. 2018;8:1–8. doi: 10.1038/s41598-018-24033-7. PubMed DOI PMC

Abitbol T., Palermo A., Moran-Mirabal J.M., Cranston E.D. Fluorescent Labeling and Characterization of Cellulose Nanocrystals with Varying Charge Contents. Biomacromolecules. 2013;14:3278–3284. doi: 10.1021/bm400879x. PubMed DOI

Shazali N.A.H., Zaidi N.E., Ariffin H., Abdullah L.C., Ghaemi F., Abdullah J.M., Takashima I., Rahman N.A., Afizan N.M. Characterization and cellular internalization of Spherical Cellulose Nanocrystals (CNC) into normal and cancerous fibroblasts. Materials Basel. 2019;12:3251. doi: 10.3390/ma12193251. PubMed DOI PMC

Ur-Rehman A., Khan N.M., Ali F., Khan H., Khan Z.U., Jan A.K., Khan G.S., Ahmad S. Kinetics Study of Biopolymers Mixture with the Help of Confocal Laser Scanning Microscopy. J. Food Process Eng. 2016;39:533–541. doi: 10.1111/jfpe.12245. DOI

Zammarano M., Maupin P.H., Sung L.P., Gilman J.W., McCarthy E.D., Kim Y.S., Fox D.M. Revealing the Interface in Polymer Nanocomposites. ACS Nano. 2011;5:3391–3399. doi: 10.1021/nn102951n. PubMed DOI

Spence J.C.H. High-Resolution Electron Microscopy. Oxford University Press; New York, NY, USA: 2013.

Yu X., Arey B., Chatterjee S., Chun J. Improving in situ liquid SEM imaging of particles. Surf. Interface Anal. 2019;51:1325–1331. doi: 10.1002/sia.6700. DOI

Nguyen J.N.T., Harbison A.M. Scanning Electron Microscopy Sample Preparation and Imaging. Volume 1606 Humana Press Inc.; Totowa, NJ, USA: 2017. PubMed

Shekarforoush E., Mirhosseini H., Amid B.T., Ghazali H., Muhammad K., Sarker M.Z.I., Paykary M. Rheological Properties and Emulsifying Activity of Gum Karaya (Sterculia Urens) in Aqueous System and Oil in Water Emulsion: Heat Treatment and Microwave Modification. Int. J. Food Prop. 2016;19:662–679. doi: 10.1080/10942912.2015.1038836. DOI

Pang J., Liu X., Zhang X., Wu Y., Sun R. Fabrication of Cellulose Film with Enhanced Mechanical Properties in Ionic Liquid 1-Allyl-3-methylimidaxolium Chloride (AmimCl) Materials Basel. 2013;6:1270–1284. doi: 10.3390/ma6041270. PubMed DOI PMC

Phinichka N., Kaenthong S. Regenerated cellulose from high alpha cellulose pulp of steam-exploded sugarcane bagasse. J. Mater. Res. Technol. 2018;7:55–65. doi: 10.1016/j.jmrt.2017.04.003. DOI

İlgü H., Turan T., Şanli-Mohamed G. Preparation, Characterization and Optimization of Chitosan Nanoparticles as Carrier for Immobilization of Thermophilic Recombinant Esterase. J. Macromol. Sci. Part A. 2011;48:713–721.

Saari H., Fuentes C., Sjöö M., Rayner M., Wahlgren M. Production of starch nanoparticles by dissolution and non-solvent precipitation for use in food-grade Pickering emulsions. Carbohydr. Polym. 2017;157:558–566. doi: 10.1016/j.carbpol.2016.10.003. PubMed DOI

Mun S., Kim H.C., Yadave M., Kim J. Graphene oxide–gellan gum–sodium alginate nanocomposites: Synthesis, characterization, and mechanical behavior. Compos. Interfaces. 2015;22:249–263. doi: 10.1080/09276440.2015.1018716. DOI

Wittmar A., Vorat D., Ulbricht M. Two step and one step preparation of porous nanocomposite cellulose membranes doped with TiO 2. RSC Adv. 2015;5:88070–88078. doi: 10.1039/C5RA16337D. DOI

Wang Q., Chen D. Synthesis and characterization of a chitosan based nanocomposite injectable hydrogel. Carbohydr. Polym. 2016;136:1228–1237. doi: 10.1016/j.carbpol.2015.10.040. PubMed DOI

Bagheri-Khoulenjani S., Mirzadeh H., Etrati-Khosroshahi M., Ali Shokrgozar M. Particle size modeling and morphology study of chitosan/gelatin/nanohydroxyapatite nanocomposite microspheres for bone tissue engineering. J. Biomed. Mater. Res. Part A. 2013;101:1758–1767. doi: 10.1002/jbm.a.34481. PubMed DOI

Rodriguez S.A., Weese E., Nakamatsu J., Torres F. Development of Biopolymer Nanocomposites Based on Polysaccharides Obtained from Red Algae Chondracanthus chamissoi Reinforced with Chitin Whiskers and Montmorillonite. Polym.-Plast. Technol. Eng. 2016;55:1557–1564. doi: 10.1080/03602559.2016.1163583. DOI

Tarus B., Fadel N., Al-Oufy A., El-Messiry M. Effect of polymer concentration on the morphology and mechanical characteristics of electrospun cellulose acetate and poly (vinyl chloride) nanofiber mats. Alexandria Eng. J. 2016;55:2975–2984. doi: 10.1016/j.aej.2016.04.025. DOI

Diantoro M., Kusumaatmaja A., Triyana K. Preparation of PVA/Chitosan/TiO 2 nanofibers using electrospinning method. AIP Conf. Proc. 2016;1755:150002.

Qasim S.B., Najeeb S., Delaine-Smith R.M., Rawlinson A., Ur Rehman I. Potential of electrospun chitosan fibers as a surface layer in functionally graded GTR membrane for periodontal regeneration. Dent. Mater. 2017;33:71–83. doi: 10.1016/j.dental.2016.10.003. PubMed DOI

Padil V.V., Senan C., Wacławek S., Cerník M., Agarwal S., Varma R.S. Bioplastic Fibers from Gum Arabic for Greener Food Wrapping Applications. ACS Sustain. Chem. Eng. 2019;7:5900–5911. doi: 10.1021/acssuschemeng.8b05896. DOI

Fazeli M., Florez J.P., Simão R.A. Improvement in adhesion of cellulose fibers to the thermoplastic starch matrix by plasma treatment modification. Compos. Part B Eng. 2019;163:207–216. doi: 10.1016/j.compositesb.2018.11.048. DOI

Anžlovar A., Kunaver M., Krajnc A., Žagar E. Nanocomposites of LLDPE and Surface-Modified Cellulose Nanocrystals Prepared by Melt Processing. Molecules. 2018;23:1782. doi: 10.3390/molecules23071782. PubMed DOI PMC

Naranda J., Sušec M., Maver U., Gradišnik L., Gorenjak M., Vukasović A., Ivković A., Rupnik M.S., Vogrin M., Krajnc P. Polyester type polyHIPE scaffolds with an interconnected porous structure for cartilage regeneration. Sci. Rep. 2016;6:1–11. doi: 10.1038/srep28695. PubMed DOI PMC

Zhou F.L., Parker G.J.M., Eichhorn S.J., Hubbard Cristinacce P.L. Production and cross-sectional characterization of aligned co-electrospun hollow microfibrous bulk assemblies. Mater. Charact. 2015;109:25–35. doi: 10.1016/j.matchar.2015.09.010. PubMed DOI PMC

Yin H.M., Qian J., Zhang J., Lin Z.F., Li J.S., Xu J.Z., Li Z.M. Engineering porous poly(lactic acid) scaffolds with high mechanical performance via a solid state extrusion/porogen leaching approach. Polymers Basel. 2016;8:213. doi: 10.3390/polym8060213. PubMed DOI PMC

Mafirad S., Mehrnia M.R., Zahedi P., Hosseini S.-N. Chitosan-based nanocomposite membranes with improved properties: Effect of cellulose acetate blending and TiO2 nanoparticles incorporation. Polym. Compos. 2017;39:4452–4466. doi: 10.1002/pc.24539. DOI

Zhang Z.-H., Han Z., Zeng X.-A., Xiong X.-Y., Liu Y.-J. Enhancing mechanical properties of chitosan films via modification with vanillin. Int. J. Biol. Macromol. 2015;81:638–643. doi: 10.1016/j.ijbiomac.2015.08.042. PubMed DOI

Nanjunda R.B., Venkata L.V., Vishnu M.K., Mylarappa M., Raghavendra N., Venkatesh T. Preparation of chitosan/different organomodified clay polymer nanocomposites: Studies on morphological, swelling, thermal stability and anti-bacterial properties. Nanosyst. Phys. Chem. Math. 2016;7:667–674.

Kumar P., Sandeep K.P., Alavi S., Truong V.D., Gorga R.E. Effect of Type and Content of Modified Montmorillonite on the Structure and Properties of Bio-Nanocomposite Films Based on Soy Protein Isolate and Montmorillonite. J. Food Sci. 2010;75:N46–N56. doi: 10.1111/j.1750-3841.2010.01633.x. PubMed DOI

Jain R., Mahto V., Mahto T.K. Study of the Effect of Xanthan Gum Based Graft Copolymer on Water Based Drilling Fluid. J. Macromol. Sci. Part A. 2014;51:976–982. doi: 10.1080/10601325.2014.967089. DOI

Abdullah N.H., Shameli K., Nia P.M., Etesami M., Abdullah E.C., Abdullah L.C. Electrocatalytic activity of starch/Fe3O4/zeolite bionanocomposite for oxygen reduction reaction. Arab. J. Chem. 2017;13:1297–1308. doi: 10.1016/j.arabjc.2017.10.014. DOI

Yusof Y.M., Shukur M.F., Illias H.A., Kadir M.F.Z. Conductivity and electrical properties of corn starch-chitosan blend biopolymer electrolyte incorporated with ammonium iodide. R. Swedish Acad. Sci. Phys. Scr. Phys. Scr. 2014;89:10. doi: 10.1088/0031-8949/89/03/035701. DOI

Rajisha K.R., Maria H.J., Pothan L.A., Ahmad Z., Thomas S. Preparation and characterization of potato starch nanocrystal reinforced natural rubber nanocomposites. Int. J. Biol. Macromol. 2014;67:147–153. doi: 10.1016/j.ijbiomac.2014.03.013. PubMed DOI

Daio T., Bayer T., Ikuta T., Nishiyama T., Takahashi K., Takata Y., Sasaki K., Lyth S.M. In-Situ ESEM and EELS Observation of Water Uptake and Ice Formation in Multilayer Graphene Oxide. Sci. Rep. 2015;5:11807. doi: 10.1038/srep11807. PubMed DOI PMC

Jenkins L.M., Donald A.M. Use of the environmental scanning electron microscope for the observation of the swelling behaviour of cellulosic fibres. Scanning. 2006;19:92–97. doi: 10.1002/sca.4950190206. DOI

Podor R., Ravaux J., Brau H.-P. In Situ Experiments in the Scanning Electron Microscope Chamber, Scanning electron Microscopy. IntechOpen; London, UK: 2012.

Jansson A., Nafari A., Sanz-Velasco A., Svensson K., Gustafsson S., Hermansson A.M., Olsson E. Novel Method for Controlled Wetting of Materials in the Environmental Scanning Electron Microscope. Microsc. Microanal. 2013;19:30–37. doi: 10.1017/S1431927612013815. PubMed DOI

Girão A.V., Caputo G., Ferro M.C. Application of Scanning Electron Microscopy–Energy Dispersive X-Ray Spectroscopy (SEM-EDS) Compr. Anal. Chem. 2017;75:153–168.

Chauhan K., Priya V., Singh P., Chauhan G.S., Kumari S., Singhal R.K. A green and highly efficient sulfur functionalization of starch. RSC Adv. 2015;5:51762–51772. doi: 10.1039/C5RA07332D. DOI

Anjum F., Bukhari S.A., Siddique M., Shahid M., Potgieter J.H., Jaafar H.Z., Ercisli S., Zia-Ul-Haq M. Microwave Irradiated Copolymerization of Xanthan Gum with Acrylamide for Colonic Drug Delivery. BioResources. 2015;10:1434–1451. doi: 10.15376/biores.10.1.1434-1451. DOI

Ghannam H.E., STalab A., VDolgano N., MSHusse A., Abdelmagui N.M. Characterization of Chitosan Extracted from Different Crustacean Shell Wastes. J. Appl. Sci. 2016;16:454–461.

Sofla M.R.K., Brown R.J., Tsuzuki T., Rainey T.J. A comparison of cellulose nanocrystals and cellulose nanofibres extracted from bagasse using acid and ball milling methods. Adv. Nat. Sci. Nanosci. Nanotechnol. 2016;7:035004. doi: 10.1088/2043-6262/7/3/035004. DOI

Singh P., Chauhan K., Priya V., Singhal R.K. A greener approach for impressive removal of As(iii)/As(v) from an ultra-low concentration using a highly efficient chitosan thiomer as a new adsorbent. RSC Adv. 2016;6:64946–64961. doi: 10.1039/C6RA10595E. DOI

Gao Y., Zhang X., Jin X. Preparation and Properties of Minocycline-Loaded Carboxymethyl Chitosan Gel/Alginate Nonwovens Composite Wound Dressings. Mar. Drugs. 2019;17:575. doi: 10.3390/md17100575. PubMed DOI PMC

Kuei B., Aplan M.P., Litofsky J.H., Gomez E.D. New opportunities in transmission electron microscopy of polymers. Mater. Sci. Eng. R Rep. 2020;139:100516. doi: 10.1016/j.mser.2019.100516. DOI

Libera M.R., Egerton R.F. Advances in the Transmission Electron Microscopy of Polymers. Polym. Rev. 2010;50:321–339. doi: 10.1080/15583724.2010.493256. DOI

Winey M., Meehl J.B., O’Toole E.T., Giddings T.H. Conventional transmission electron microscopy. Mol. Biol. Cell. 2014;25:319–323. doi: 10.1091/mbc.e12-12-0863. PubMed DOI PMC

Rice S.B., Chan C., Brown S.C., Eschbach P., Han L., Ensor D.S., Stefaniak A.B., Bonevich J., Vladár A.E., Walker A.R.H. Particle size distributions by transmission electron microscopy: an interlaboratory comparison case study. Metrologia. 2013;50:663. doi: 10.1088/0026-1394/50/6/663. PubMed DOI PMC

Mielańczyk Ł., Matysiak N., Klymenko O., Wojnicz R. Transmission Electron Microscopy of Biological Samples. IntechOpen; Vienna, Austria: 2015.

Tang C.Y., Yang Z. Transmission Electron Microscopy (TEM) Elsevier Inc.; Philadelphia, PA, USA: 2017.

Kirkland A.I., Chang S.L.Y., Hutchison J.L. Springer Handbooks. Springer; Berlin/Heidelberg, Germany: 2019. pp. 3–47.

Alnarabiji M.S., Yahya N., Hamed Y., Ardakani S.E.M., Azizi K., Klemeš J.J., Abdullaha B., Tasfyd S.F.H., Hamide S.B.A., Nashed O. Scalable bio-friendly method for production of homogeneous metal oxide nanoparticles using green bovine skin gelatin. J. Clean. Prod. 2017;162:186–194. doi: 10.1016/j.jclepro.2017.06.010. DOI

Santos E.D.B., Lima E.C.N.L., Oliveira C.S., De Sigoli F.A., Mazali I.O. Fast detection of paracetamol on a gold nanoparticle-chitosan substrate by SERS. Anal. Methods. 2014;6:3564–3568. doi: 10.1039/C4AY00635F. DOI

Bhagyaraj S., Krupa I. Alginate-Mediated Synthesis of Hetero-Shaped Silver Nanoparticles and Their Hydrogen Peroxide Sensing Ability. Molecules. 2020;25:435. doi: 10.3390/molecules25030435. PubMed DOI PMC

Josefsson G., Tanem B.S., Li Y., Vullum P.E., Gamstedt E.K. Prediction of elastic properties of nanofibrillated cellulose from micromechanical modeling and nano-structure characterization by transmission electron microscopy. Cellulose. 2013;20:761–770. doi: 10.1007/s10570-013-9868-8. DOI

Ramesh S., Sivasamy A., Kim H.S., Kim J.H. High-performance N-doped MWCNT/GO/cellulose hybrid composites for supercapacitor electrodes. RSC Adv. 2017;7:49799–49809. doi: 10.1039/C7RA08896E. DOI

Qin X., Zhang H., Wang Z., Jin Y. Magnetic chitosan/graphene oxide composite loaded with novel photosensitizer for enhanced photodynamic therapy. RSC Adv. 2018;8:10376–10388. doi: 10.1039/C8RA00747K. PubMed DOI PMC

Kondo T., Kasai W., Brown R.M. Formation of nematic ordered cellulose and chitin. Cellulose. 2004;11:463–474. doi: 10.1023/B:CELL.0000046413.91309.55. DOI

Danev R., Yanagisawa H., Kikkawa M. Cryo-Electron Microscopy Methodology: Current Aspects and Future Directions. Trends Biochem. Sci. 2019;44:837–848. doi: 10.1016/j.tibs.2019.04.008. PubMed DOI

Frank J. Story in a sample-the potential (and limitations) of cryo-electron microscopy applied to molecular machines. Biopolymers. 2013;99:832–836. doi: 10.1002/bip.22274. PubMed DOI PMC

Majoinen J., Haataja J.S., Appelhans D., Lederer A., Olszewska A., Seitsonen J., Aseyev V., Kontturi E., Rosilo H., Österberg M., et al. Supracolloidal Multivalent Interactions and Wrapping of Dendronized Glycopolymers on Native Cellulose Nanocrystals. J. Am. Chem. Soc. 2014;136:866–869. doi: 10.1021/ja411401r. PubMed DOI

Kaushik M., Basu K., Benoit C., Cirtiu C.M., Vali H., Moores A. Cellulose Nanocrystals as Chiral Inducers: Enantioselective Catalysis and Transmission Electron Microscopy 3D Characterization. J. Am. Chem. Soc. 2015;137:6124–6127. doi: 10.1021/jacs.5b02034. PubMed DOI

Pennycook S.J., Lupini A.R., Varela M., Borisevich A., Peng Y., Oxley M.P., Van Benthem K., Chisholm M.F. Scanning Microscopy for Nanotechnology: Techniques and Applications. Springer New York; New York, NY, USA: 2007. Scanning transmission electron microscopy for nanostructure characterization.

Nellist P.D. Springer Handbooks. Springer; Berlin/Heidelberg, Germany: 2019. pp. 49–99.

Ponce A., Mejía-Rosales S., José-Yacamán M. Scanning transmission electron microscopy methods for the analysis of nanoparticles. Methods Mol. Biol. 2012;906:453–471. PubMed

Rodríguez-Argüelles M.C., Sieiro C., Cao R., Nasi L. Chitosan and silver nanoparticles as pudding with raisins with antimicrobial properties. J. Colloid Interface Sci. 2011;364:80–84. doi: 10.1016/j.jcis.2011.08.006. PubMed DOI

Teodoro K.B.R., Migliorini F.L., Facure M.H.M., Correa D.S. Conductive electrospun nanofibers containing cellulose nanowhiskers and reduced graphene oxide for the electrochemical detection of mercury(II) Carbohydr. Polym. 2019;207:747–754. doi: 10.1016/j.carbpol.2018.12.022. PubMed DOI

Liu K., Nasrallah J., Chen L., Huang L., Ni Y. Preparation of CNC-dispersed Fe3O4 nanoparticles and their application in conductive paper. Carbohydr. Polym. 2015;126:175–178. doi: 10.1016/j.carbpol.2015.03.009. PubMed DOI

Karakus S., Ilgar M., Kahyaoglu I.M., Kilislioglu A. Influence of ultrasound irradiation on the intrinsic viscosity of guar gum–PEG/rosin glycerol ester nanoparticles. Int. J. Biol. Macromol. 2019;141:1118–1127. doi: 10.1016/j.ijbiomac.2019.08.254. PubMed DOI

Motahharifar N., Nasrollahzadeh M., Taheri-Kafrani A., Varma R.S., Shokouhimehr M. Magnetic chitosan-copper nanocomposite: A plant assembled catalyst for the synthesis of amino- and N-sulfonyl tetrazoles in eco-friendly media. Carbohydr. Polym. 2020;232:115819. doi: 10.1016/j.carbpol.2019.115819. PubMed DOI

Torres-Martínez N.E., Garza-Navarro M.A., García-Gutiérrez D., González-González V.A., Torres-Castro A., Ortiz-Méndez U. Hybrid nanostructured materials with tunable magnetic characteristics. J. Nanoparticle Res. 2014;16:1–12. doi: 10.1007/s11051-014-2759-6. DOI

Teixeira ED M., Lotti C., Corrêa A.C., Teodoro K.B., Marconcini J.M., Mattoso L.H. Thermoplastic corn starch reinforced with cotton cellulose nanofibers. J. Appl. Polym. Sci. 2011;120:2428–2433. doi: 10.1002/app.33447. DOI

Omerzu A., Saric I., Piltaver I.K., Petravic M., Kapun T., Zule J., Stifter S., Salamon K. Prevention of spontaneous combustion of cellulose with a thin protective Al2O3 coating formed by atomic layer deposition. Surf. Coat. Technol. 2018;333:81–86. doi: 10.1016/j.surfcoat.2017.10.067. DOI

Song S., Zhao Y., Yuan X., Zhang J. β-Chitin nanofiber hydrogel as a scaffold to in situ fabricate monodispersed ultra-small silver nanoparticles. Colloids Surf. A Physicochem. Eng. Asp. 2019;574:36–43. doi: 10.1016/j.colsurfa.2019.04.047. DOI

Liu K., Liang H., Nasrallah J., Chen L., Huang L., Ni Y. Preparation of the CNC/Ag/beeswax composites for enhancing antibacterial and water resistance properties of paper. Carbohydr. Polym. 2016;142:183–188. doi: 10.1016/j.carbpol.2016.01.044. PubMed DOI

Sosiati H., Wijayanti D.A., Triyana K., Kamiel B. Morphology and crystallinity of sisal nanocellulose after sonication. AIP Conf. Proc. 2017;1755:20029.

Gupta K., Kaushik A., Tikoo K.B., Kumar V., Singhal S. Enhanced catalytic activity of composites of NiFe2O4 and nano cellulose derived from waste biomass for the mitigation of organic pollutants. Arab. J. Chem. 2017;13:783–798. doi: 10.1016/j.arabjc.2017.07.016. DOI

Celebi H., Kurt A. Effects of processing on the properties of chitosan/cellulose nanocrystal films. Carbohydr. Polym. 2015;133:284–293. doi: 10.1016/j.carbpol.2015.07.007. PubMed DOI

Guirguis O., Abdelzaher N., El-Bassyouni G., Moselhey M. Structural, Thermal and Optical Modifications of Chitosan due to UV-Ozone Irradiation. Egypt. J. Chem. 2018;61:350–360. doi: 10.21608/ejchem.2018.2904.1241. DOI

Anandan M., Gurumallesh Prabu H. Dodonaea viscosa Leaf Extract Assisted Synthesis of Gold Nanoparticles: Characterization and Cytotoxicity against A549 NSCLC Cancer Cells. J. Inorg. Organomet. Polym. Mater. 2018;28:932–941. doi: 10.1007/s10904-018-0799-6. DOI

Yulizar Y., Utari T., Ariyanta H.A., Maulina D. Green Method for Synthesis of Gold Nanoparticles Using Polyscias scutellaria Leaf Extract under UV Light and Their Catalytic Activity to Reduce Methylene Blue. J. Nanomater. 2017;2017:1–6. doi: 10.1155/2017/3079636. DOI

Kiruba Daniel S.C.G., Vinothini G., Subramanian N., Nehru K., Sivakumar M. Biosynthesis of Cu, ZVI, and Ag nanoparticles using Dodonaea viscosa extract for antibacterial activity against human pathogens. J. Nanoparticle Res. 2013;15:1319. doi: 10.1007/s11051-012-1319-1. DOI

Guidelli E.J., Ramos A.P., Zaniquelli M.E.D., Baffa O. Green synthesis of colloidal silver nanoparticles using natural rubber latex extracted from Hevea brasiliensis. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2011;82:140–145. doi: 10.1016/j.saa.2011.07.024. PubMed DOI

Vanamudan A., Sudhakar P.P. Biopolymer capped silver nanoparticles with potential for multifaceted applications. Int. J. Biol. Macromol. 2016;86:262–268. doi: 10.1016/j.ijbiomac.2016.01.056. PubMed DOI

Karoutsos V. Scanning probe microscopy: Instrumentation and applications on thin films and magnetic multilayers. J. Nanosci. Nanotechnol. 2009;9:6783–6798. doi: 10.1166/jnn.2009.1474. PubMed DOI

Huey B.D., Luria J., Bonnell D.A. Springer Handbooks. Springer; Berlin/Heidelberg, Germany: 2019. pp. 1239–1277.

Wallace A.F. Scanning Probe Microscopy, Analytical Geomicrobiology. Cambridge University Press; Cambridge, UK: 2019.

Raigoza A.F., Dugger J.W., Webb L.J. Review: Recent Advances and Current Challenges in Scanning Probe Microscopy of Biomolecular Surfaces and Interfaces. ACS Appl. Mater. Interfaces. 2013;5:9249–9261. doi: 10.1021/am4018048. PubMed DOI

Cohen S.H., Bray M.T., Lightbody M.L. Atomic Force Microscopy/Scanning Tunneling Microscopy. Springer; Boston, MA, USA: 1994.

Binnig G., Quate C.F., Gerber C. Atomic Force Microscope. Phys. Rev. Lett. 1986;56:930–933. doi: 10.1103/PhysRevLett.56.930. PubMed DOI

Hansma P.K., Elings V.B., Marti O., Bracker C.E. Scanning tunneling microscopy and atomic force microscopy: Application to biology and technology. Science. 1988;242:209–216. doi: 10.1126/science.3051380. PubMed DOI

Santos N.C., Castanho M.A.R.B. An overview of the biophysical applications of atomic force microscopy. Biophys. Chem. 2004;107:133–149. doi: 10.1016/j.bpc.2003.09.001. PubMed DOI

Giessibl F.J. Advances in atomic force microscopy. Rev. Mod. Phys. 2003;75:949–983. doi: 10.1103/RevModPhys.75.949. DOI

Ando T., Uchihashi T., Kodera N., Yamamoto D., Miyagi A., Taniguchi M., Yamashita H. High-speed AFM and nano-visualization of biomolecular processes. Pflüg. Arch. Eur. J. Physiol. 2008;456:211–225. doi: 10.1007/s00424-007-0406-0. PubMed DOI

Alsteens D., Dupres V., Dague E., Verbelen C., André G., Francius G., Dufrêne Y.F. Imaging Chemical Groups and Molecular Recognition Sites on Live Cells Using AFM. Springer; Berlin/Heidelberg, Germany: 2009.

Barish J.A., Goddard J.M. Topographical and chemical characterization of polymer surfaces modified by physical and chemical processes. J. Appl. Polym. Sci. 2011;120:2863–2871. doi: 10.1002/app.33310. DOI

Nnebe I., Schneider J.W. Characterization of distance-dependent damping in tapping-mode atomic force microscopy force measurements in liquid. Langmuir. 2004;20:3195–3201. doi: 10.1021/la030324b. PubMed DOI

Gunning A.P., Kirby A.R., Ridout M.J., Brownsey G.J., Morris V.J. Investigation of Gellan Networks and Gels by Atomic Force Microscopy. Macromolecules. 1996;29:6791–6796. doi: 10.1021/ma960700h. DOI

Kirby A.R., Gunning A.P., Waldron K.W., Morris V.J., Ng A. Visualization of plant cell walls by atomic force microscopy. Biophys. J. 1996;70:1138–1143. doi: 10.1016/S0006-3495(96)79708-4. PubMed DOI PMC

Hansma H.G., Hoh J.H. Biomolecular Imaging with the Atomic Force Microscope. Ann. Rev. Biophys. Biomol. Struct. 1994;23:115–140. doi: 10.1146/annurev.bb.23.060194.000555. PubMed DOI

Kirby A.R., Gunning A.P., Morris V.J. Imaging polysaccharides by atomic force microscopy. Biopolymers. 1998;38:355–366. doi: 10.1002/(SICI)1097-0282(199603)38:3<355::AID-BIP8>3.0.CO;2-T. PubMed DOI

Patrick Gunning A., Kirby A.R., Morris V.J. Imaging xanthan gum in air by ac “tapping” mode atomic force microscopy. Ultramicroscopy. 1996;63:1–3. doi: 10.1016/0304-3991(96)00032-0. DOI

McIntire T.M., Penner R.M., Brant D.A. Observations of a circular, triple-helical polysaccharide using noncontact atomic force microscopy. Macromolecules. 1995;28:6375–6377. doi: 10.1021/ma00122a056. DOI

Uricanu V.I., Duits M.H.G., Nelissen R.M.F., MLBennink A., Mellema J. Local Structure and Elasticity of Soft Gelatin Gels Studied with Atomic Force Microscopy. Langmuir. 2003;19:8182–8194. doi: 10.1021/la0347004. DOI

Iijima M., Shinozaki M., Hatakeyama T., Takahashi M., Hatakeyama H. AFM studies on gelation mechanism of xanthan gum hydrogels. Carbohydr. Polym. 2007;68:701–707. doi: 10.1016/j.carbpol.2006.08.004. DOI

Kocun M., Grandbois M., Cuccia L.A. Single molecule atomic force microscopy and force spectroscopy of chitosan. Colloids Surf. B Biointerfaces. 2011;82:470–476. doi: 10.1016/j.colsurfb.2010.10.004. PubMed DOI

Maver U., Maver T., Persin Z., Mozetic M., Vesel A., Gaberšček M., Stana-Kleinschek K. Polymer Science. IntechOpen; London, UK: 2013. Polymer Characterization with the Atomic Force Microscope.

Vezenov D.V., Noy A., Ashby P. Chemical force microscopy: Probing chemical origin of interfacial forces and adhesion. J. Adhes. Sci. Technol. 2005;19:313–364. doi: 10.1163/1568561054352702. DOI

Steffens C., Leite F.L., Bueno C.C., Manzoli A., Herrmann P.S.D.P. Atomic Force Microscopy as a Tool Applied to Nano/Biosensors. Sensors. 2012;12:8278–8300. doi: 10.3390/s120608278. PubMed DOI PMC

Ito T., Ibrahim S., Grabowska I. Chemical-force microscopy for materials characterization. TrAC Trends Anal. Chem. 2010;29:225–233. doi: 10.1016/j.trac.2009.12.008. DOI

Arslan B., Ju X., Zhang X., Abu-Lail N.I. Heterogeneity and Specificity of Nanoscale Adhesion Forces Measured between Self-Assembled Monolayers and Lignocellulosic Substrates: A Chemical Force Microscopy Study. Langmuir. 2015;31:10233–10245. doi: 10.1021/acs.langmuir.5b02633. PubMed DOI

Le Troëdec M., Rachini A., Peyratout C., Rossignol S., Max E., Kaftan O., Fery A., Smith A. Influence of chemical treatments on adhesion properties of hemp fibres. J. Colloid Interface Sci. 2011;356:303–310. doi: 10.1016/j.jcis.2010.12.066. PubMed DOI

Boland T., Ratner B.D. Direct measurement of hydrogen bonding in DNA nucleotide bases by atomic force microscopy. Proc. Natl. Acad. Sci. USA. 1995;92:5297–5301. doi: 10.1073/pnas.92.12.5297. PubMed DOI PMC

Lee I., Evans B.R., Foston M., Ragauskas A.J. Silicon cantilever functionalization for cellulose-specific chemical force imaging of switchgrass. Anal. Methods. 2015;7:4541–4545. doi: 10.1039/C5AY00455A. DOI

Passeri D., Angeloni L., Reggente M., Rossi M. Magnetic force microscopy, Magnetic Characterization Techniques for Nanomaterials. Springer; Berlin/Heidelberg, Germany: 2017. pp. 209–259.

Kazakova O., Puttock R., Barton C., Corte-León H., Jaafar M., Neu V., Asenjo A. Frontiers of magnetic force microscopy. J. Appl. Phys. 2019;125:060901. doi: 10.1063/1.5050712. DOI

Torre B., Bertoni G., Fragouli D., Falqui A., Salerno M., Diaspro A., Cingolani R., Athanassiou A. Magnetic force microscopy and energy loss imaging of superparamagnetic iron oxide nanoparticles. Sci. Rep. 2011;1:202. doi: 10.1038/srep00202. PubMed DOI PMC

Passeri D., Dong C., Reggente M., Angeloni L., Barteri M., Scaramuzzo F.A., Angelis F.D., Marinelli F., Antonelli F., Rinaldi F., et al. Magnetic force microscopy: Quantitative issues in biomaterials. Biomatter. 2014;4:e29507. doi: 10.4161/biom.29507. PubMed DOI PMC

Nisticò R. Magnetic materials and water treatments for a sustainable future. Res. Chem. Intermed. 2017;43:6911–6949. doi: 10.1007/s11164-017-3029-x. DOI

Marín T., Montoya P., Arnache O., Pinal R., Calderón J. Development of magnetite nanoparticles/gelatin composite films for triggering drug release by an external magnetic field. Mater. Des. 2018;152:78–87. doi: 10.1016/j.matdes.2018.04.073. DOI

Nisticò R., Franzoso F., Cesano F., Scarano D., Magnacca G., Parolo M.E., Carlos L. Chitosan-Derived Iron Oxide Systems for Magnetically Guided and Efficient Water Purification Processes from Polycyclic Aromatic Hydrocarbons. ACS Sustain. Chem. Eng. 2017;5:793–801.

Cesano F., Fenoglio G., Carlos L., Nisticò R. One-step synthesis of magnetic chitosan polymer composite films. Appl. Surf. Sci. 2015;345:175–181. doi: 10.1016/j.apsusc.2015.03.154. DOI

Lewandowska-Łańcucka J., Staszewska M., Szuwarzyński M., Kępczyński M., Romek M., Tokarz W., Szpak A., Kania G., Nowakowska M. Synthesis and characterization of the superparamagnetic iron oxide nanoparticles modified with cationic chitosan and coated with silica shell. J. Alloys Compd. 2014;586:45–51.

Zasadzinski J.A., Schneir J., Gurley J., Elings V., Hansma P.K. Scanning tunneling microscopy of freeze-fracture replicas of biomembranes. Science. 1988;239:1013–1015. doi: 10.1126/science.3344420. PubMed DOI

Marti O., Ribi H.O., Drake B., Albrecht T.R., Quate C.F., Hansma P.K. Atomic force microscopy of an organic monolayer. Science. 1988;239:50–52. doi: 10.1126/science.3336773. PubMed DOI

Travaglini G., Rohrer H., Amrein M., Gross H. Scanning tunneling microscopy on biological matter. Surf. Sci. 1987;181:380–390. doi: 10.1016/0039-6028(87)90181-6. DOI

Sonnenfeld R., Hansma P.K., Gross H., Stoll E., Travaglini G. Atomic-resolution microscopy in water. Science. 1986;232:211–213. doi: 10.1126/science.232.4747.211. PubMed DOI

Abdel-Kareem O., Abdel-Rahim H., Ezzat I., Essa D.M. Evaluating the use of chitosan coated Ag nano-SeO 2 composite in consolidation of Funeral Shroud from the Egyptian Museum of Cairo. J. Cult. Herit. 2015;16:486–495. doi: 10.1016/j.culher.2014.09.016. DOI

Hameroff S.R., Simić-Krstić J., Kelley M.F., Voelker M.A., He J.D., Dereniak E.L., McCuskey R.S., Schneiker C.W. Scanning tunneling microscopy of biopolymers: Conditions for microtubule stabilization. J. Vac. Sci. Technol. A Vac. Surf. Film. 1989;7:2890–2894. doi: 10.1116/1.576164. DOI

Golovnya R.V., Terenina M.B., Krikunova N.I., Yuryev V.P., Misharina T.A. Formation of Supramolecular Structures of Aroma Compounds with Polysaccharides of Corn Starch Cryotextures. Starch Stärke. 2001;53:269–277. doi: 10.1002/1521-379X(200106)53:6<269::AID-STAR269>3.0.CO;2-3. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...