Microscopic Techniques for the Analysis of Micro and Nanostructures of Biopolymers and Their Derivatives
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
CZ.1.05/2.1.00/19.0386; . CZ.02.1.01/0.0/0.0/16_013/0001821; CZ.02.1.01/0.0/0.0/16_019/0000843; LTAB19007 and BTHA-JC-2019-26 and LTAUSA19091) - TUL internal No.: 18309/136.
Ministry of Education, Youth and Sports of the Czech Republic and the European Union - European Structural and Investment Funds in the frames of Operational Program Research, Development and Education.
PubMed
32120773
PubMed Central
PMC7182842
DOI
10.3390/polym12030512
PII: polym12030512
Knihovny.cz E-zdroje
- Klíčová slova
- atomic force microscopy, biopolymers, chemical composition, filler dispersion, microstructures, nanostructures, optical microscopy, scanning electron microscopy, surface morphology, transmission electron microscopy,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Natural biopolymers, a class of materials extracted from renewable sources, is garnering interest due to growing concerns over environmental safety; biopolymers have the advantage of biocompatibility and biodegradability, an imperative requirement. The synthesis of nanoparticles and nanofibers from biopolymers provides a green platform relative to the conventional methods that use hazardous chemicals. However, it is challenging to characterize these nanoparticles and fibers due to the variation in size, shape, and morphology. In order to evaluate these properties, microscopic techniques such as optical microscopy, atomic force microscopy (AFM), and transmission electron microscopy (TEM) are essential. With the advent of new biopolymer systems, it is necessary to obtain insights into the fundamental structures of these systems to determine their structural, physical, and morphological properties, which play a vital role in defining their performance and applications. Microscopic techniques perform a decisive role in revealing intricate details, which assists in the appraisal of microstructure, surface morphology, chemical composition, and interfacial properties. This review highlights the significance of various microscopic techniques incorporating the literature details that help characterize biopolymers and their derivatives.
Zobrazit více v PubMed
Bassas-Galià M. Consequences of Microbial Interactions with Hydrocarbons, Oils, and Lipids: Production of Fuels and Chemicals. Springer International Publishing; Cham, Switzerland: 2017. Rediscovering Biopolymers; pp. 529–550.
Hernández N., Williams R.C., Cochran E.W. The battle for the “green” polymer. Different approaches for biopolymer synthesis: Bioadvantaged vs. bioreplacement. Org. Biomol. Chem. 2014;12:2834–2849. doi: 10.1039/C3OB42339E. PubMed DOI
Cacciotti I., Mori S., Cherubini V., Nanni F. Eco-sustainable systems based on poly(lactic acid), diatomite and coffee grounds extract for food packaging. Int. J. Biol. Macromol. 2018;112:567–575. doi: 10.1016/j.ijbiomac.2018.02.018. PubMed DOI
Garavand F., Rouhi M., Razavi S.H., Cacciotti I., Mohammadi R. Improving the integrity of natural biopolymer films used in food packaging by crosslinking approach: A review. Int. J. Biol. Macromol. 2017;104:687–707. doi: 10.1016/j.ijbiomac.2017.06.093. PubMed DOI
Venkateshaiah A., Cheong J.Y., Habel C., Wacławek S., Lederer T., Černík M., Kim I.-D., Padil V.V.T., Agarwal S. Tree Gum–Graphene Oxide Nanocomposite Films as Gas Barriers. ACS Appl. Nano Mater. 2020;3:633–640. doi: 10.1021/acsanm.9b02166. DOI
Babu R.P., O’Connor K., Seeram R. Current progress on bio-based polymers and their future trends. Prog. Biomater. 2013;2:8. doi: 10.1186/2194-0517-2-8. PubMed DOI PMC
He M., Lu A., Zhang L. Advances in Cellulose Hydrophobicity Improvement. American Chemical Society; Washington, DC, USA: 2014.
Sajid M.A., Shahzad S.A., Hussain F., Skene W.G., Khan Z.A., Yar M. Synthetic modifications of chitin and chitosan as multipurpose biopolymers: A review. Synth. Commun. 2018;48:1893–1908. doi: 10.1080/00397911.2018.1465096. DOI
Abraham A., Soloman P.A., Rejini V.O. Preparation of Chitosan-Polyvinyl Alcohol Blends and Studies on Thermal and Mechanical Properties. Procedia Technol. 2016;24:741–748. doi: 10.1016/j.protcy.2016.05.206. DOI
Raj A., Prashantha K., Samuel C. Compatibility in biobased poly(L-lactide)/polyamide binary blends: From melt-state interfacial tensions to (thermo)mechanical properties. J. Appl. Polym. Sci. 2020;137:48440. doi: 10.1002/app.48440. DOI
Resano-Goizueta I., Ashokan B.K., Trezza T.A., Padua G.W. Effect of Nano-Fillers on Tensile Properties of Biopolymer Films. J. Polym. Environ. 2018;26:3817–3823. doi: 10.1007/s10924-018-1260-1. DOI
Agusnar H., Wirjosentono B., Rihayat T. Improving the quality of biopolymer (poly lactic acid) with the addition of bentonite as filler. IOP Conf. Ser. Mater. Sci. Eng. 2017;222:012008.
Mekonnen T., Mussone P., Khalil H., Bressler D. Progress in bio-based plastics and plasticizing modifications. J. Mater. Chem. A. 2013;1:13379–13398. doi: 10.1039/c3ta12555f. DOI
Dufresne A., Thomas S., Pothen L.A. Biopolymer Nanocomposites. John Wiley & Sons, Inc.; Hoboken, NJ, USA: 2013.
Okamoto M., John B. Synthetic biopolymer nanocomposites for tissue engineering scaffolds. Prog. Polym. Sci. 2013;38:1487–1503. doi: 10.1016/j.progpolymsci.2013.06.001. DOI
Jacob J., Haponiuk J.T., Thomas S., Gopi S. Biopolymer based nanomaterials in drug delivery systems: A review. Mater. Today Chem. 2018;9:43–55. doi: 10.1016/j.mtchem.2018.05.002. DOI
Joye I.J., McClements D.J. Biopolymer-based nanoparticles and microparticles: Fabrication, characterization, and application. Curr. Opin. Colloid Interface Sci. 2014;19:417–427. doi: 10.1016/j.cocis.2014.07.002. DOI
Gupta B., Tummalapalli M., Deopura B.L., Alam M.S. Preparation and characterization of in-situ crosslinked pectin–gelatin hydrogels. Carbohydr. Polym. 2014;106:312–318. doi: 10.1016/j.carbpol.2014.02.019. PubMed DOI
Padil V.V.T., Senan C., Wacſawek S., Ŀerník M. Electrospun fibers based on Arabic, karaya and kondagogu gums. Int. J. Biol. Macromol. 2016;91:299–309. doi: 10.1016/j.ijbiomac.2016.05.064. PubMed DOI
Silvestri D., Mikšíček J., Wacławek S., Torres-Mendieta R., Padil V.V., Černík M. Production of electrospun nanofibers based on graphene oxide/gum Arabic. Int. J. Biol. Macromol. 2019;124:396–402. doi: 10.1016/j.ijbiomac.2018.11.243. PubMed DOI
Vinod V.T.P., Saravanan P., Sreedhar B., Devi D.K., Sashidhar R.B. A facile synthesis and characterization of Ag, Au and Pt nanoparticles using a natural hydrocolloid gum kondagogu (Cochlospermum gossypium) Colloids Surf. B Biointerfaces. 2011;83:291–298. doi: 10.1016/j.colsurfb.2010.11.035. PubMed DOI
Thekkae Padil V.V., Černík M. Green synthesis of copper oxide nanoparticles using gum karaya as a biotemplate and their antibacterial application. Int. J. Nanomed. 2013;8:889–898. PubMed PMC
Silvestri D., Wacławek S., Sobel B., Torres-Mendieta R., Novotný V., Nguyen N.H., Ševců A., Padil V.V., Müllerová J., Stuchlík M., et al. A poly(3-hydroxybutyrate)–chitosan polymer conjugate for the synthesis of safer gold nanoparticles and their applications. Green Chem. 2018;20:4975–4982. doi: 10.1039/C8GC02495B. DOI
Venkateshaiah A., Silvestri D., Ramakrishnan R.K., Wacławek S., Padil V.V., Černík M., Varma R.S. Gum kondagoagu/reduced graphene oxide framed platinum nanoparticles and their catalytic role. Molecules. 2019;24:3643. doi: 10.3390/molecules24203643. PubMed DOI PMC
Padil V.V.T., Wacławek S., Černík M., Varma R.S. Tree gum-based renewable materials: Sustainable applications in nanotechnology, biomedical and environmental fields. Biotechnol. Adv. 2018;36:1984–2016. doi: 10.1016/j.biotechadv.2018.08.008. PubMed DOI PMC
Mülhaupt R. Green Polymer Chemistry and Bio-based Plastics: Dreams and Reality. Macromol. Chem. Phys. 2013;214:159–174. doi: 10.1002/macp.201200439. DOI
Hu B. Biopolymer-Based Lightweight Materials for Packaging Applications. ACS Symposium Series, Am. Chem. Soc. 2014;1175:239–255.
Yadav P., Yadav H., Shah V.G., Shah G., Dhaka G. Biomedical biopolymers, their origin and evolution in biomedical sciences: A systematic review. J. Clin. Diagn. Res. 2015;9:21–25. doi: 10.7860/JCDR/2015/13907.6565. PubMed DOI PMC
Cao Y., Wu J., Zhang J., Li H., Zhang Y., He J. Room temperature ionic liquids (RTILs): A new and versatile platform for cellulose processing and derivatization. Chem. Eng. J. 2009;147:13–21. doi: 10.1016/j.cej.2008.11.011. DOI
Rajinipriya M., Nagalakshmaiah M., Astruc J., Robert M., Elkoun S. Single stage purification of flax, hemp, and milkweed stem and their physical and morphological properties. Int. J. Polym. Anal. Charact. 2018;23:78–88. doi: 10.1080/1023666X.2017.1387688. DOI
Heinze T., El Seoud O.A., Koschella A. Production and Characteristics of Cellulose from Different Sources. Springer; Cham, Switzerland: 2018.
Gellerstedt G. Softwood kraft lignin: Raw material for the future. Ind. Crops Prod. 2015;77:845–854. doi: 10.1016/j.indcrop.2015.09.040. DOI
Iravani S., Varma R.S. Greener synthesis of lignin nanoparticles and their applications. Green Chem. 2020;22:612–636.
Agrawal A., Kaushik N., Biswas S. Derivatives and Applications of Lignin: An Insight. Scitech J. 2014;1:30–36.
Bertoft E. Understanding Starch Structure: Recent Progress. Agronomy. 2017;7:56. doi: 10.3390/agronomy7030056. DOI
Ogunsona E., Ojogbo E., Mekonnen T. Advanced material applications of starch and its derivatives. Eur. Polym. J. 2018;108:570–581. doi: 10.1016/j.eurpolymj.2018.09.039. DOI
Stamov D.R., Pompe T. Structure and function of ECM-inspired composite collagen type i scaffolds. Soft Matter. 2012;8:10200–10212. doi: 10.1039/c2sm26134k. DOI
Sionkowska A., Skrzyński S., Śmiechowski K., Kołodziejczak A. The review of versatile application of collagen. Polym. Adv. Technol. 2017;28:4–9. doi: 10.1002/pat.3842. DOI
Silvestri D., Wacławek S., KRamakrishnan R., Venkateshaiah A., Krawczyk K., Padil V.V., Sobel B., Černík M. The Use of a Biopolymer Conjugate for an Eco-Friendly One-Pot Synthesis of Palladium-Platinum Alloys. Polymers Basel. 2019;11:1948. doi: 10.3390/polym11121948. PubMed DOI PMC
Crini G. Historical review on chitin and chitosan biopolymers. Environ. Chem. Lett. 2019;17:1623–1643. doi: 10.1007/s10311-019-00901-0. DOI
Morin-Crini N., Lichtfouse E., Torri G., Crini G. Sustainable Agriculture Reviews. Springer; Cham, Switzerland: 2019. Fundamentals and Applications of Chitosan.
Zhao D., Yu S., Sun B., Gao S., Guo S., Zhao K. Biomedical applications of chitosan and its derivative nanoparticles. Polymers Basel. 2018;10:462. doi: 10.3390/polym10040462. PubMed DOI PMC
Shariatinia Z. Pharmaceutical applications of chitosan. Adv. Colloid Interface Sci. 2019;263:131–194. doi: 10.1016/j.cis.2018.11.008. PubMed DOI
Vahedikia N., Garavand F., Tajeddin B., Cacciotti I., Jafari S.M., Omidi T., Zahedi Z. Biodegradable zein film composites reinforced with chitosan nanoparticles and cinnamon essential oil: Physical, mechanical, structural and antimicrobial attributes. Colloids Surf. B Biointerfaces. 2019;177:25–32. doi: 10.1016/j.colsurfb.2019.01.045. PubMed DOI
Cacciotti I., Lombardelli C., Benucci I., Esti M. Clay/chitosan biocomposite systems as novel green carriers for covalent immobilization of food enzymes. J. Mater. Res. Technol. 2019;8:3644–3652. doi: 10.1016/j.jmrt.2019.06.002. DOI
Li Z., Yang J., Loh X.J. Polyhydroxyalkanoates: Opening doors for a sustainable future. NPG Asia Mater. 2016;8:e265. doi: 10.1038/am.2016.48. DOI
Winnacker M. Polyhydroxyalkanoates: Recent Advances in Their Synthesis and Applications. Eur. J. Lipid Sci. Technol. 2019;121:1900101. doi: 10.1002/ejlt.201900101. DOI
Możejko-Ciesielska J., Kiewisz R. Bacterial polyhydroxyalkanoates: Still fabulous? Microbiol. Res. 2016;192:271–282. doi: 10.1016/j.micres.2016.07.010. PubMed DOI
Balaji S., Gopi K., Muthuvelan B. A review on production of poly β hydroxybutyrates from cyanobacteria for the production of bio plastics. Algal Res. 2013;2:278–285. doi: 10.1016/j.algal.2013.03.002. DOI
Ray S., Kalia V.C. Biomedical Applications of Polyhydroxyalkanoates. Indian J. Microbiol. 2017;57:261–269. doi: 10.1007/s12088-017-0651-7. PubMed DOI PMC
Yeo J.C.C., Muiruri J.K., Thitsartarn W., Li Z., He C. Recent advances in the development of biodegradable PHB-based toughening materials: Approaches, advantages and applications. Mater. Sci. Eng. C. 2018;92:1092–1116. doi: 10.1016/j.msec.2017.11.006. PubMed DOI
Bianco A., Calderone M., Cacciotti I. Electrospun PHBV/PEO co-solution blends: Microstructure, thermal and mechanical properties. Mater. Sci. Eng. C. 2013;33:1067–1077. doi: 10.1016/j.msec.2012.11.030. PubMed DOI
Cacciotti I., Calderone M., Bianco A. Tailoring the properties of electrospun PHBV mats: Co-solution blending and selective removal of PEO. Eur. Polym. J. 2013;49:3210–3222. doi: 10.1016/j.eurpolymj.2013.06.024. DOI
Mehta R., Kumar V., Bhunia H., Upadhyay S.N. Synthesis of Poly(Lactic Acid): A Review. J. Macromol. Sci. Part C Polym. Rev. 2005;45:325–349. doi: 10.1080/15321790500304148. DOI
Singhvi M.S., Zinjarde S.S., Gokhale D.V. Polylactic acid: Synthesis and biomedical applications. J. Appl. Microbiol. 2019;127:1612–1626. doi: 10.1111/jam.14290. PubMed DOI
Hu Y., Daoud W., Cheuk K., Lin C. Newly Developed Techniques on Polycondensation, Ring-Opening Polymerization and Polymer Modification: Focus on Poly(Lactic Acid) Materials Basel. 2016;9:133. doi: 10.3390/ma9030133. PubMed DOI PMC
Chen Y., Geever L.M., Killion J.A., Lyons J.G., Higginbotham C.L., Devine D.M. Review of Multifarious Applications of Poly (Lactic Acid) Polym. Plast. Technol. Eng. 2016;55:1057–1075. doi: 10.1080/03602559.2015.1132465. DOI
Farah S., Anderson D.G., Langer R. Physical and mechanical properties of PLA, and their functions in widespread applications—A comprehensive review. Adv. Drug Deliv. Rev. 2016;107:367–392. doi: 10.1016/j.addr.2016.06.012. PubMed DOI
Sisson A.L., Ekinci D., Lendlein A. The contemporary role of ε-caprolactone chemistry to create advanced polymer architectures. Polymer. 2013;54:4333–4350. doi: 10.1016/j.polymer.2013.04.045. DOI
Fuoco T., Finne-Wistrand A. Enhancing the Properties of Poly(ε-caprolactone) by Simple and Effective Random Copolymerization of ε-Caprolactone with p -Dioxanone. Biomacromolecules. 2019;20:3171–3180. doi: 10.1021/acs.biomac.9b00745. PubMed DOI
Malikmammadov E., Tanir T.E., Kiziltay A., Hasirci V., Hasirci N. PCL and PCL-based materials in biomedical applications. J. Biomater. Sci. Polym. Ed. 2018;29:863–893. doi: 10.1080/09205063.2017.1394711. PubMed DOI
Espinoza S.M., Patil H.I., San Martin Martinez E., Casañas Pimentel R., Ige P.P. Poly-ε-caprolactone (PCL), a promising polymer for pharmaceutical and biomedical applications: Focus on nanomedicine in cancer. Int. J. Polym. Mater. Polym. Biomater. 2020;69:85–126. doi: 10.1080/00914037.2018.1539990. DOI
Bianco A., Di Federico E., Cacciotti I. Electrospun poly(ε-caprolactone)-based composites using synthesized β-tricalcium phosphate. Polym. Adv. Technol. 2011;22:1832–1841. doi: 10.1002/pat.1680. DOI
Michler G.H. Overview of Techniques. Springer; Berlin/Heidelberg, Germany: 2008.
Malheiro V.N., Caridade S.G., Alves N.M., Mano J.F. New poly(ε-caprolactone)/chitosan blend fibers for tissue engineering applications. Acta Biomater. 2010;6:418–428. doi: 10.1016/j.actbio.2009.07.012. PubMed DOI
Khalid S., Yu L., Meng L., Liu H., Ali A., Chen L. Poly(lactic acid)/starch composites: Effect of microstructure and morphology of starch granules on performance. J. Appl. Polym. Sci. 2017;134:45504. doi: 10.1002/app.45504. DOI
Govindaraju I., Pallen S., Umashankar S., Mal S.S., Kaniyala Melanthota S., Mahato D.R., Zhuo G.Y., Mahato K.K., Mazumder N. Microscopic and spectroscopic characterization of rice and corn starch. Microsc. Res. Tech. 2020:1–9. doi: 10.1002/jemt.23437. PubMed DOI
Vigneshwaran N., Ammayappan L., Huang Q. Effect of Gum arabic on distribution behavior of nanocellulose fillers in starch film. Appl. Nanosci. 2011;1:137–142. doi: 10.1007/s13204-011-0020-5. DOI
Zhang Y., Xu Y., Xi X., Shrestha S., Jiang P., Zhang W., Gao C. Amino acid-modified chitosan nanoparticles for Cu2+ chelation to suppress CuO nanoparticle cytotoxicity. J. Mater. Chem. B. 2017;5:3521–3530. doi: 10.1039/C7TB00344G. PubMed DOI
Majoinen J., Kontturi E., Ikkala O., Gray D.G. SEM imaging of chiral nematic films cast from cellulose nanocrystal suspensions. Cellulose. 2012;19:1599–1605. doi: 10.1007/s10570-012-9733-1. DOI
Rizzieri R., Baker F.S., Donald A.M. A study of the large strain deformation and failure behaviour of mixed biopolymer gels via in situ ESEM. Polymer. 2003;44:5927–5935. doi: 10.1016/S0032-3861(03)00543-3. DOI
Karhale S., Bhenki C., Rashinkar G., Helavi V. Covalently anchored sulfamic acid on cellulose as heterogeneous solid acid catalyst for the synthesis of structurally symmetrical and unsymmetrical 1,4-dihydropyridine derivatives. New J. Chem. 2017;41:5133–5141. doi: 10.1039/C7NJ00685C. DOI
Shankar S., Oun A.A., Rhim J.W. Preparation of antimicrobial hybrid nano-materials using regenerated cellulose and metallic nanoparticles. Int. J. Biol. Macromol. 2018;107:17–27. doi: 10.1016/j.ijbiomac.2017.08.129. PubMed DOI
Gopiraman M., Deng D., Saravanamoorthy S., Chung I.M., Kim I.S. Gold, silver and nickel nanoparticle anchored cellulose nanofiber composites as highly active catalysts for the rapid and selective reduction of nitrophenols in water. RSC Adv. 2018;8:3014–3023. doi: 10.1039/C7RA10489H. PubMed DOI PMC
Pakravan M., Heuzey M.-C., Ajji A. Core–Shell Structured PEO-Chitosan Nanofibers by Coaxial Electrospinning. Biomacromolecules. 2012;13:412–421. doi: 10.1021/bm201444v. PubMed DOI
Camesano T.A., Wilkinson K.J. Single Molecule Study of Xanthan Conformation Using Atomic Force Microscopy. Biomacromolecules. 2001;2:1184–1191. PubMed
Teckentrup J., Al-Hammood O., Steffens T., Bednarz H., Walhorn V., Niehaus K., Anselmetti D. Comparative analysis of different xanthan samples by atomic force microscopy. J. Biotechnol. 2017;257:2–8. doi: 10.1016/j.jbiotec.2016.11.032. PubMed DOI
Moffat J., Morris V.J., Al-Assaf S., Gunning A.P. Visualisation of xanthan conformation by atomic force microscopy. Carbohydr. Polym. 2016;148:380–389. doi: 10.1016/j.carbpol.2016.04.078. PubMed DOI PMC
Lahiji R.R., Xu X., Reifenberger R., Raman A., Rudie A., Moon R.J. Atomic Force Microscopy Characterization of Cellulose Nanocrystals. Langmuir. 2010;26:4480–4488. doi: 10.1021/la903111j. PubMed DOI
Robert R.W., Raman J.M.A. Mechanical properties of cellulose nanomaterials studied by contact resonance atomic force microscopy. Cellulose. 2016:23.
Nagalakshmaiah M., kissi NEl Mortha G., Dufresne A. Structural investigation of cellulose nanocrystals extracted from chili leftover and their reinforcement in cariflex-IR rubber latex. Carbohydr. Polym. 2016;136:945–954. doi: 10.1016/j.carbpol.2015.09.096. PubMed DOI
Haugstad K.E., Håti A.G., Nordgård C.T., Adl P.S., Maurstad G., Sletmoen M., Draget K.I., Dias R.S., Stokke B.T. Direct Determination of Chitosan–Mucin Interactions Using a Single-Molecule Strategy: Comparison to Alginate–Mucin Interactions. Polymers Basel. 2015;7:161–185. doi: 10.3390/polym7020161. DOI
Jaiswal M.K., Banerjee R., Pradhan P., Bahadur D. Thermal behavior of magnetically modalized poly(N-isopropylacrylamide)-chitosan based nanohydrogel. Colloids Surf. B Biointerfaces. 2010;81:185–194. doi: 10.1016/j.colsurfb.2010.07.009. PubMed DOI
Gunning A.P., McMaster T.J., Morris V.J. Scanning tunnelling microscopy of xanthan gum. Carbohydr. Polym. 1993;21:47–51. doi: 10.1016/0144-8617(93)90116-L. DOI
Nakajima K., Ikehara T., Nishi T. Observation of gellan gum by scanning tunneling microscopy. Carbohydr. Polym. 1996;30:77–81. doi: 10.1016/S0144-8617(96)00084-7. DOI
Zhang Y.Z. Size and arrangement of elementary fibrils in crystalline cellulose studied with scanning tunneling microscopy. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. 1997;15:1502. doi: 10.1116/1.589483. DOI
Abdullah O.G., Aziz B.K., Aziz S.B., Suhail M.H. Surfaces modification of methylcellulose: Cobalt nitrate polymer electrolyte by sulfurated hydrogen gas treatment. J. Appl. Polym. Sci. 2018;135:46676. doi: 10.1002/app.46676. DOI
Weisenburger S., Sandoghdar V. Light microscopy: An ongoing contemporary revolution. Contemp. Phys. 2015;56:123–143. doi: 10.1080/00107514.2015.1026557. DOI
Chen N., Rehman S., Sheppard C.J.R. Recent advances in optical microscopy methods for subcellular imaging of thick biological tissues. Crit. Rev. Biomed. Eng. 2013;41:393–403. doi: 10.1615/CritRevBiomedEng.2014010461. PubMed DOI
Agocs E., Attota R.K. Enhancing optical microscopy illumination to enable quantitative imaging. Sci. Rep. 2018;8:1–9. doi: 10.1038/s41598-018-22561-w. PubMed DOI PMC
Coceancigh H., Higgins D.A., Ito T. Optical Microscopic Techniques for Synthetic Polymer Characterization. Anal. Chem. 2019;91:405–424. doi: 10.1021/acs.analchem.8b04694. PubMed DOI
Ma Y., Wang X., Liu H., Wei L., Xiao L. Recent advances in optical microscopic methods for single-particle tracking in biological samples. Anal. Bioanal. Chem. 2019;411:4445–4463. doi: 10.1007/s00216-019-01638-z. PubMed DOI
Murphy D.B., Davidson M.W. Fundamentals of Light Microscopy and Electronic Imaging. 2nd ed. John Wiley and Sons; Hoboken, NJ, USA: 2012.
Vielreicher M., Schürmann S., Detsch R., Schmidt M.A., Buttgereit A., Boccaccini A., Friedrich O. Taking a deep look: Modern microscopy technologies to optimize the design and functionality of biocompatible scaffolds for tissue engineering in regenerative medicine. J. R. Soc. Interface. 2013;10:20130263. doi: 10.1098/rsif.2013.0263. PubMed DOI PMC
Hubbe M.A., Chandra R.P., Dogu D., Van Velzen S.T.J. Analytical Staining of Cellulosic Materials: A Review. BioRes. 2019;14:7387–7464.
Daemen S., van Zandvoort M.A.M.J., Parekh S.H., Hesselink M.K.C. Microscopy tools for the investigation of intracellular lipid storage and dynamics. Mol. Metab. 2016;5:153–163. doi: 10.1016/j.molmet.2015.12.005. PubMed DOI PMC
Westphal V., Hell S.W. Nanoscale resolution in the focal plane of an optical microscope. Phys. Rev. Lett. 2005;94:143903. doi: 10.1103/PhysRevLett.94.143903. PubMed DOI
Hayes B.S., Gammon L.M. Optical Microscopy of Fiber Reinforced Composites. ASM International; Materials Park, OH, USA: 2010.
Vanderghem C., Jacquet N., Danthine S., Blecker C., Paquot M. Effect of Physicochemical Characteristics of Cellulosic Substrates on Enzymatic Hydrolysis by Means of a Multi-Stage Process for Cellobiose Production. Appl. Biochem. Biotechnol. 2012;166:1423–1432. doi: 10.1007/s12010-011-9535-1. PubMed DOI
Gutiérrez T.J., Pérez E., Guzmán R., Tapia M.S., Famá L. Physicochemical and Functional Properties of Native and Modified by Crosslinking, Dark-Cush-Cush Yam (Dioscorea Trifida) and Cassava (Manihot Esculenta) Starch. J. Polym. Biopolym. Phys. Chem. 2014;2:1–5.
Gao C., Bao X., Yu L., Liu H., Simon G.P., Chen L., Liu X. Thermal properties and miscibility of semi-crystalline and amorphous PLA blends. J. Appl. Polym. Sci. 2014;131:41205. doi: 10.1002/app.41205. DOI
Gao M., Ren Z., Yan S., Sun J., Chen X. An optical microscopy study on the phase structure of poly(L-lactide acid)/poly(propylene carbonate) blends. J. Phys. Chem. B. 2012;116:9832–9837. doi: 10.1021/jp3041378. PubMed DOI
Sokhal K.S., Dasaroju G., Bulasara V.K. Formation, stability and comparison of water/oil emulsion using gum arabic and guar gum and effect of aging of polymers on drag reduction percentage in water/oil flow. Vacuum. 2018;159:247–253. doi: 10.1016/j.vacuum.2018.10.044. DOI
Rousi Z., Malhiac C., Fatouros D.G., Paraskevopoulou A. Complex coacervates formation between gelatin and gum Arabic with different arabinogalactan protein fraction content and their characterization. Food Hydrocoll. 2019;96:577–588. doi: 10.1016/j.foodhyd.2019.06.009. DOI
Lippincott-Schwartz J., Manley S. Putting super-resolution fluorescence microscopy to work. Nat. Methods. 2009;6:21–23. doi: 10.1038/nmeth.f.233. PubMed DOI PMC
Thorley J.A., Pike J., Rappoport J.Z. Super-Resolution Microscopy: A Comparison of Commercially Available Options. Elsevier Inc.; Philadelphia, PA, USA: 2014.
Jia S., Han B., Kutz J.N. Example-Based Super-Resolution Fluorescence Microscopy. Sci. Rep. 2018;8:1–8. doi: 10.1038/s41598-018-24033-7. PubMed DOI PMC
Abitbol T., Palermo A., Moran-Mirabal J.M., Cranston E.D. Fluorescent Labeling and Characterization of Cellulose Nanocrystals with Varying Charge Contents. Biomacromolecules. 2013;14:3278–3284. doi: 10.1021/bm400879x. PubMed DOI
Shazali N.A.H., Zaidi N.E., Ariffin H., Abdullah L.C., Ghaemi F., Abdullah J.M., Takashima I., Rahman N.A., Afizan N.M. Characterization and cellular internalization of Spherical Cellulose Nanocrystals (CNC) into normal and cancerous fibroblasts. Materials Basel. 2019;12:3251. doi: 10.3390/ma12193251. PubMed DOI PMC
Ur-Rehman A., Khan N.M., Ali F., Khan H., Khan Z.U., Jan A.K., Khan G.S., Ahmad S. Kinetics Study of Biopolymers Mixture with the Help of Confocal Laser Scanning Microscopy. J. Food Process Eng. 2016;39:533–541. doi: 10.1111/jfpe.12245. DOI
Zammarano M., Maupin P.H., Sung L.P., Gilman J.W., McCarthy E.D., Kim Y.S., Fox D.M. Revealing the Interface in Polymer Nanocomposites. ACS Nano. 2011;5:3391–3399. doi: 10.1021/nn102951n. PubMed DOI
Spence J.C.H. High-Resolution Electron Microscopy. Oxford University Press; New York, NY, USA: 2013.
Yu X., Arey B., Chatterjee S., Chun J. Improving in situ liquid SEM imaging of particles. Surf. Interface Anal. 2019;51:1325–1331. doi: 10.1002/sia.6700. DOI
Nguyen J.N.T., Harbison A.M. Scanning Electron Microscopy Sample Preparation and Imaging. Volume 1606 Humana Press Inc.; Totowa, NJ, USA: 2017. PubMed
Shekarforoush E., Mirhosseini H., Amid B.T., Ghazali H., Muhammad K., Sarker M.Z.I., Paykary M. Rheological Properties and Emulsifying Activity of Gum Karaya (Sterculia Urens) in Aqueous System and Oil in Water Emulsion: Heat Treatment and Microwave Modification. Int. J. Food Prop. 2016;19:662–679. doi: 10.1080/10942912.2015.1038836. DOI
Pang J., Liu X., Zhang X., Wu Y., Sun R. Fabrication of Cellulose Film with Enhanced Mechanical Properties in Ionic Liquid 1-Allyl-3-methylimidaxolium Chloride (AmimCl) Materials Basel. 2013;6:1270–1284. doi: 10.3390/ma6041270. PubMed DOI PMC
Phinichka N., Kaenthong S. Regenerated cellulose from high alpha cellulose pulp of steam-exploded sugarcane bagasse. J. Mater. Res. Technol. 2018;7:55–65. doi: 10.1016/j.jmrt.2017.04.003. DOI
İlgü H., Turan T., Şanli-Mohamed G. Preparation, Characterization and Optimization of Chitosan Nanoparticles as Carrier for Immobilization of Thermophilic Recombinant Esterase. J. Macromol. Sci. Part A. 2011;48:713–721.
Saari H., Fuentes C., Sjöö M., Rayner M., Wahlgren M. Production of starch nanoparticles by dissolution and non-solvent precipitation for use in food-grade Pickering emulsions. Carbohydr. Polym. 2017;157:558–566. doi: 10.1016/j.carbpol.2016.10.003. PubMed DOI
Mun S., Kim H.C., Yadave M., Kim J. Graphene oxide–gellan gum–sodium alginate nanocomposites: Synthesis, characterization, and mechanical behavior. Compos. Interfaces. 2015;22:249–263. doi: 10.1080/09276440.2015.1018716. DOI
Wittmar A., Vorat D., Ulbricht M. Two step and one step preparation of porous nanocomposite cellulose membranes doped with TiO 2. RSC Adv. 2015;5:88070–88078. doi: 10.1039/C5RA16337D. DOI
Wang Q., Chen D. Synthesis and characterization of a chitosan based nanocomposite injectable hydrogel. Carbohydr. Polym. 2016;136:1228–1237. doi: 10.1016/j.carbpol.2015.10.040. PubMed DOI
Bagheri-Khoulenjani S., Mirzadeh H., Etrati-Khosroshahi M., Ali Shokrgozar M. Particle size modeling and morphology study of chitosan/gelatin/nanohydroxyapatite nanocomposite microspheres for bone tissue engineering. J. Biomed. Mater. Res. Part A. 2013;101:1758–1767. doi: 10.1002/jbm.a.34481. PubMed DOI
Rodriguez S.A., Weese E., Nakamatsu J., Torres F. Development of Biopolymer Nanocomposites Based on Polysaccharides Obtained from Red Algae Chondracanthus chamissoi Reinforced with Chitin Whiskers and Montmorillonite. Polym.-Plast. Technol. Eng. 2016;55:1557–1564. doi: 10.1080/03602559.2016.1163583. DOI
Tarus B., Fadel N., Al-Oufy A., El-Messiry M. Effect of polymer concentration on the morphology and mechanical characteristics of electrospun cellulose acetate and poly (vinyl chloride) nanofiber mats. Alexandria Eng. J. 2016;55:2975–2984. doi: 10.1016/j.aej.2016.04.025. DOI
Diantoro M., Kusumaatmaja A., Triyana K. Preparation of PVA/Chitosan/TiO 2 nanofibers using electrospinning method. AIP Conf. Proc. 2016;1755:150002.
Qasim S.B., Najeeb S., Delaine-Smith R.M., Rawlinson A., Ur Rehman I. Potential of electrospun chitosan fibers as a surface layer in functionally graded GTR membrane for periodontal regeneration. Dent. Mater. 2017;33:71–83. doi: 10.1016/j.dental.2016.10.003. PubMed DOI
Padil V.V., Senan C., Wacławek S., Cerník M., Agarwal S., Varma R.S. Bioplastic Fibers from Gum Arabic for Greener Food Wrapping Applications. ACS Sustain. Chem. Eng. 2019;7:5900–5911. doi: 10.1021/acssuschemeng.8b05896. DOI
Fazeli M., Florez J.P., Simão R.A. Improvement in adhesion of cellulose fibers to the thermoplastic starch matrix by plasma treatment modification. Compos. Part B Eng. 2019;163:207–216. doi: 10.1016/j.compositesb.2018.11.048. DOI
Anžlovar A., Kunaver M., Krajnc A., Žagar E. Nanocomposites of LLDPE and Surface-Modified Cellulose Nanocrystals Prepared by Melt Processing. Molecules. 2018;23:1782. doi: 10.3390/molecules23071782. PubMed DOI PMC
Naranda J., Sušec M., Maver U., Gradišnik L., Gorenjak M., Vukasović A., Ivković A., Rupnik M.S., Vogrin M., Krajnc P. Polyester type polyHIPE scaffolds with an interconnected porous structure for cartilage regeneration. Sci. Rep. 2016;6:1–11. doi: 10.1038/srep28695. PubMed DOI PMC
Zhou F.L., Parker G.J.M., Eichhorn S.J., Hubbard Cristinacce P.L. Production and cross-sectional characterization of aligned co-electrospun hollow microfibrous bulk assemblies. Mater. Charact. 2015;109:25–35. doi: 10.1016/j.matchar.2015.09.010. PubMed DOI PMC
Yin H.M., Qian J., Zhang J., Lin Z.F., Li J.S., Xu J.Z., Li Z.M. Engineering porous poly(lactic acid) scaffolds with high mechanical performance via a solid state extrusion/porogen leaching approach. Polymers Basel. 2016;8:213. doi: 10.3390/polym8060213. PubMed DOI PMC
Mafirad S., Mehrnia M.R., Zahedi P., Hosseini S.-N. Chitosan-based nanocomposite membranes with improved properties: Effect of cellulose acetate blending and TiO2 nanoparticles incorporation. Polym. Compos. 2017;39:4452–4466. doi: 10.1002/pc.24539. DOI
Zhang Z.-H., Han Z., Zeng X.-A., Xiong X.-Y., Liu Y.-J. Enhancing mechanical properties of chitosan films via modification with vanillin. Int. J. Biol. Macromol. 2015;81:638–643. doi: 10.1016/j.ijbiomac.2015.08.042. PubMed DOI
Nanjunda R.B., Venkata L.V., Vishnu M.K., Mylarappa M., Raghavendra N., Venkatesh T. Preparation of chitosan/different organomodified clay polymer nanocomposites: Studies on morphological, swelling, thermal stability and anti-bacterial properties. Nanosyst. Phys. Chem. Math. 2016;7:667–674.
Kumar P., Sandeep K.P., Alavi S., Truong V.D., Gorga R.E. Effect of Type and Content of Modified Montmorillonite on the Structure and Properties of Bio-Nanocomposite Films Based on Soy Protein Isolate and Montmorillonite. J. Food Sci. 2010;75:N46–N56. doi: 10.1111/j.1750-3841.2010.01633.x. PubMed DOI
Jain R., Mahto V., Mahto T.K. Study of the Effect of Xanthan Gum Based Graft Copolymer on Water Based Drilling Fluid. J. Macromol. Sci. Part A. 2014;51:976–982. doi: 10.1080/10601325.2014.967089. DOI
Abdullah N.H., Shameli K., Nia P.M., Etesami M., Abdullah E.C., Abdullah L.C. Electrocatalytic activity of starch/Fe3O4/zeolite bionanocomposite for oxygen reduction reaction. Arab. J. Chem. 2017;13:1297–1308. doi: 10.1016/j.arabjc.2017.10.014. DOI
Yusof Y.M., Shukur M.F., Illias H.A., Kadir M.F.Z. Conductivity and electrical properties of corn starch-chitosan blend biopolymer electrolyte incorporated with ammonium iodide. R. Swedish Acad. Sci. Phys. Scr. Phys. Scr. 2014;89:10. doi: 10.1088/0031-8949/89/03/035701. DOI
Rajisha K.R., Maria H.J., Pothan L.A., Ahmad Z., Thomas S. Preparation and characterization of potato starch nanocrystal reinforced natural rubber nanocomposites. Int. J. Biol. Macromol. 2014;67:147–153. doi: 10.1016/j.ijbiomac.2014.03.013. PubMed DOI
Daio T., Bayer T., Ikuta T., Nishiyama T., Takahashi K., Takata Y., Sasaki K., Lyth S.M. In-Situ ESEM and EELS Observation of Water Uptake and Ice Formation in Multilayer Graphene Oxide. Sci. Rep. 2015;5:11807. doi: 10.1038/srep11807. PubMed DOI PMC
Jenkins L.M., Donald A.M. Use of the environmental scanning electron microscope for the observation of the swelling behaviour of cellulosic fibres. Scanning. 2006;19:92–97. doi: 10.1002/sca.4950190206. DOI
Podor R., Ravaux J., Brau H.-P. In Situ Experiments in the Scanning Electron Microscope Chamber, Scanning electron Microscopy. IntechOpen; London, UK: 2012.
Jansson A., Nafari A., Sanz-Velasco A., Svensson K., Gustafsson S., Hermansson A.M., Olsson E. Novel Method for Controlled Wetting of Materials in the Environmental Scanning Electron Microscope. Microsc. Microanal. 2013;19:30–37. doi: 10.1017/S1431927612013815. PubMed DOI
Girão A.V., Caputo G., Ferro M.C. Application of Scanning Electron Microscopy–Energy Dispersive X-Ray Spectroscopy (SEM-EDS) Compr. Anal. Chem. 2017;75:153–168.
Chauhan K., Priya V., Singh P., Chauhan G.S., Kumari S., Singhal R.K. A green and highly efficient sulfur functionalization of starch. RSC Adv. 2015;5:51762–51772. doi: 10.1039/C5RA07332D. DOI
Anjum F., Bukhari S.A., Siddique M., Shahid M., Potgieter J.H., Jaafar H.Z., Ercisli S., Zia-Ul-Haq M. Microwave Irradiated Copolymerization of Xanthan Gum with Acrylamide for Colonic Drug Delivery. BioResources. 2015;10:1434–1451. doi: 10.15376/biores.10.1.1434-1451. DOI
Ghannam H.E., STalab A., VDolgano N., MSHusse A., Abdelmagui N.M. Characterization of Chitosan Extracted from Different Crustacean Shell Wastes. J. Appl. Sci. 2016;16:454–461.
Sofla M.R.K., Brown R.J., Tsuzuki T., Rainey T.J. A comparison of cellulose nanocrystals and cellulose nanofibres extracted from bagasse using acid and ball milling methods. Adv. Nat. Sci. Nanosci. Nanotechnol. 2016;7:035004. doi: 10.1088/2043-6262/7/3/035004. DOI
Singh P., Chauhan K., Priya V., Singhal R.K. A greener approach for impressive removal of As(iii)/As(v) from an ultra-low concentration using a highly efficient chitosan thiomer as a new adsorbent. RSC Adv. 2016;6:64946–64961. doi: 10.1039/C6RA10595E. DOI
Gao Y., Zhang X., Jin X. Preparation and Properties of Minocycline-Loaded Carboxymethyl Chitosan Gel/Alginate Nonwovens Composite Wound Dressings. Mar. Drugs. 2019;17:575. doi: 10.3390/md17100575. PubMed DOI PMC
Kuei B., Aplan M.P., Litofsky J.H., Gomez E.D. New opportunities in transmission electron microscopy of polymers. Mater. Sci. Eng. R Rep. 2020;139:100516. doi: 10.1016/j.mser.2019.100516. DOI
Libera M.R., Egerton R.F. Advances in the Transmission Electron Microscopy of Polymers. Polym. Rev. 2010;50:321–339. doi: 10.1080/15583724.2010.493256. DOI
Winey M., Meehl J.B., O’Toole E.T., Giddings T.H. Conventional transmission electron microscopy. Mol. Biol. Cell. 2014;25:319–323. doi: 10.1091/mbc.e12-12-0863. PubMed DOI PMC
Rice S.B., Chan C., Brown S.C., Eschbach P., Han L., Ensor D.S., Stefaniak A.B., Bonevich J., Vladár A.E., Walker A.R.H. Particle size distributions by transmission electron microscopy: an interlaboratory comparison case study. Metrologia. 2013;50:663. doi: 10.1088/0026-1394/50/6/663. PubMed DOI PMC
Mielańczyk Ł., Matysiak N., Klymenko O., Wojnicz R. Transmission Electron Microscopy of Biological Samples. IntechOpen; Vienna, Austria: 2015.
Tang C.Y., Yang Z. Transmission Electron Microscopy (TEM) Elsevier Inc.; Philadelphia, PA, USA: 2017.
Kirkland A.I., Chang S.L.Y., Hutchison J.L. Springer Handbooks. Springer; Berlin/Heidelberg, Germany: 2019. pp. 3–47.
Alnarabiji M.S., Yahya N., Hamed Y., Ardakani S.E.M., Azizi K., Klemeš J.J., Abdullaha B., Tasfyd S.F.H., Hamide S.B.A., Nashed O. Scalable bio-friendly method for production of homogeneous metal oxide nanoparticles using green bovine skin gelatin. J. Clean. Prod. 2017;162:186–194. doi: 10.1016/j.jclepro.2017.06.010. DOI
Santos E.D.B., Lima E.C.N.L., Oliveira C.S., De Sigoli F.A., Mazali I.O. Fast detection of paracetamol on a gold nanoparticle-chitosan substrate by SERS. Anal. Methods. 2014;6:3564–3568. doi: 10.1039/C4AY00635F. DOI
Bhagyaraj S., Krupa I. Alginate-Mediated Synthesis of Hetero-Shaped Silver Nanoparticles and Their Hydrogen Peroxide Sensing Ability. Molecules. 2020;25:435. doi: 10.3390/molecules25030435. PubMed DOI PMC
Josefsson G., Tanem B.S., Li Y., Vullum P.E., Gamstedt E.K. Prediction of elastic properties of nanofibrillated cellulose from micromechanical modeling and nano-structure characterization by transmission electron microscopy. Cellulose. 2013;20:761–770. doi: 10.1007/s10570-013-9868-8. DOI
Ramesh S., Sivasamy A., Kim H.S., Kim J.H. High-performance N-doped MWCNT/GO/cellulose hybrid composites for supercapacitor electrodes. RSC Adv. 2017;7:49799–49809. doi: 10.1039/C7RA08896E. DOI
Qin X., Zhang H., Wang Z., Jin Y. Magnetic chitosan/graphene oxide composite loaded with novel photosensitizer for enhanced photodynamic therapy. RSC Adv. 2018;8:10376–10388. doi: 10.1039/C8RA00747K. PubMed DOI PMC
Kondo T., Kasai W., Brown R.M. Formation of nematic ordered cellulose and chitin. Cellulose. 2004;11:463–474. doi: 10.1023/B:CELL.0000046413.91309.55. DOI
Danev R., Yanagisawa H., Kikkawa M. Cryo-Electron Microscopy Methodology: Current Aspects and Future Directions. Trends Biochem. Sci. 2019;44:837–848. doi: 10.1016/j.tibs.2019.04.008. PubMed DOI
Frank J. Story in a sample-the potential (and limitations) of cryo-electron microscopy applied to molecular machines. Biopolymers. 2013;99:832–836. doi: 10.1002/bip.22274. PubMed DOI PMC
Majoinen J., Haataja J.S., Appelhans D., Lederer A., Olszewska A., Seitsonen J., Aseyev V., Kontturi E., Rosilo H., Österberg M., et al. Supracolloidal Multivalent Interactions and Wrapping of Dendronized Glycopolymers on Native Cellulose Nanocrystals. J. Am. Chem. Soc. 2014;136:866–869. doi: 10.1021/ja411401r. PubMed DOI
Kaushik M., Basu K., Benoit C., Cirtiu C.M., Vali H., Moores A. Cellulose Nanocrystals as Chiral Inducers: Enantioselective Catalysis and Transmission Electron Microscopy 3D Characterization. J. Am. Chem. Soc. 2015;137:6124–6127. doi: 10.1021/jacs.5b02034. PubMed DOI
Pennycook S.J., Lupini A.R., Varela M., Borisevich A., Peng Y., Oxley M.P., Van Benthem K., Chisholm M.F. Scanning Microscopy for Nanotechnology: Techniques and Applications. Springer New York; New York, NY, USA: 2007. Scanning transmission electron microscopy for nanostructure characterization.
Nellist P.D. Springer Handbooks. Springer; Berlin/Heidelberg, Germany: 2019. pp. 49–99.
Ponce A., Mejía-Rosales S., José-Yacamán M. Scanning transmission electron microscopy methods for the analysis of nanoparticles. Methods Mol. Biol. 2012;906:453–471. PubMed
Rodríguez-Argüelles M.C., Sieiro C., Cao R., Nasi L. Chitosan and silver nanoparticles as pudding with raisins with antimicrobial properties. J. Colloid Interface Sci. 2011;364:80–84. doi: 10.1016/j.jcis.2011.08.006. PubMed DOI
Teodoro K.B.R., Migliorini F.L., Facure M.H.M., Correa D.S. Conductive electrospun nanofibers containing cellulose nanowhiskers and reduced graphene oxide for the electrochemical detection of mercury(II) Carbohydr. Polym. 2019;207:747–754. doi: 10.1016/j.carbpol.2018.12.022. PubMed DOI
Liu K., Nasrallah J., Chen L., Huang L., Ni Y. Preparation of CNC-dispersed Fe3O4 nanoparticles and their application in conductive paper. Carbohydr. Polym. 2015;126:175–178. doi: 10.1016/j.carbpol.2015.03.009. PubMed DOI
Karakus S., Ilgar M., Kahyaoglu I.M., Kilislioglu A. Influence of ultrasound irradiation on the intrinsic viscosity of guar gum–PEG/rosin glycerol ester nanoparticles. Int. J. Biol. Macromol. 2019;141:1118–1127. doi: 10.1016/j.ijbiomac.2019.08.254. PubMed DOI
Motahharifar N., Nasrollahzadeh M., Taheri-Kafrani A., Varma R.S., Shokouhimehr M. Magnetic chitosan-copper nanocomposite: A plant assembled catalyst for the synthesis of amino- and N-sulfonyl tetrazoles in eco-friendly media. Carbohydr. Polym. 2020;232:115819. doi: 10.1016/j.carbpol.2019.115819. PubMed DOI
Torres-Martínez N.E., Garza-Navarro M.A., García-Gutiérrez D., González-González V.A., Torres-Castro A., Ortiz-Méndez U. Hybrid nanostructured materials with tunable magnetic characteristics. J. Nanoparticle Res. 2014;16:1–12. doi: 10.1007/s11051-014-2759-6. DOI
Teixeira ED M., Lotti C., Corrêa A.C., Teodoro K.B., Marconcini J.M., Mattoso L.H. Thermoplastic corn starch reinforced with cotton cellulose nanofibers. J. Appl. Polym. Sci. 2011;120:2428–2433. doi: 10.1002/app.33447. DOI
Omerzu A., Saric I., Piltaver I.K., Petravic M., Kapun T., Zule J., Stifter S., Salamon K. Prevention of spontaneous combustion of cellulose with a thin protective Al2O3 coating formed by atomic layer deposition. Surf. Coat. Technol. 2018;333:81–86. doi: 10.1016/j.surfcoat.2017.10.067. DOI
Song S., Zhao Y., Yuan X., Zhang J. β-Chitin nanofiber hydrogel as a scaffold to in situ fabricate monodispersed ultra-small silver nanoparticles. Colloids Surf. A Physicochem. Eng. Asp. 2019;574:36–43. doi: 10.1016/j.colsurfa.2019.04.047. DOI
Liu K., Liang H., Nasrallah J., Chen L., Huang L., Ni Y. Preparation of the CNC/Ag/beeswax composites for enhancing antibacterial and water resistance properties of paper. Carbohydr. Polym. 2016;142:183–188. doi: 10.1016/j.carbpol.2016.01.044. PubMed DOI
Sosiati H., Wijayanti D.A., Triyana K., Kamiel B. Morphology and crystallinity of sisal nanocellulose after sonication. AIP Conf. Proc. 2017;1755:20029.
Gupta K., Kaushik A., Tikoo K.B., Kumar V., Singhal S. Enhanced catalytic activity of composites of NiFe2O4 and nano cellulose derived from waste biomass for the mitigation of organic pollutants. Arab. J. Chem. 2017;13:783–798. doi: 10.1016/j.arabjc.2017.07.016. DOI
Celebi H., Kurt A. Effects of processing on the properties of chitosan/cellulose nanocrystal films. Carbohydr. Polym. 2015;133:284–293. doi: 10.1016/j.carbpol.2015.07.007. PubMed DOI
Guirguis O., Abdelzaher N., El-Bassyouni G., Moselhey M. Structural, Thermal and Optical Modifications of Chitosan due to UV-Ozone Irradiation. Egypt. J. Chem. 2018;61:350–360. doi: 10.21608/ejchem.2018.2904.1241. DOI
Anandan M., Gurumallesh Prabu H. Dodonaea viscosa Leaf Extract Assisted Synthesis of Gold Nanoparticles: Characterization and Cytotoxicity against A549 NSCLC Cancer Cells. J. Inorg. Organomet. Polym. Mater. 2018;28:932–941. doi: 10.1007/s10904-018-0799-6. DOI
Yulizar Y., Utari T., Ariyanta H.A., Maulina D. Green Method for Synthesis of Gold Nanoparticles Using Polyscias scutellaria Leaf Extract under UV Light and Their Catalytic Activity to Reduce Methylene Blue. J. Nanomater. 2017;2017:1–6. doi: 10.1155/2017/3079636. DOI
Kiruba Daniel S.C.G., Vinothini G., Subramanian N., Nehru K., Sivakumar M. Biosynthesis of Cu, ZVI, and Ag nanoparticles using Dodonaea viscosa extract for antibacterial activity against human pathogens. J. Nanoparticle Res. 2013;15:1319. doi: 10.1007/s11051-012-1319-1. DOI
Guidelli E.J., Ramos A.P., Zaniquelli M.E.D., Baffa O. Green synthesis of colloidal silver nanoparticles using natural rubber latex extracted from Hevea brasiliensis. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2011;82:140–145. doi: 10.1016/j.saa.2011.07.024. PubMed DOI
Vanamudan A., Sudhakar P.P. Biopolymer capped silver nanoparticles with potential for multifaceted applications. Int. J. Biol. Macromol. 2016;86:262–268. doi: 10.1016/j.ijbiomac.2016.01.056. PubMed DOI
Karoutsos V. Scanning probe microscopy: Instrumentation and applications on thin films and magnetic multilayers. J. Nanosci. Nanotechnol. 2009;9:6783–6798. doi: 10.1166/jnn.2009.1474. PubMed DOI
Huey B.D., Luria J., Bonnell D.A. Springer Handbooks. Springer; Berlin/Heidelberg, Germany: 2019. pp. 1239–1277.
Wallace A.F. Scanning Probe Microscopy, Analytical Geomicrobiology. Cambridge University Press; Cambridge, UK: 2019.
Raigoza A.F., Dugger J.W., Webb L.J. Review: Recent Advances and Current Challenges in Scanning Probe Microscopy of Biomolecular Surfaces and Interfaces. ACS Appl. Mater. Interfaces. 2013;5:9249–9261. doi: 10.1021/am4018048. PubMed DOI
Cohen S.H., Bray M.T., Lightbody M.L. Atomic Force Microscopy/Scanning Tunneling Microscopy. Springer; Boston, MA, USA: 1994.
Binnig G., Quate C.F., Gerber C. Atomic Force Microscope. Phys. Rev. Lett. 1986;56:930–933. doi: 10.1103/PhysRevLett.56.930. PubMed DOI
Hansma P.K., Elings V.B., Marti O., Bracker C.E. Scanning tunneling microscopy and atomic force microscopy: Application to biology and technology. Science. 1988;242:209–216. doi: 10.1126/science.3051380. PubMed DOI
Santos N.C., Castanho M.A.R.B. An overview of the biophysical applications of atomic force microscopy. Biophys. Chem. 2004;107:133–149. doi: 10.1016/j.bpc.2003.09.001. PubMed DOI
Giessibl F.J. Advances in atomic force microscopy. Rev. Mod. Phys. 2003;75:949–983. doi: 10.1103/RevModPhys.75.949. DOI
Ando T., Uchihashi T., Kodera N., Yamamoto D., Miyagi A., Taniguchi M., Yamashita H. High-speed AFM and nano-visualization of biomolecular processes. Pflüg. Arch. Eur. J. Physiol. 2008;456:211–225. doi: 10.1007/s00424-007-0406-0. PubMed DOI
Alsteens D., Dupres V., Dague E., Verbelen C., André G., Francius G., Dufrêne Y.F. Imaging Chemical Groups and Molecular Recognition Sites on Live Cells Using AFM. Springer; Berlin/Heidelberg, Germany: 2009.
Barish J.A., Goddard J.M. Topographical and chemical characterization of polymer surfaces modified by physical and chemical processes. J. Appl. Polym. Sci. 2011;120:2863–2871. doi: 10.1002/app.33310. DOI
Nnebe I., Schneider J.W. Characterization of distance-dependent damping in tapping-mode atomic force microscopy force measurements in liquid. Langmuir. 2004;20:3195–3201. doi: 10.1021/la030324b. PubMed DOI
Gunning A.P., Kirby A.R., Ridout M.J., Brownsey G.J., Morris V.J. Investigation of Gellan Networks and Gels by Atomic Force Microscopy. Macromolecules. 1996;29:6791–6796. doi: 10.1021/ma960700h. DOI
Kirby A.R., Gunning A.P., Waldron K.W., Morris V.J., Ng A. Visualization of plant cell walls by atomic force microscopy. Biophys. J. 1996;70:1138–1143. doi: 10.1016/S0006-3495(96)79708-4. PubMed DOI PMC
Hansma H.G., Hoh J.H. Biomolecular Imaging with the Atomic Force Microscope. Ann. Rev. Biophys. Biomol. Struct. 1994;23:115–140. doi: 10.1146/annurev.bb.23.060194.000555. PubMed DOI
Kirby A.R., Gunning A.P., Morris V.J. Imaging polysaccharides by atomic force microscopy. Biopolymers. 1998;38:355–366. doi: 10.1002/(SICI)1097-0282(199603)38:3<355::AID-BIP8>3.0.CO;2-T. PubMed DOI
Patrick Gunning A., Kirby A.R., Morris V.J. Imaging xanthan gum in air by ac “tapping” mode atomic force microscopy. Ultramicroscopy. 1996;63:1–3. doi: 10.1016/0304-3991(96)00032-0. DOI
McIntire T.M., Penner R.M., Brant D.A. Observations of a circular, triple-helical polysaccharide using noncontact atomic force microscopy. Macromolecules. 1995;28:6375–6377. doi: 10.1021/ma00122a056. DOI
Uricanu V.I., Duits M.H.G., Nelissen R.M.F., MLBennink A., Mellema J. Local Structure and Elasticity of Soft Gelatin Gels Studied with Atomic Force Microscopy. Langmuir. 2003;19:8182–8194. doi: 10.1021/la0347004. DOI
Iijima M., Shinozaki M., Hatakeyama T., Takahashi M., Hatakeyama H. AFM studies on gelation mechanism of xanthan gum hydrogels. Carbohydr. Polym. 2007;68:701–707. doi: 10.1016/j.carbpol.2006.08.004. DOI
Kocun M., Grandbois M., Cuccia L.A. Single molecule atomic force microscopy and force spectroscopy of chitosan. Colloids Surf. B Biointerfaces. 2011;82:470–476. doi: 10.1016/j.colsurfb.2010.10.004. PubMed DOI
Maver U., Maver T., Persin Z., Mozetic M., Vesel A., Gaberšček M., Stana-Kleinschek K. Polymer Science. IntechOpen; London, UK: 2013. Polymer Characterization with the Atomic Force Microscope.
Vezenov D.V., Noy A., Ashby P. Chemical force microscopy: Probing chemical origin of interfacial forces and adhesion. J. Adhes. Sci. Technol. 2005;19:313–364. doi: 10.1163/1568561054352702. DOI
Steffens C., Leite F.L., Bueno C.C., Manzoli A., Herrmann P.S.D.P. Atomic Force Microscopy as a Tool Applied to Nano/Biosensors. Sensors. 2012;12:8278–8300. doi: 10.3390/s120608278. PubMed DOI PMC
Ito T., Ibrahim S., Grabowska I. Chemical-force microscopy for materials characterization. TrAC Trends Anal. Chem. 2010;29:225–233. doi: 10.1016/j.trac.2009.12.008. DOI
Arslan B., Ju X., Zhang X., Abu-Lail N.I. Heterogeneity and Specificity of Nanoscale Adhesion Forces Measured between Self-Assembled Monolayers and Lignocellulosic Substrates: A Chemical Force Microscopy Study. Langmuir. 2015;31:10233–10245. doi: 10.1021/acs.langmuir.5b02633. PubMed DOI
Le Troëdec M., Rachini A., Peyratout C., Rossignol S., Max E., Kaftan O., Fery A., Smith A. Influence of chemical treatments on adhesion properties of hemp fibres. J. Colloid Interface Sci. 2011;356:303–310. doi: 10.1016/j.jcis.2010.12.066. PubMed DOI
Boland T., Ratner B.D. Direct measurement of hydrogen bonding in DNA nucleotide bases by atomic force microscopy. Proc. Natl. Acad. Sci. USA. 1995;92:5297–5301. doi: 10.1073/pnas.92.12.5297. PubMed DOI PMC
Lee I., Evans B.R., Foston M., Ragauskas A.J. Silicon cantilever functionalization for cellulose-specific chemical force imaging of switchgrass. Anal. Methods. 2015;7:4541–4545. doi: 10.1039/C5AY00455A. DOI
Passeri D., Angeloni L., Reggente M., Rossi M. Magnetic force microscopy, Magnetic Characterization Techniques for Nanomaterials. Springer; Berlin/Heidelberg, Germany: 2017. pp. 209–259.
Kazakova O., Puttock R., Barton C., Corte-León H., Jaafar M., Neu V., Asenjo A. Frontiers of magnetic force microscopy. J. Appl. Phys. 2019;125:060901. doi: 10.1063/1.5050712. DOI
Torre B., Bertoni G., Fragouli D., Falqui A., Salerno M., Diaspro A., Cingolani R., Athanassiou A. Magnetic force microscopy and energy loss imaging of superparamagnetic iron oxide nanoparticles. Sci. Rep. 2011;1:202. doi: 10.1038/srep00202. PubMed DOI PMC
Passeri D., Dong C., Reggente M., Angeloni L., Barteri M., Scaramuzzo F.A., Angelis F.D., Marinelli F., Antonelli F., Rinaldi F., et al. Magnetic force microscopy: Quantitative issues in biomaterials. Biomatter. 2014;4:e29507. doi: 10.4161/biom.29507. PubMed DOI PMC
Nisticò R. Magnetic materials and water treatments for a sustainable future. Res. Chem. Intermed. 2017;43:6911–6949. doi: 10.1007/s11164-017-3029-x. DOI
Marín T., Montoya P., Arnache O., Pinal R., Calderón J. Development of magnetite nanoparticles/gelatin composite films for triggering drug release by an external magnetic field. Mater. Des. 2018;152:78–87. doi: 10.1016/j.matdes.2018.04.073. DOI
Nisticò R., Franzoso F., Cesano F., Scarano D., Magnacca G., Parolo M.E., Carlos L. Chitosan-Derived Iron Oxide Systems for Magnetically Guided and Efficient Water Purification Processes from Polycyclic Aromatic Hydrocarbons. ACS Sustain. Chem. Eng. 2017;5:793–801.
Cesano F., Fenoglio G., Carlos L., Nisticò R. One-step synthesis of magnetic chitosan polymer composite films. Appl. Surf. Sci. 2015;345:175–181. doi: 10.1016/j.apsusc.2015.03.154. DOI
Lewandowska-Łańcucka J., Staszewska M., Szuwarzyński M., Kępczyński M., Romek M., Tokarz W., Szpak A., Kania G., Nowakowska M. Synthesis and characterization of the superparamagnetic iron oxide nanoparticles modified with cationic chitosan and coated with silica shell. J. Alloys Compd. 2014;586:45–51.
Zasadzinski J.A., Schneir J., Gurley J., Elings V., Hansma P.K. Scanning tunneling microscopy of freeze-fracture replicas of biomembranes. Science. 1988;239:1013–1015. doi: 10.1126/science.3344420. PubMed DOI
Marti O., Ribi H.O., Drake B., Albrecht T.R., Quate C.F., Hansma P.K. Atomic force microscopy of an organic monolayer. Science. 1988;239:50–52. doi: 10.1126/science.3336773. PubMed DOI
Travaglini G., Rohrer H., Amrein M., Gross H. Scanning tunneling microscopy on biological matter. Surf. Sci. 1987;181:380–390. doi: 10.1016/0039-6028(87)90181-6. DOI
Sonnenfeld R., Hansma P.K., Gross H., Stoll E., Travaglini G. Atomic-resolution microscopy in water. Science. 1986;232:211–213. doi: 10.1126/science.232.4747.211. PubMed DOI
Abdel-Kareem O., Abdel-Rahim H., Ezzat I., Essa D.M. Evaluating the use of chitosan coated Ag nano-SeO 2 composite in consolidation of Funeral Shroud from the Egyptian Museum of Cairo. J. Cult. Herit. 2015;16:486–495. doi: 10.1016/j.culher.2014.09.016. DOI
Hameroff S.R., Simić-Krstić J., Kelley M.F., Voelker M.A., He J.D., Dereniak E.L., McCuskey R.S., Schneiker C.W. Scanning tunneling microscopy of biopolymers: Conditions for microtubule stabilization. J. Vac. Sci. Technol. A Vac. Surf. Film. 1989;7:2890–2894. doi: 10.1116/1.576164. DOI
Golovnya R.V., Terenina M.B., Krikunova N.I., Yuryev V.P., Misharina T.A. Formation of Supramolecular Structures of Aroma Compounds with Polysaccharides of Corn Starch Cryotextures. Starch Stärke. 2001;53:269–277. doi: 10.1002/1521-379X(200106)53:6<269::AID-STAR269>3.0.CO;2-3. DOI