Gene-specific sex effects on eosinophil infiltration in leishmaniasis
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
27895891
PubMed Central
PMC5120444
DOI
10.1186/s13293-016-0117-3
PII: 117
Knihovny.cz E-zdroje
- Klíčová slova
- Eosinophil infiltration, Genetic control, Leishmania major, Mouse model, QTL, Sex influence,
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Sex influences susceptibility to many infectious diseases, including some manifestations of leishmaniasis. The disease is caused by parasites that enter to the skin and can spread to the lymph nodes, spleen, liver, bone marrow, and sometimes lungs. Parasites induce host defenses including cell infiltration, leading to protective or ineffective inflammation. These responses are often influenced by host genotype and sex. We analyzed the role of sex in the impact of specific gene loci on eosinophil infiltration and its functional relevance. METHODS: We studied the genetic control of infiltration of eosinophils into the inguinal lymph nodes after 8 weeks of Leishmania major infection using mouse strains BALB/c, STS, and recombinant congenic strains CcS-1,-3,-4,-5,-7,-9,-11,-12,-15,-16,-18, and -20, each of which contains a different random set of 12.5% genes from the parental "donor" strain STS and 87.5% genes from the "background" strain BALB/c. Numbers of eosinophils were counted in hematoxylin-eosin-stained sections of the inguinal lymph nodes under a light microscope. Parasite load was determined using PCR-ELISA. RESULTS: The lymph nodes of resistant STS and susceptible BALB/c mice contained very low and intermediate numbers of eosinophils, respectively. Unexpectedly, eosinophil infiltration in strain CcS-9 exceeded that in BALB/c and STS and was higher in males than in females. We searched for genes controlling high eosinophil infiltration in CcS-9 mice by linkage analysis in F2 hybrids between BALB/c and CcS-9 and detected four loci controlling eosinophil numbers. Lmr14 (chromosome 2) and Lmr25 (chromosome 5) operate independently from other genes (main effects). Lmr14 functions only in males, the effect of Lmr25 is sex independent. Lmr15 (chromosome 11) and Lmr26 (chromosome 9) operate in cooperation (non-additive interaction) with each other. This interaction was significant in males only, but sex-marker interaction was not significant. Eosinophil infiltration was positively correlated with parasite load in lymph nodes of F2 hybrids in males, but not in females. CONCLUSIONS: We demonstrated a strong influence of sex on numbers of eosinophils in the lymph nodes after L. major infection and present the first identification of sex-dependent autosomal loci controlling eosinophilic infiltration. The positive correlation between eosinophil infiltration and parasite load in males suggests that this sex-dependent eosinophilic infiltration reflects ineffective inflammation.
Zobrazit více v PubMed
Vom Steeg LG, Klein SL. SeXX matters in infectious disease pathogenesis. PLoS Pathog. 2016;12:e1005374. doi: 10.1371/journal.ppat.1005374. PubMed DOI PMC
Mukhopadhyay D, Mukherjee S, Ghosh S, Roy S, Saha B, Das NK, Chatterjee M. A male preponderance in patients with Indian post kala-azar dermal leishmaniasis is associated with increased circulating levels of testosterone. Int J Dermatol. 2016;55:250–5. doi: 10.1111/ijd.13048. PubMed DOI
Alvar J, Velez ID, Bern C, Herrero M, Desjeux P, et al. Leishmaniasis worldwide and global estimates of its incidence. PLoS One. 2012;7:e35671. doi: 10.1371/journal.pone.0035671. PubMed DOI PMC
GBD 2013 DALYs and HALE Collaborators Global, regional, and national disability-adjusted life years (DALYs) for 306 diseases and injuries and healthy life expectancy (HALE) for 188 countries, 1990-2013: quantifying the epidemiological transition. Lancet. 2015;386:2145–91. doi: 10.1016/S0140-6736(15)61340-X. PubMed DOI PMC
Lipoldová M, Demant P. Genetic susceptibility to infectious disease: lessons from mouse models of leishmaniasis. Nat Rev Genet. 2006;7:294–305. doi: 10.1038/nrg1832. PubMed DOI
Noronha FS, Cruz JS, Beirão PS, Horta MF. Macrophage damage by Leishmania amazonensis cytolysin: evidence of pore formation on cell membrane. Infect Immun. 2000;68:4578–84. doi: 10.1128/IAI.68.8.4578-4584.2000. PubMed DOI PMC
Rodríguez NE, Wilson ME. Eosinophils and mast cells in leishmaniasis. Immunol Res. 2014;59:129–41. doi: 10.1007/s12026-014-8536-x. PubMed DOI PMC
Klein SL. Hormonal and immunological mechanisms mediating sex differences in parasite infection. Parasite Immunol. 2004;26:247–64. doi: 10.1111/j.0141-9838.2004.00710.x. PubMed DOI
Snider H, Lezama-Davila C, Alexander J, Satoskar AR. Sex hormones and modulation of immunity against leishmaniasis. Neuroimmunomodulation. 2009;16:106–13. doi: 10.1159/000180265. PubMed DOI PMC
Alexander J, Irving K, Snider H, Satoskar A. Sex hormones of host responses against parasites. In: Klein SL, Roberts CW, editors. Sex hormons and immunity to infection. Dordrecht, London, New York: Springer Heildelberg; 2010. pp. 147–86.
Roberts CW, Walker W, Alexander J. Sex-associated hormones and immunity to protozoan parasites. Clin Microbiol Rev. 2001;14:476–88. doi: 10.1128/CMR.14.3.476-488.2001. PubMed DOI PMC
Bernin H, Lotter H. Sex bias in the outcome of human tropical infectious diseases: influence of steroid hormones. J Infect Dis. 2014;15(209 Suppl 3):S107–13. doi: 10.1093/infdis/jit610. PubMed DOI
Al-Jawabreh A, Dumaidi K, Ereqat S, Al-Jawabreh H, Nasereddin A, Azmi K, Barghuthy F, Sawalha S, Salah I, Abdeen Z. Molecular epidemiology of human cutaneous leishmaniasis in Jericho and its vicinity in Palestine from 1994 to 2015. Infect Genet Evol. 2016. doi: 10.1016/j.meegid.2016.06.007. [Epub ahead of print]. PubMed
Armijos RX, Weigel MM, Izurieta R, Racines J, Zurita C, Herrera W, Vega M. The epidemiology of cutaneous leishmaniasis in subtropical Ecuador. Trop Med Int Health. 1997;2:140–52. doi: 10.1046/j.1365-3156.1997.d01-236.x. PubMed DOI
Guerra-Silveira F, Abad-Franch F. Sex bias in infectious disease epidemiology: patterns and processes. PLoS One. 2013;8:e62390. doi: 10.1371/journal.pone.0062390. PubMed DOI PMC
Khosravani M, Moemenbellah-Fard MD, Sharafi M, Rafat-Panah A. Epidemiologic profile of oriental sore caused by Leishmania parasites in a new endemic focus of cutaneous leishmaniasis, southern Iran. J Parasit Dis. 2016;40:1077–81. doi: 10.1007/s12639-014-0637-x. PubMed DOI PMC
Travi BL, Osorio Y, Melby PC, Chandrasekar B, Arteaga L, Saravia NG. Gender is a major determinant of the clinical evolution and immune response in hamsters infected with Leishmania spp. Infect Immun. 2002;70:2288–96. doi: 10.1128/IAI.70.5.2288-2296.2002. PubMed DOI PMC
Mock BA, Nacy CA. Hormonal modulation of sex differences in resistance to Leishmania major systemic infections. Infect Immun. 1988;56:3316–9. PubMed PMC
Mock BA, Fortier AH, Potter M, Nacy CA. Genetic control of systemic Leishmania major infections: dissociation of intrahepatic amastigote replication from control by the Lsh gene. Infect Immun. 1985;50:588–91. PubMed PMC
Alexander J. Sex differences and cross-immunity in DBA/2 mice infected with L. mexicana and L. major. Parasitology. 1988;96:297–302. doi: 10.1017/S0031182000058303. PubMed DOI
Kobets T, Havelková H, Grekov I, Volkova V, Vojtíšková J, Slapničková M, Kurey I, Sohrabi Y, Svobodová M, Demant P, Lipoldová M. Genetics of host response to Leishmania tropica in mice—different control of skin pathology, chemokine reaction, and invasion into spleen and liver. PLoS Negl Trop Dis. 2012;6:e1667. doi: 10.1371/journal.pntd.0001667. PubMed DOI PMC
Giannini MSH. Sex-influenced response in the pathogenesis of cutaneous leishmaniasis in mice. Parasite Immunol. 1986;8:31–7. doi: 10.1111/j.1365-3024.1986.tb00831.x. PubMed DOI
Kobets T, Grekov I, Lipoldová M. Leishmaniasis: prevention, parasite detection and treatment. Curr Med Chem. 2012;19:1443–74. doi: 10.2174/092986712799828300. PubMed DOI
Kurey I, Kobets T, Havelková H, Slapničková M, Quan L, Trtková K, Grekov I, Svobodová M, Stassen AP, Hutson A, Demant P, Lipoldová M. Distinct genetic control of parasite elimination, dissemination, and disease after Leishmania major infection. Immunogenetics. 2009;61:619–33. doi: 10.1007/s00251-009-0392-9. PubMed DOI PMC
Rosenberg HF, Dyer KD, Foster PS. Eosinophils: changing perspectives in health and disease. Nat Rev Immunol. 2013;13:9–22. doi: 10.1038/nri3341. PubMed DOI PMC
Akuthota P, Wang HB, Spencer LA, Weller PF. Immunoregulatory roles of eosinophils: a new look at a familiar cell. Clin Exp Allergy. 2008;38:1254–63. doi: 10.1111/j.1365-2222.2008.03037.x. PubMed DOI PMC
Akuthota P, Weller PF. Spectrum of eosinophilic end-organ manifestations. Immunol Allergy Clin North Am. 2015;35:403–11. doi: 10.1016/j.iac.2015.04.002. PubMed DOI PMC
Blanchard C, Rothenberg ME. Biology of the eosinophil. Adv Immunol. 2009;101:81–121. doi: 10.1016/S0065-2776(08)01003-1. PubMed DOI PMC
Gusareva ES, Kurey I, Grekov I, Lipoldová M. Genetic regulation of immunoglobulin E level in different pathological states: integration of mouse and human genetics. Biol Rev Camb Philos Soc. 2014;89:375–405. doi: 10.1111/brv.12059. PubMed DOI
Raap U, Wardlaw AJ. A new paradigm of eosinophil granulocytes: neuroimmune interactions. Exp Dermatol. 2008;17:731–8. doi: 10.1111/j.1600-0625.2008.00741.x. PubMed DOI
Percopo CM, Dyer KD, Ochkur SI, Luo JL, Fischer ER, Lee JJ, Lee NA, Domachowske JB, Rosenberg HF. Activated mouse eosinophils protect against lethal respiratory virus infection. Blood. 2014;123:743–52. doi: 10.1182/blood-2013-05-502443. PubMed DOI PMC
Sasaki O, Sugaya H, Ishida K, Yoshimura K. Ablation of eosinophils with anti-IL-5 antibody enhances the survival of intracranial worms of Angiostrongylus cantonensis in the mouse. Parasite Immunol. 1993;15:349–54. doi: 10.1111/j.1365-3024.1993.tb00619.x. PubMed DOI
Shin EH, Osada Y, Chai JY, Matsumoto N, Takatsu K, Kojima S. Protective roles of eosinophils in Nippostrongylus brasiliensis infection. Int Arch Allergy Immunol. 1997;114(Suppl 1):45–50. doi: 10.1159/000237717. PubMed DOI
Martin C, Le Goff L, Ungeheuer MN, Vuong PN, Bain O. Drastic reduction of a filarial infection in eosinophilic interleukin-5 transgenic mice. Infect Immun. 2000;68:3651–6. doi: 10.1128/IAI.68.6.3651-3656.2000. PubMed DOI PMC
Ramalingam T, Porte P, Lee J, Rajan TV. Eosinophils, but not eosinophil peroxidase or major basic protein, are important for host protection in experimental Brugia pahangi infection. Infect Immun. 2005;73:8442–3. doi: 10.1128/IAI.73.12.8442-8443.2005. PubMed DOI PMC
Swartz JM, Dyer KD, Cheever AW, Ramalingam T, Pesnicak L, Domachowske JB, Lee JJ, Lee NA, Foster PS, Wynn TA, Rosenberg HF. Schistosoma mansoni infection in eosinophil lineage-ablated mice. Blood. 2006;108:2420–7. doi: 10.1182/blood-2006-04-015933. PubMed DOI PMC
Fabre V, Beiting DP, Bliss SK, Gebreselassie NG, Gagliardo LF, Lee NA, Lee JJ, Appleton JA. Eosinophil deficiency compromises parasite survival in chronic nematode infection. J Immunol. 2009;182:1577–83. doi: 10.4049/jimmunol.182.3.1577. PubMed DOI PMC
Huang L, Gebreselassie NG, Gagliardo LF1, Ruyechan MC, Luber KL, Lee NA, Lee JJ, Appleton JA. Eosinophils mediate protective immunity against secondary nematode infection. J Immunol. 2015;194:283–90. doi: 10.4049/jimmunol.1402219. PubMed DOI PMC
Oliveira SH, Fonseca SG, Romão PR, Figueiredo F, Ferreira SH, Cunha FQ. Microbicidal activity of eosinophils is associated with activation of the arginine-NO pathway. Parasite Immunol. 1998;20:405–12. doi: 10.1046/j.1365-3024.1998.00159.x. PubMed DOI
Beil WJ, Meinardus-Hager G, Neugebauer DC, Sorg C. Differences in the onset of the inflammatory response to cutaneous leishmaniasis in resistant and susceptible mice. J Leukoc Biol. 1992;52:135–42. PubMed
Belkaid Y, Mendez S, Lira R, Kadambi N, Milon G, Sacks D. A natural model of Leishmania major infection reveals a prolonged “silent” phase of parasite amplification in the skin before the onset of lesion formation and immunity. J Immunol. 2000;165:969–77. doi: 10.4049/jimmunol.165.2.969. PubMed DOI
Demant P, Hart AAM. Recombinant congenic strains—a new tool for analysing genetic traits determined by more than one gene. Immunogenetics. 1996;24:416–22. doi: 10.1007/BF00377961. PubMed DOI
Grekov I, Svobodová M, Nohýnková E, Lipoldová M. Preparation of highly infective Leishmania promastigotes by cultivation on SNB-9 biphasic medium. J Microbiol Meth. 2011;87:273–7. doi: 10.1016/j.mimet.2011.08.012. PubMed DOI
Lipoldová M, Svobodová M, Krulová M, Havelková H, Badalová J, Nohýnková E, Holáň V, Hart AAM, Volf P, Demant P. Susceptibility to Leishmania major infection in mice: multiple loci and heterogeneity of immunopathological phenotypes. Genes Immun. 2000;1:200–6. doi: 10.1038/sj.gene.6363660. PubMed DOI
Stassen AP, Groot PC, Eppig JT, Demant P. Genetic composition of the recombinant congenic strains. Mamm Genome. 1996;7:55–8. doi: 10.1007/s003359900013. PubMed DOI
Sohrabi Y, Havelková H, Kobets T, Šíma M, Volkova V, Grekov I, Jarošíková T, Kurey I, Vojtíšková J, Svobodová M, Demant P, Lipoldová M. Mapping the genes for susceptibility and response to Leishmania tropica in mouse. PLoS Negl Trop Dis. 2013;7:e2282. doi: 10.1371/journal.pntd.0002282. PubMed DOI PMC
Šíma M, Kocandová L, Lipoldová M. Genotyping of short tandem repeats (STRs) markers with 6 bp or higher length difference using PCR and high resolution agarose electrophoresis. Protoc Exch. 2015. doi:10.1038/protex.2015.054.
Krulová M, Havelková H, Kosařová M, Holáň V, Hart AA, Demant P, et al. IL-2-induced proliferative response is controlled by loci Cinda1 and Cinda2 on mouse chromosomes 11 and 12: a distinct control of the response induced by different IL-2 concentration. Genomics. 1997;42:11–5. doi: 10.1006/geno.1997.4694. PubMed DOI
Kobets T, Badalová J, Grekov I, Havelková H, Svobodová M, Lipoldová M. Leishmania parasite detection and quantification using PCR-ELISA. Nat Protoc. 2010;5:1074–80. doi: 10.1038/nprot.2010.68. PubMed DOI
Lander ES, Schork NJ. Genetic dissection of complex traits. Science. 1994;265:2037–48. doi: 10.1126/science.8091226. PubMed DOI
Lipoldová M, Kosařová M, Zajícová A, Holáň V, Hart AA, et al. Separation of multiple genes controlling the T-cell proliferative response to IL-2 and anti-CD3 using recombinant congenic strains. Immunogenetics. 1995;41:301–11. doi: 10.1007/BF00172155. PubMed DOI
Holáň V, Lipoldová M, Demant P. Identical genetic control of MLC reactivity to different MHC incompatibilities, independent of production of and response to IL-2. Immunogenetics. 1996;44:27–35. doi: 10.1007/BF02602654. PubMed DOI
Havelková H, Badalová J, Demant P, Lipoldová M. A new type of genetic regulation of allogeneic response. A novel locus on mouse chromosome 4, Alan2 controls MLC reactivity to three different alloantigens: C57BL/10, BALB/c and CBA. Genes Immun. 2000;1:483–7. doi: 10.1038/sj.gene.6363711. PubMed DOI
Lipoldová M, Havelková H, Badalová J, Demant P. Novel loci controlling lymphocyte proliferative response to cytokines and their clustering with loci controlling autoimmune reactions, macrophage function and lung tumor susceptibility. Int J Cancer. 2005;114:394–9. doi: 10.1002/ijc.20731. PubMed DOI
Havelková H, Holáň V, Kárník I, Lipoldová M. Mouse model for analysis of non-MHC genes that influence allogeneic response: recombinant congenic strains of OcB/Dem series that carry identical H2 locus. Cent Eur J Biol. 2006;1:16–28.
Lipoldová M, Havelková H, Badalová J, Vojtíšková J, Quan L, Krulová M, Sohrabi Y, Stassen AP, Demant P. Loci controlling lymphocyte production of interferon γ after alloantigen stimulation in vitro and their co-localization with genes controlling lymphocyte infiltration of tumors and tumor susceptibility. Cancer Immunol Immunother. 2010;59:203–13. PubMed PMC
Lipoldová M, Svobodová M, Havelková H, Krulová M, Badalová J, et al. Mouse genetic model for clinical and immunological heterogeneity of leishmaniasis. Immunogenetics. 2002;54:174–83. doi: 10.1007/s00251-002-0439-7. PubMed DOI
Šíma M, Havelková H, Quan L, Svobodová M, Jarošíková T, Vojtíšková J, Stassen APM, Demant P, Lipoldová M. Genetic control of resistance to Trypanosoma brucei bruceiinfection in mice. PLoS Negl Trop Dis. 2011;5:e1173. PubMed PMC
Szymanska H, Sitarz M, Krysiak E, Piskorowska J, Czarnomska A, Skurzak H, Hart AA, de Jong D, Demant P. Genetics of susceptibility to radiation-induced lymphomas, leukemias and lung tumors studied in recombinant congenic strains. Int J Cancer. 1999;83:674–8. doi: 10.1002/(SICI)1097-0215(19991126)83:5<674::AID-IJC18>3.0.CO;2-M. PubMed DOI
Palus M, Vojtíšková J, Salát J, Kopecký J, Grubhoffer L, Lipoldová M, Demant P, Růžek D. Mice with different susceptibility to tick-borne encephalitis virus infection show selective neutralizing antibody response and inflammatory reaction in the central nervous system. J Neuroinflamm. 2013;10:77. doi: 10.1186/1742-2094-10-77. PubMed DOI PMC
Shockley KR, Churchill GA. Gene expression analysis of mouse chromosome substitution strains. Mamm Genome. 2006;17:598–614. doi: 10.1007/s00335-005-0176-y. PubMed DOI
Halberg F, Hamerston O, Bittner JJ. Sex difference in eosinophil counts in tall blood of mature B1 mice. Science. 1957;125:73. doi: 10.1126/science.125.3237.73. PubMed DOI
Madalli S, Beyrau M, Whiteford J, Duchene J, Singh Nandhra I, Patel NS, Motwani MP, Gilroy DW, Thiemermann C, Nourshargh S, Scotland RS. Sex-specific regulation of chemokine Cxcl5/6 controls neutrophil recruitment and tissue injury in acute inflammatory states. Biol Sex Differ. 2015;6:27. doi: 10.1186/s13293-015-0047-5. PubMed DOI PMC
Case LK, Teuscher C. Y genetic variation and phenotypic diversity in health and disease. Biol Sex Differ. 2015;6:6. doi: 10.1186/s13293-015-0024-z. PubMed DOI PMC
Hamano N, Terada N, Maesako K, Numata T, Konno A. Effect of sex hormones on eosinophilic inflammation in nasal mucosa. Allergy Asthma Proc. 1998;19:263–9. doi: 10.2500/108854198778557773. PubMed DOI
Keselman A, Heller N. Estrogen signaling modulates allergic inflammation and contributes to sex differences in asthma. Front Immunol. 2015;6:568. doi: 10.3389/fimmu.2015.00568. PubMed DOI PMC
Bhasin JM, Chakrabarti E, Peng DQ, Kulkarni A, Chen X, Smith JD. Sex specific gene regulation and expression QTLs in mouse macrophages from a strain intercross. PLoS One. 2008;3:e1435. doi: 10.1371/journal.pone.0001435. PubMed DOI PMC
Ober C, Loisel DA, Gilad Y. Sex-specific genetic architecture of human disease. Nat Rev Genet. 2008;9:911–22. doi: 10.1038/nrg2415. PubMed DOI PMC
Butterfield RJ, Roper RJ, Rhein DM, Melvold RW, Haynes L, et al. Sex-specific quantitative trait loci govern susceptibility to Theiler’s murine encephalomyelitis virus-induced demyelination. Genetics. 2003;163:1041–6. PubMed PMC
Schuurhof A, Bont L, Siezen CL, Hodemaekers H, van Houwelingen HC, et al. Interleukin-9 polymorphism in infants with respiratory syncytial virus infection: an opposite effect in boys and girls. Pediatr Pulmonol. 2010;45:608–13. PubMed
Boivin GA, Pothlichet J, Skamene E, Brown EG, Loredo-Osti JC, Sladek R, Vidal SM. Mapping of clinical and expression quantitative trait loci in a sex-dependent effect of host susceptibility to mouse-adapted influenza H3N2/HK/1/68. J Immunol. 2012;188:3949–60. doi: 10.4049/jimmunol.1103320. PubMed DOI
Min-Oo G, Lindqvist L, Vaglenov A, Wang C, Fortin P, et al. Genetic control of susceptibility to pulmonary infection with Chlamydia pneumoniae in the mouse. Genes Immun. 2008;9:383–8. doi: 10.1038/sj.gene.6364450. PubMed DOI
Carroll SF, Loredo Osti JC, Guillot L, Morgan K, Qureshi ST. Sex differences in the genetic architecture of susceptibility to Cryptococcus neoformans pulmonary infection. Genes Immun. 2008;9:536–45. doi: 10.1038/gene.2008.48. PubMed DOI
Hayes KS, Hager R, Grencis RK. Sex-dependent genetic effects on immune responses to a parasitic nematode. BMC Genomics. 2014;15:193. doi: 10.1186/1471-2164-15-193. PubMed DOI PMC
De Haan G, Van Zant G. Genetic analysis of hemopoietic cell cycling in mice suggests its involvement in organismal life span. FASEB J. 1999;13:707–13. PubMed
Gudbjartsson DF, et al. Sequence variants affecting eosinophil numbers associate with asthma and myocardial infarction. Nat Genet. 2009;41:342–7. doi: 10.1038/ng.323. PubMed DOI
Havelková H, Kosařová M, Krulová M, Demant P, Lipoldová M. T-cell proliferative response is controlled by loci Tria4 and Tria5 on mouse chromosomes 7 and 9. Mamm Genome. 1999;10:670–4. doi: 10.1007/s003359901069. PubMed DOI
Dibbert B, Daigle I, Braun D, Schranz C, Weber M, Blaser K, Zangemeister-Wittke U, Akbar AN, Simon HU. Role for Bcl-xL in delayed eosinophil apoptosis mediated by granulocyte-macrophage colony-stimulating factor and interleukin-5. Blood. 1998;92:778–83. PubMed
Simson L, Foster PS. Chemokine and cytokine cooperativity: eosinophil migration in the asthmatic response. Immunol Cell Biol. 2000;78:415–22. doi: 10.1046/j.1440-1711.2000.00922.x. PubMed DOI
Islam SA, Chang DS, Colvin RA, Byrne MH, McCully ML, Moser B, Lira SA, Charo IF, Luster AD. Mouse CCL8, a CCR8 agonist, promotes atopic dermatitis by recruiting IL-5+ T(H)2 cells. Nat Immunol. 2011;12:167–77. doi: 10.1038/ni.1984. PubMed DOI PMC
Otero K, Vecchi A, Hirsch E, Kearley J, Vermi W, Del Prete A, Gonzalvo-Feo S, Garlanda C, Azzolino O, Salogni L, Lloyd CM, Facchetti F, Mantovani A, Sozzani S. Nonredundant role of CCRL2 in lung dendritic cell trafficking. Blood. 2010;116:2942–9. doi: 10.1182/blood-2009-12-259903. PubMed DOI PMC
Yang XO, Zhang H, Kim BS, Niu X, Peng J, Chen Y, Kerketta R, Lee YH, Chang SH, Corry DB, Wang D, Watowich SS, Dong C. The signaling suppressor CIS controls proallergic T cell development and allergic airway inflammation. Nat Immunol. 2013;14:732–40. doi: 10.1038/ni.2633. PubMed DOI PMC
Pero RS, Borchers MT, Spicher K, Ochkur SI, Sikora L, Rao SP, Abdala-Valencia H, O'Neill KR, Shen H, McGarry MP, Lee NA, Cook-Mills JM, Sriramarao P, Simon MI, Birnbaumer L, Lee JJ. Galphai2-mediated signaling events in the endothelium are involved in controlling leukocyte extravasation. Proc Natl Acad Sci U S A. 2007;104:4371–6. doi: 10.1073/pnas.0700185104. PubMed DOI PMC
El-Shazly A, Yamaguchi N, Masuyama K, Suda T, Ishikawa T. Novel association of the src family kinases, hck and c-fgr, with CCR3 receptor stimulation: a possible mechanism for eotaxin-induced human eosinophil chemotaxis. Biochem Biophys Res Commun. 1999;264:163–70. doi: 10.1006/bbrc.1999.1379. PubMed DOI
Lotfi R, Lee JJ, Lotze MT. Eosinophilic granulocytes and damage-associated molecular pattern molecules (DAMPs): role in the inflammatory response within tumors. J Immunother. 2007;30:16–28. doi: 10.1097/01.cji.0000211324.53396.f6. PubMed DOI
Pope SM, Brandt EB, Mishra A, Hogan SP, Zimmermann N, Matthaei KI, Foster PS, Rothenberg ME. IL-13 induces eosinophil recruitment into the lung by an IL-5- and eotaxin-dependent mechanism. J Allergy Clin Immunol. 2001;108:594–601. doi: 10.1067/mai.2001.118600. PubMed DOI
Håkansson L, Venge P. Priming of eosinophil and neutrophil migratory responses by interleukin 3 and interleukin 5. APMIS. 1994;102:308–16. doi: 10.1111/j.1699-0463.1994.tb04880.x. PubMed DOI
Brusselle GG, Kips JC, Tavernier JH, van der Heyden JG, Cuvelier CA, Pauwels RA, Bluethmann H. Attenuation of allergic airway inflammation in IL-4 deficient mice. Clin Exp Allergy. 1994;24:73–80. doi: 10.1111/j.1365-2222.1994.tb00920.x. PubMed DOI
Kopf M, Brombacher F, Hodgkin PD, Ramsay AJ, Milbourne EA, Dai WJ, Ovington KS, Behm CA, Köhler G, Young IG, Matthaei KI. IL-5-deficient mice have a developmental defect in CD5+ B-1 cells and lack eosinophilia but have normal antibody and cytotoxic T cell responses. Immunity. 1996;4:15–24. doi: 10.1016/S1074-7613(00)80294-0. PubMed DOI
Kvarnhammar AM, Petterson T, Cardell LO. NOD-like receptors and RIG-I-like receptors in human eosinophils: activation by NOD1 and NOD2 agonists. Immunology. 2011;134:314–25. doi: 10.1111/j.1365-2567.2011.03492.x. PubMed DOI PMC
Havelková H, Badalová J, Svobodová M, Vojtíšková J, Kurey I, Vladimirov V, Demant P, Lipoldová M. Genetics of susceptibility to leishmaniasis in mice: four novel loci and functional heterogeneity of gene effects. Genes Immun. 2006;7:220–33. doi: 10.1038/sj.gene.6364290. PubMed DOI
Badalová J, Svobodová M, Havelková H, Vladimirov V, Vojtíšková J, Engová J, Pilčík T, Volf P, Demant P, Lipoldová M. Separation and mapping of multiple genes that control IgE level in Leishmania major infected mice. Genes Immun. 2002;3:187–95. doi: 10.1038/sj.gene.6363838. PubMed DOI
Vladimirov V, Badalová J, Svobodová M, Havelková H, Hart AAM, Blažková H, Demant P, Lipoldová M. Different genetic control of cutaneous and visceral disease after Leishmania major infection in mice. Infect Immun. 2003;71:2041–6. doi: 10.1128/IAI.71.4.2041-2046.2003. PubMed DOI PMC
Gene-Specific Sex Effects on Susceptibility to Infectious Diseases
Genetic Influence on Frequencies of Myeloid-Derived Cell Subpopulations in Mouse