Genetic Influence on Frequencies of Myeloid-Derived Cell Subpopulations in Mouse
Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
35154069
PubMed Central
PMC8826059
DOI
10.3389/fimmu.2021.760881
Knihovny.cz E-zdroje
- Klíčová slova
- CD11b+Gr1+ subpopulation, candidate gene, genetic control, myeloid-derived cells, neutrophils, relative spleen weight, spleen architecture,
- MeSH
- chromozomy genetika MeSH
- genetická vazba genetika MeSH
- genetické lokusy genetika MeSH
- lidé MeSH
- myeloidní buňky fyziologie MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- neutrofily fyziologie MeSH
- polymorfismus genetický genetika MeSH
- slezina fyziologie MeSH
- stabilita RNA genetika MeSH
- výpočetní biologie metody MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Differences in frequencies of blood cell subpopulations were reported to influence the course of infections, atopic and autoimmune diseases, and cancer. We have discovered a unique mouse strain B10.O20 containing extremely high frequency of myeloid-derived cells (MDC) in spleen. B10.O20 carries 3.6% of genes of the strain O20 on the C57BL/10 genetic background. It contains much higher frequency of CD11b+Gr1+ cells in spleen than both its parents. B10.O20 carries O20-derived segments on chromosomes 1, 15, 17, and 18. Their linkage with frequencies of blood cell subpopulations in spleen was tested in F2 hybrids between B10.O20 and C57BL/10. We found 3 novel loci controlling MDC frequencies: Mydc1, 2, and 3 on chromosomes 1, 15, and 17, respectively, and a locus controlling relative spleen weight (Rsw1) that co-localizes with Mydc3 and also influences proportion of white and red pulp in spleen. Mydc1 controls numbers of CD11b+Gr1+ cells. Interaction of Mydc2 and Mydc3 regulates frequency of CD11b+Gr1+ cells and neutrophils (Gr1+Siglec-F- cells from CD11b+ cells). Interestingly, Mydc3/Rsw1 is orthologous with human segment 6q21 that was shown previously to determine counts of white blood cells. Bioinformatics analysis of genomic sequence of the chromosomal segments bearing these loci revealed polymorphisms between O20 and C57BL/10 that change RNA stability and genes' functions, and we examined expression of relevant genes. This identified potential candidate genes Smap1, Vps52, Tnxb, and Rab44. Definition of genetic control of MDC can help to personalize therapy of diseases influenced by these cells.
Zobrazit více v PubMed
Verso M. The Evolution of Blood-Counting Techniques. Med Hist (1964) 8(2):149. doi: 10.1017/s0025727300029392 PubMed DOI PMC
Nalls MA, Wilson JG, Patterson NJ, Tandon A, Zmuda JM, Huntsman S, et al. . Admixture Mapping of White Cell Count: Genetic Locus Responsible for Lower White Blood Cell Count in the Health ABC and Jackson Heart Studies. Am J Hum Genet (2008) 82(1):81–7. doi: 10.1016/j.ajhg.2007.09.003 PubMed DOI PMC
Pilia G, Chen W-M, Scuteri A, Orrú M, Albai G, Dei M, et al. . Heritability of Cardiovascular and Personality Traits in 6,148 Sardinians. PloS Genet (2006) 2(8):e132. doi: 10.1371/journal.pgen.0020132 PubMed DOI PMC
Evans DM, Frazer IH, Martin NG. Genetic and Environmental Causes of Variation in Basal Levels of Blood Cells. Twin Res (1999) 2(4):250–7. doi: 10.1375/136905299320565735 PubMed DOI
Haddy TB, Rana SR, Castro OJ. Benign Ethnic Neutropenia: What is a Normal Absolute Neutrophil Count? J Lab Clin Med (1999) 133(1):15–22. doi: 10.1053/lc.1999.v133.a94931 PubMed DOI
Reich D, Nalls MA, Kao WL, Akylbekova EL, Tandon A, Patterson N, et al. . Reduced Neutrophil Count in People of African Descent is Due to a Regulatory Variant in the Duffy Antigen Receptor for Chemokines Gene. PloS Genet (2009) 5(1):e1000360. doi: 10.1371/journal.pgen.1000360 PubMed DOI PMC
Telieps T, Köhler M, Treise I, Foertsch K, Adler T, Busch DH, et al. . Longitudinal Frequencies of Blood Leukocyte Subpopulations Differ Between NOD and NOR Mice But do Not Predict Diabetes in NOD Mice. J Diabetes Res (2016) 2016:4208156. doi: 10.1155/2016/4208156 PubMed DOI PMC
Davis RC, Van Nas A, Bennett B, Orozco L, Pan C, Rau CD, et al. . Genome-Wide Association Mapping of Blood Cell Traits in Mice. Mamm Genome (2013) 24(3-4):105–18. doi: 10.1007/s00335-013-9448-0 PubMed DOI PMC
Peters LL, Zhang W, Lambert AJ, Brugnara C, Churchill GA, Platt OS. Quantitative Trait Loci for Baseline White Blood Cell Count, Platelet Count, and Mean Platelet Volume. Mamm Genome (2005) 16(10):749–63. doi: 10.1007/s00335-005-0063-6 PubMed DOI
Roederer M, Quaye L, Mangino M, Beddall MH, Mahnke Y, Chattopadhyay P, et al. . The Genetic Architecture of the Human Immune System: A Bioresource for Autoimmunity and Disease Pathogenesis. Cell (2015) 161(2):387–403. doi: 10.1016/j.cell.2015.02.046 PubMed DOI PMC
Astle WJ, Elding H, Jiang T, Allen D, Ruklisa D, Mann AL, et al. . The Allelic Landscape of Human Blood Cell Trait Variation and Links to Common Complex Disease. Cell (2016) 167(5):1415–1429.e1419. doi: 10.1016/j.cell.2016.10.042 PubMed DOI PMC
Sankaran VG, Orkin SH. Genome-Wide Association Studies of Hematologic Phenotypes: A Window Into Human Hematopoiesis. Curr Opin Genet Dev (2013) 23(3):339–44. doi: 10.1016/j.gde.2013.02.006 PubMed DOI PMC
Zhou X, Crow AL, Hartiala J, Spindler TJ, Ghazalpour A, Barsky LW, et al. . The Genetic Landscape of Hematopoietic Stem Cell Frequency in Mice. Stem Cell Rep (2015) 5(1):125–38. doi: 10.1016/j.stemcr.2015.05.008 PubMed DOI PMC
Evans DM, Zhu G, Duffy DL, Montgomery GW, Frazer IH, Martin NG. Major Quantitative Trait Locus for Eosinophil Count is Located on Chromosome 2q. J Allergy Clin Immunol (2004) 114(4):826–30. doi: 10.1016/j.jaci.2004.05.060 PubMed DOI
Martinez FD, Solomon S, Holberg CJ, Graves PE, Baldini M, Erickson RP. Linkage of Circulating Eosinophils to Markers on Chromosome 5q. Am J Respir Crit Care Med (1998) 158(6):1739–44. doi: 10.1164/ajrccm.158.6.9712040 PubMed DOI
Reiner AP, Lettre G, Nalls MA, Ganesh SK, Mathias R, Austin MA, et al. . Genome-Wide Association Study of White Blood Cell Count in 16,388 African Americans: The Continental Origins and Genetic Epidemiology Network (COGENT). PloS Genet (2011) 7(6):e1002108. doi: 10.1371/journal.pgen.1002108 PubMed DOI PMC
Nalls MA, Couper DJ, Tanaka T, Van Rooij FJ, Chen M-H, Smith AV, et al. . Multiple Loci are Associated With White Blood Cell Phenotypes. PloS Genet (2011) 7(6):e1002113. doi: 10.1371/journal.pgen.1002113 PubMed DOI PMC
Okada Y, Hirota T, Kamatani Y, Takahashi A, Ohmiya H, Kumasaka N, et al. . Identification of Nine Novel Loci Associated With White Blood Cell Subtypes in a Japanese Population. PloS Genet (2011) 7(6):e1002067. doi: 10.1371/journal.pgen.1002067 PubMed DOI PMC
Keller MF, Reiner AP, Okada Y, van Rooij FJ, Johnson AD, Chen M-H, et al. . Trans-Ethnic Meta-Analysis of White Blood Cell Phenotypes. Hum Mol Genet (2014) 23(25):6944–60. doi: 10.1093/hmg/ddu401 PubMed DOI PMC
Ferreira MA, Hottenga J-J, Warrington NM, Medland SE, Willemsen G, Lawrence RW, et al. . Sequence Variants in Three Loci Influence Monocyte Counts and Erythrocyte Volume. Am J Hum Genet (2009) 85(5):745–9. doi: 10.1016/j.ajhg.2009.10.005 PubMed DOI PMC
Bovo S, Mazzoni G, Bertolini F, Schiavo G, Galimberti G, Gallo M, et al. . Genome-Wide Association Studies for 30 Haematological and Blood Clinical-Biochemical Traits in Large White Pigs Reveal Genomic Regions Affecting Intermediate Phenotypes. Sci Rep (2019) 9(1):1–17. doi: 10.1038/s41598-019-43297-1 PubMed DOI PMC
Bovo S, Ballan M, Schiavo G, Gallo M, Dall’Olio S, Fontanesi L. Haplotype-Based Genome-Wide Association Studies Reveal New Loci for Haematological and Clinical–Biochemical Parameters in Large White Pigs. Anim Genet (2020) 51(4):601–6. doi: 10.1111/age.12959 PubMed DOI
Yang S, Ren J, Yan X, Huang X, Zou Z, Zhang Z, et al. . Quantitative Trait Loci for Porcine White Blood Cells and Platelet-Related Traits in a White Duroc× Erhualian F2 Resource Population. Anim Genet (2009) 40(3):273–8. doi: 10.1111/j.1365-2052.2008.01830.x PubMed DOI
Mousas A, Ntritsos G, Chen M-H, Song C, Huffman JE, Tzoulaki I, et al. . Rare Coding Variants Pinpoint Genes That Control Human Hematological Traits. PloS Genet (2017) 13(8):e1006925. doi: 10.1371/journal.pgen.1006925 PubMed DOI PMC
Stassen A, Groot P, Eppig J, Demant PJ. Genetic Composition of the Recombinant Congenic Strains. Mamm Genome (1996) 7(1):55–8. doi: 10.1007/s003359900013 PubMed DOI
Šíma M, Havelková H, Quan L, Svobodová M, Jarošíková T, Vojtíšková J, et al. . Genetic Control of Resistance to Trypanosoma Brucei Brucei Infection in Mice. PloS Negl Trop Dis (2011) 5(6):e1173. doi: 10.1371/journal.pntd.0001173 PubMed DOI PMC
Sohrabi Y, Volkova V, Kobets T, Havelková H, Krayem I, Slapničková M, et al. . Genetic Regulation of Guanylate-Binding Proteins 2b and 5 During Leishmaniasis in Mice. Front Immunol (2018) 9:130. doi: 10.3389/fimmu.2018.00130 PubMed DOI PMC
Arvidsson S, Kwasniewski M, Riaño-Pachón DM, Mueller-Roeber B. QuantPrime–a Flexible Tool for Reliable High-Throughput Primer Design for Quantitative PCR. BMC Bioinf (2008) 9(1):465. doi: 10.1186/1471-2105-9-465 PubMed DOI PMC
Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 Years of Image Analysis. Nat Methods (2012) 9(7):671–5. doi: 10.1038/nmeth.2089 PubMed DOI PMC
Palus M, Sohrabi Y, Broman KW, Strnad H, Šíma M, Růžek D, et al. . A Novel Locus on Mouse Chromosome 7 That Influences Survival After Infection With Tick-Borne Encephalitis Virus. BMC Neurosci (2018) 19(1):1–11. doi: 10.1186/s12868-018-0438-8 PubMed DOI PMC
Bolger AM, Lohse M, Usadel B. Trimmomatic: A Flexible Trimmer for Illumina Sequence Data. Bioinformatics (2014) 30(15):2114–20. doi: 10.1093/bioinformatics/btu170 PubMed DOI PMC
Magoč T, Salzberg SL. FLASH: Fast Length Adjustment of Short Reads to Improve Genome Assemblies. Bioinformatics (2011) 27(21):2957–63. doi: 10.1093/bioinformatics/btr507 PubMed DOI PMC
Li H, Durbin R. Fast and Accurate Long-Read Alignment With Burrows-Wheeler Transform. Bioinformatics (2010) 26(5):589–95. doi: 10.1093/bioinformatics/btp698 PubMed DOI PMC
McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, et al. . The Genome Analysis Toolkit: A MapReduce Framework for Analyzing Next-Generation DNA Sequencing Data. Genome Res (2010) 20(9):1297–303. doi: 10.1101/gr.107524.110 PubMed DOI PMC
Robinson JT, Thorvaldsdóttir H, Winckler W, Guttman M, Lander ES, Getz G, et al. . Integrative Genomics Viewer. Nat Biotechnol (2011) 29(1):24–6. doi: 10.1038/nbt.1754 PubMed DOI PMC
Cingolani P, Platts A, Wang le L, Coon M, Nguyen T, Wang L, et al. . A Program for Annotating and Predicting the Effects of Single Nucleotide Polymorphisms, SnpEff: SNPs in the Genome of Drosophila Melanogaster Strain W1118; Iso-2; Iso-3. Fly (Austin) (2012) 6(2):80–92. doi: 10.4161/fly.19695 PubMed DOI PMC
Choi Y, Chan AP. PROVEAN Web Server: A Tool to Predict the Functional Effect of Amino Acid Substitutions and Indels. Bioinformatics (2015) 31(16):2745–7. doi: 10.1093/bioinformatics/btv195 PubMed DOI PMC
Ashkenazy H, Erez E, Martz E, Pupko T, Ben-Tal N. ConSurf 2010: Calculating Evolutionary Conservation in Sequence and Structure of Proteins and Nucleic Acids. Nucleic Acids Res (2010) 38(suppl 2):W529–33. doi: 10.1093/nar/gkq399 PubMed DOI PMC
Celniker G, Nimrod G, Ashkenazy H, Glaser F, Martz E, Mayrose I, et al. . ConSurf: Using Evolutionary Data to Raise Testable Hypotheses About Protein Function. Isr J Chem (2013) 53(3-4):199–206. doi: 10.1002/ijch.201200096 DOI
Ashkenazy H, Abadi S, Martz E, Chay O, Mayrose I, Pupko T, et al. . ConSurf 2016: An Improved Methodology to Estimate and Visualize Evolutionary Conservation in Macromolecules. Nucleic Acids Res (2016) 44(W1):W344–50. doi: 10.1093/nar/gkw408 PubMed DOI PMC
Cesta MF. Normal Structure, Function, and Histology of the Spleen. Toxicol Pathol (2006) 34(5):455–65. doi: 10.1080/01926230600867743 PubMed DOI
The Jackson Laboratory. MGI: Mouse Genome Informatics. Available at: http://www.informatics.jax.org (Accessed November 20, 2020).
Kon S, Minegishi N, Tanabe K, Watanabe T, Funaki T, Wong WF, et al. . Smap1 Deficiency Perturbs Receptor Trafficking and Predisposes Mice to Myelodysplasia. J Clin Invest (2013) 123(3):1123–37. doi: 10.1172/JCI63711 PubMed DOI PMC
Bult CJ, Blake JA, Smith CL, Kadin JA, Richardson JE. Mouse Genome Database (MGD) 2019. Nucleic Acids Res (2019) 47(D1):D801–6. doi: 10.1093/nar/gky1056 PubMed DOI PMC
Zhou Y, Li Y, Lu J, Hong X, Xu L. MicroRNA30a Controls the Instability of Inducible CD4+ Tregs Through SOCS1. Mol Med Rep (2019) 20(5):4303–14. doi: 10.3892/mmr.2019.10666 PubMed DOI
Ceolotto G, Giannella A, Albiero M, Kuppusamy M, Radu C, Simioni P, et al. . miR-30c-5p Regulates Macrophage-Mediated Inflammation and Pro-Atherosclerosis Pathways. Cardiovasc Res (2017) 113(13):1627–38. doi: 10.1093/cvr/cvx157 PubMed DOI
Yanagawa T, Sumiyoshi H, Higashi K, Nakao S, Higashiyama R, Fukumitsu H, et al. . Identification of a Novel Bone Marrow Cell-Derived Accelerator of Fibrotic Liver Regeneration Through Mobilization of Hepatic Progenitor Cells in Mice. Stem Cells (2019) 37(1):89–101. doi: 10.1002/stem.2916 PubMed DOI
Probst K, Stermann J, von Bomhard I, Etich J, Pitzler L, Niehoff A, et al. . Depletion of Collagen IX Alpha1 Impairs Myeloid Cell Function. Stem Cells (2018) 36(11):1752–63. doi: 10.1002/stem.2892 PubMed DOI
Lipoldová M, Kosařová M, Zajícová A, Holáň V, Hart AA, Krulová M, et al. . Separation of Multiple Genes Controlling the T-Cell Proliferative Response to IL-2 and Anti-CD3 Using Recombinant Congenic Strains. Immunogenetics (1995) 41(5):301–11. doi: 10.1007/BF00172155 PubMed DOI
Lipoldová M, Havelková H, Badalová J, Demant P. Novel Loci Controlling Lymphocyte Proliferative Response to Cytokines and Their Clustering With Loci Controlling Autoimmune Reactions, Macrophage Function and Lung Tumor Susceptibility. Int J Cancer (2005) 114(3):394–9. doi: 10.1002/ijc.20731 PubMed DOI
Lipoldová M, Havelková H, Badalová J, Vojtíšková J, Quan L, Krulová M, et al. . Loci Controlling Lymphocyte Production of Interferon γ After Alloantigen Stimulation In Vitro and Their Co-Localization With Genes Controlling Lymphocyte Infiltration of Tumors and Tumor Susceptibility. Cancer Immunol Immunother (2010) 59(2):203–13. doi: 10.1007/s00262-009-0739-y PubMed DOI PMC
Slapničková M, Volkova V, Čepičková M, Kobets T, Šíma M, Svobodová M, et al. . Gene-Specific Sex Effects on Eosinophil Infiltration in Leishmaniasis. Biol Sex Differ (2016) 7(1):59. doi: 10.1186/s13293-016-0117-3 PubMed DOI PMC
Lipoldová M, Svobodová M, Havelková H, Krulová M, Badalová J, Nohýnková E, et al. . Mouse Genetic Model for Clinical and Immunological Heterogeneity of Leishmaniasis. Immunogenetics (2002) 54(3):174–83. doi: 10.1007/s00251-002-0439-7 PubMed DOI
Kobets T, Havelková H, Grekov I, Volkova V, Vojtíšková J, Slapničková M, et al. . Genetics of Host Response to Leishmania Tropica in Mice–Different Control of Skin Pathology, Chemokine Reaction, and Invasion Into Spleen and Liver. PloS Negl Trop Dis (2012) 6(6):e1667. doi: 10.1371/journal.pntd.0001667 PubMed DOI PMC
Shockley KR, Churchill GA. Gene Expression Analysis of Mouse Chromosome Substitution Strains. Mamm Genome (2006) 17(6):598–614. doi: 10.1007/s00335-005-0176-y PubMed DOI
Civelek M, Lusis AJ. Systems Genetics Approaches to Understand Complex Traits. Nat Rev Genet (2014) 15(1):34. doi: 10.1038/nrg3575 PubMed DOI PMC
Van Nie R, Ivanyi D, Demant PJ. A New H-2-Linked Mutation, Rds, Causing Retinal Degeneration in the Mouse. Tissue Antigens (1978) 12(2):106–8. doi: 10.1111/j.1399-0039.1978.tb01305.x PubMed DOI
Van Gulik PJ, Korteweg R. The Anatomy of the Mammary Gland in Mice With Regard to the Degree of its Disposition for Cancer. Verhandelingen der Koninklijke Nederlandse Akademie van Wettenschappen (1940) 43:891–900.
Fijneman RJ, Demant P. A Gene for Susceptibility to Small Intestinal Cancer, Ssic1, Maps to the Distal Part of Mouse Chromosome 4. Cancer Res (1995) 55(14):3179–82. PubMed
Fijneman R, Ophoff RA, Hart A, Demant P. Kras-2 Alleles, Mutations, and Lung Tumor Susceptibility in the Mouse–an Evaluation. Oncogene (1994) 9(5):1417–21. PubMed
Gamara J, Chouinard F, Davis L, Aoudjit F, Bourgoin SG. Regulators and Effectors of Arf GTPases in Neutrophils. J Immunol Res (2015) 2015. doi: 10.1155/2015/235170 PubMed DOI PMC
Hudson J, Chown S, Lawler M, Duggan C, Temperley I, Secker-Walker L. Severe Aplastic Anaemia in Association With a Unique Constitutional Translocation 46, XY, T (6; 10)(Q13; Q22) C. Br J Haematol (1997) 99(3):520–1. doi: 10.1046/j.1365-2141.1997.4433253.x PubMed DOI
Kluth M, Jung S, Habib O, Eshagzaiy M, Heinl A, Amschler N, et al. . Deletion Lengthening at Chromosomes 6q and 16q Targets Multiple Tumor Suppressor Genes and Is Associated With an Increasingly Poor Prognosis in Prostate Cancer. Oncotarget (2017) 8(65):108923. doi: 10.18632/oncotarget.22408 PubMed DOI PMC
Meyer C, Schneider B, Reichel M, Angermueller S, Strehl S, Schnittger S, et al. . Diagnostic Tool for the Identification of MLL Rearrangements Including Unknown Partner Genes. Proc Natl Acad Sci USA (2005) 102(2):449–54. doi: 10.1073/pnas.0406994102 PubMed DOI PMC
Sangar F, Schreurs A, Umaña-Diaz C, Clapéron A, Desbois-Mouthon C, Calmel C, et al. . Involvement of Small ArfGAP1 (SMAP1), a Novel Arf6-Specific GTPase-Activating Protein, in Microsatellite Instability Oncogenesis. Oncogene (2014) 33(21):2758–67. doi: 10.1038/onc.2013.211 PubMed DOI
Rühle F, Witten A, Barysenka A, Huge A, Arning A, Heller C, et al. . Rare Genetic Variants in SMAP1, B3GAT2, and RIMS1 Contribute to Pediatric Venous Thromboembolism. Blood (2017) 129(6):783–90. doi: 10.1182/blood-2016-07-728840 PubMed DOI
Li R, Peng C, Zhang X, Wu Y, Pan S, Xiao Y. Roles of Arf6 in Cancer Cell Invasion, Metastasis and Proliferation. Life Sci (2017) 182:80–4. doi: 10.1016/j.lfs.2017.06.008 PubMed DOI
Casalou C, Ferreira A, Barral DC. The Role of ARF Family Proteins and Their Regulators and Effectors in Cancer Progression: A Therapeutic Perspective. Front Cell Dev Biol (2020) 8:217. doi: 10.3389/fcell.2020.00217 PubMed DOI PMC
Kadowaki T, Yamaguchi Y, Kido MA, Abe T, Ogawa K, Tokuhisa M, et al. . The Large GTPase Rab44 Regulates Granule Exocytosis in Mast Cells and IgE-Mediated Anaphylaxis. Cell Mol Immunol (2020) 17:12, 1287–1289. doi: 10.1038/s41423-020-0413-z PubMed DOI PMC
Srikanth S, Woo JS, Gwack Y. A Large Rab GTPase Family in a Small GTPase World. Small GTPases (2017) 8(1):43–8. doi: 10.1080/21541248.2016.1192921 PubMed DOI PMC
Yamaguchi Y, Sakai E, Okamoto K, Kajiya H, Okabe K, Naito M, et al. . Rab44, a Novel Large Rab GTPase, Negatively Regulates Osteoclast Differentiation by Modulating Intracellular Calcium Levels Followed by NFATc1 Activation. Cell Mol Life Sci (2018) 75(1):33–48. doi: 10.1007/s00018-017-2607-9 PubMed DOI PMC
Schindler C, Chen Y, Pu J, Guo X, Bonifacino JS. EARP Is a Multisubunit Tethering Complex Involved in Endocytic Recycling. Nat Cell Biol (2015) 17(5):639–50. doi: 10.1038/ncb3129 PubMed DOI PMC
Sugimoto M, Kondo M, Hirose M, Suzuki M, Mekada K, Abe T, et al. . Molecular Identification of Tw5: Vps52 Promotes Pluripotential Cell Differentiation Through Cell–Cell Interactions. Cell Rep (2012) 2(5):1363–74. doi: 10.1016/j.celrep.2012.10.004 PubMed DOI
Zhang J, Lin Y, Hu X, Wu Z, Guo W. VPS52 Induces Apoptosis via Cathepsin D in Gastric Cancer. J Mol Med (Berl) (2017) 95(10):1107–16. doi: 10.1007/s00109-017-1572-y PubMed DOI
Valcourt U, Alcaraz LB, Exposito J-Y, Lethias C, Bartholin L. Tenascin-X: Beyond the Architectural Function. Cell Adh Mig (2015) 9(1-2):154–65. doi: 10.4161/19336918.2014.994893 PubMed DOI PMC
Tajuddin SM, Schick UM, Eicher JD, Chami N, Giri A, Brody JA, et al. . Large-Scale Exome-Wide Association Analysis Identifies Loci for White Blood Cell Traits and Pleiotropy With Immune-Mediated Diseases. Am J Hum Genet (2016) 99(1):22–39. doi: 10.1016/j.ajhg.2016.05.003 PubMed DOI PMC
Gamara J, Davis L, Rollet-Labelle E, Hongu T, Funakoshi Y, Kanaho Y, et al. . Assessment of Arf6 Deletion in PLB-985 Differentiated in Neutrophil-Like Cells and in Mouse Neutrophils: Impact on Adhesion and Migration. Mediators Inflammation (2020) 2020:2713074. doi: 10.1155/2020/2713074 PubMed DOI PMC
Wu C, Jin X, Tsueng G, Afrasiabi C, Su AI. BioGPS: Building Your Own Mash-Up of Gene Annotations and Expression Profiles. Nucleic Acids Res (2016) 44(D1):D313–6. doi: 10.1093/nar/gkv1104 PubMed DOI PMC
Tokuhisa M, Kadowaki T, Ogawa K, Yamaguchi Y, Kido MA, Gao W, et al. . Expression and Localisation of Rab44 in Immune-Related Cells Change During Cell Differentiation and Stimulation. Sci Rep (2020) 10(1):1–13. doi: 10.1038/s41598-020-67638-7 PubMed DOI PMC
Zhang Z, Hong Y, Gao J, Xiao S, Ma J, Zhang W, et al. . Genome-Wide Association Study Reveals Constant and Specific Loci for Hematological Traits at Three Time Stages in a White Duroc× Erhualian F2 Resource Population. PloS One (2013) 8(5):e63665. doi: 10.1371/journal.pone.0063665 PubMed DOI PMC
Ibuchi K, Fukaya M, Shinohara T, Hara Y, Shiroshima T, Sugawara T, et al. . The Vps52 Subunit of the GARP and EARP Complexes Is a Novel Arf6-Interacting Protein That Negatively Regulates Neurite Outgrowth of Hippocampal Neurons. Brain Res (2020) 1745:146905. doi: 10.1016/j.brainres.2020.146905 PubMed DOI
Dickinson ME, Flenniken AM, Ji X, Teboul L, Wong MD, White JK, et al. . High-Throughput Discovery of Novel Developmental Phenotypes. Nature (2016) 537(7621):508–14. doi: 10.1038/nature19356 PubMed DOI PMC
European Molecular Biology Laboratory - European Bioinformatics Institute EMBL-EBI. IMPC: International Mouse Phenotyping Consortium . Available at: http://www.mousephenotype.org (Accessed November 20, 2019).
Carignano HA, Roldan DL, Beribe MJ, Raschia MA, Amadio A, Nani JP, et al. . Genome-Wide Scan for Commons SNPs Affecting Bovine Leukemia Virus Infection Level in Dairy Cattle. BMC Genomics (2018) 19(1):1–15. doi: 10.1186/s12864-018-4523-2 PubMed DOI PMC
NCBI: National Center for Biotechnology Information . Available at: https://ncbi.nlm.nih.gov/gene (Accessed November 20, 2019).
Bruger AM, Dorhoi A, Esendagli G, Barczyk-Kahlert K, van der Bruggen P, Lipoldova M, et al. . How to Measure the Immunosuppressive Activity of MDSC: Assays, Problems and Potential Solutions. Cancer Immunol Immunother (2019) 68(4):631–44. doi: 10.1007/s00262-018-2170-8 PubMed DOI PMC
Bizymi N, Bjelica S, Kittang AO, Mojsilovic S, Velegraki M, Pontikoglou C, et al. . Myeloid-Derived Suppressor Cells in Hematologic Diseases: Promising Biomarkers and Treatment Targets. Hemasphere (2019) 3(1):e168. doi: 10.1097/HS9.0000000000000168 PubMed DOI PMC
Gabrilovich DI, Nagaraj S. Myeloid-Derived Suppressor Cells as Regulators of the Immune System. Nat Rev Immunol (2009) 9(3):162–74. doi: 10.1038/nri2506 PubMed DOI PMC
Effects of Leishmania major infection on the gut microbiome of resistant and susceptible mice