A novel locus on mouse chromosome 7 that influences survival after infection with tick-borne encephalitis virus

. 2018 Jul 06 ; 19 (1) : 39. [epub] 20180706

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid29976152

Grantová podpora
R01 GM070683 NIGMS NIH HHS - United States
R01 GM074244 NIGMS NIH HHS - United States

Odkazy

PubMed 29976152
PubMed Central PMC6034256
DOI 10.1186/s12868-018-0438-8
PII: 10.1186/s12868-018-0438-8
Knihovny.cz E-zdroje

BACKGROUND: Tick-borne encephalitis (TBE) is the main tick-borne viral infection in Eurasia. Its manifestations range from inapparent infections and fevers with complete recovery to debilitating or fatal encephalitis. The basis of this heterogeneity is largely unknown, but part of this variation is likely due to host genetic. We have previously found that BALB/c mice exhibit intermediate susceptibility to the infection of TBE virus (TBEV), STS mice are highly resistant, whereas the recombinant congenic strain CcS-11, carrying 12.5% of the STS genome on the background of the BALB/c genome is even more susceptible than BALB/c. Importantly, mouse orthologs of human TBE controlling genes Oas1b, Cd209, Tlr3, Ccr5, Ifnl3 and Il10, are in CcS-11 localized on segments derived from the strain BALB/c, so they are identical in BALB/c and CcS-11. As they cannot be responsible for the phenotypic difference of the two strains, we searched for the responsible STS-derived gene-locus. Of course the STS-derived genes in CcS-11 may operate through regulating or epigenetically modifying these non-polymorphic genes of BALB/c origin. METHODS: To determine the location of the STS genes responsible for susceptibility of CcS-11, we analyzed survival of TBEV-infected F2 hybrids between BALB/c and CcS-11. CcS-11 carries STS-derived segments on eight chromosomes. These were genotyped in the F2 hybrid mice and their linkage with survival was tested by binary trait interval mapping. We have sequenced genomes of BALB/c and STS using next generation sequencing and performed bioinformatics analysis of the chromosomal segment exhibiting linkage with TBEV survival. RESULTS: Linkage analysis revealed a novel suggestive survival-controlling locus on chromosome 7 linked to marker D7Nds5 (44.2 Mb). Analysis of this locus for polymorphisms between BALB/c and STS that change RNA stability and genes' functions led to detection of 9 potential candidate genes: Cd33, Klk1b22, Siglece, Klk1b16, Fut2, Grwd1, Abcc6, Otog, and Mkrn3. One of them, Cd33, carried a nonsense mutation in the STS strain. CONCLUSIONS: The robust genetic system of recombinant congenic strains of mice enabled detection of a novel suggestive locus on chromosome 7. This locus contains 9 candidate genes, which will be focus of future studies not only in mice but also in humans.

Zobrazit více v PubMed

Dobler G, Gniel D, Petermann R, Pfeffer M. Epidemiology and distribution of tick-borne encephalitis. Wien Med Wochenschr. 2012;162:230–238. doi: 10.1007/s10354-012-0100-5. PubMed DOI

Süss J. Tick-borne encephalitis 2010: epidemiology, risk areas, and virus strains in Europe and Asia—an overview. Ticks Tick Borne Dis. 2011;2:2–15. doi: 10.1016/j.ttbdis.2010.10.007. PubMed DOI

Barkhash AV, Perelygin AA, Babenko VN, Myasnikova NG, Pilipenko PI, Romaschenko AG, Voevoda MI, Brinton MA. Variability in the 2′-5′-oligoadenylate synthetase gene cluster is associated with human predisposition to tick-borne encephalitis virus-induced disease. J Infect Dis. 2010;202:1813–1818. doi: 10.1086/657418. PubMed DOI

Rushton JO, Lecollinet S, Hubálek Z, Svobodová P, Lussy H, Nowotny N. Tick-borne encephalitis virus in horses, Austria. Emerg Infect Dis. 2011;19:635–637. doi: 10.3201/eid1904.121450. PubMed DOI PMC

Perelygin AA, Scherbik SV, Zhulin IB, Stockman BM, Li Y, Brinton MA. Positional cloning of the murine flavivirus resistance gene. Proc Natl Acad Sci USA. 2002;99(14):9322–9327. doi: 10.1073/pnas.142287799. PubMed DOI PMC

Mashimo T, Lucas M, Simon-Chazottes D, Frenkiel MP, Montagutelli X, Ceccaldi PE, Deubel V, Guenet JL, Despres P. A nonsense mutation in the gene encoding 2′-5′-oligoadenylate synthetase/L1 isoform is associated with West Nile virus susceptibility in laboratory mice. Proc Natl Acad Sci USA. 2002;99:11311–11316. doi: 10.1073/pnas.172195399. PubMed DOI PMC

Darnell MB, Koprowski H, Lagerspetz K. Genetically determined resistance to infection with group B arboviruses. I. Distribution of the resistance gene among various mouse populations and characteristics of gene expression in vivo. J Infect Dis. 1974;129(3):240–247. doi: 10.1093/infdis/129.3.240. PubMed DOI

Lim JK, Lisco A, McDermott DH, Huynh L, Ward JM, Johnson B, Johnson H, Pape J, Foster GA, Krysztof D, Follmann D, Stramer SL, Margolis LB, Murphy PM. Genetic variation in OAS1 is a risk factor for initial infection with West Nile virus in man. PLoS Pathog. 2009;5(2):e1000321. doi: 10.1371/journal.ppat.1000321. PubMed DOI PMC

Turtle L, Griffiths MJ, Solomon T. Encephalitis caused by flaviviruses. QJM. 2012;105:219–223. doi: 10.1093/qjmed/hcs013. PubMed DOI PMC

Barkhash AV, Perelygin AA, Babenko VN, Brinton MA, Voevoda MI. Single nucleotide polymorphism in the promoter region of the CD209 gene is associated with human predisposition to severe forms of tick-borne encephalitis. Antivir Res. 2012;93:64–68. doi: 10.1016/j.antiviral.2011.10.017. PubMed DOI

Kindberg E, Mickiene A, Ax C, Akerlind B, Vene S, Lindquist L, Lundkvist A, Svensson L. A deletion in the chemokine receptor 5 (CCR5) gene is associated with tickborne encephalitis. J Infect Dis. 2008;197:266–269. doi: 10.1086/524709. PubMed DOI

Barkhash AV, Voevoda MI, Romaschenko AG. Association of single nucleotide polymorphism rs3775291 in the coding region of the TLR3 gene with predisposition to tick-borne encephalitis in a Russian population. Antivir Res. 2013;99(2):136–138. doi: 10.1016/j.antiviral.2013.05.008. PubMed DOI

Mickienė A, Pakalnienė J, Nordgren J, Carlsson B, Hagbom M, Svensson L, Lindquist L. Polymorphisms in chemokine receptor 5 and toll-like receptor 3 genes are risk factors for clinical tick-borne encephalitis in the Lithuanian population. PLoS ONE. 2014;9(9):e106798. doi: 10.1371/journal.pone.0106798. PubMed DOI PMC

Barkhash AV, Babenko VN, Voevoda MI, Romaschenko AG. Association of IL28B and IL10 gene polymorphism with predisposition to tick-borne encephalitis in a Russian population. Ticks Tick Borne Dis. 2016;7(5):808–812. doi: 10.1016/j.ttbdis.2016.03.019. PubMed DOI

Démant P, Hart AA. Recombinant congenic strains–a new tool for analyzing genetic traits determined by more than one gene. Immunogenetics. 1986;24(6):416–422. doi: 10.1007/BF00377961. PubMed DOI

Palus M, Vojtíšková J, Salát J, Kopecký J, Grubhoffer L, Lipoldová M, Demant P, Růžek D. Mice with different susceptibility to tick-borne encephalitis virus infection show selective neutralizing antibody response and inflammatory reaction in the central nervous system. J Neuroinflammation. 2013;10:77. doi: 10.1186/1742-2094-10-77. PubMed DOI PMC

Šíma M, Havelková H, Quan L, Svobodová M, Jarošíková T, Vojtíšková J, Stassen AP, Demant P, Lipoldová M. Genetic control of resistance to Trypanosoma brucei brucei infection in mice. PLoS Negl Trop Dis. 2011;5:e1173. doi: 10.1371/journal.pntd.0001173. PubMed DOI PMC

Xu S, Atchley WR. Mapping quantitative trait loci for complex binary diseases using line crosses. Genetics. 1996;143:1417–1424. PubMed PMC

Broman KW. Mapping quantitative trait loci in the case of a spike in the phenotype distribution. Genetics. 2003;163(3):1169–1175. PubMed PMC

Churchill GA, Doerge RW. Empirical threshold values for quantitative trait mapping. Genetics. 1994;138:963–971. PubMed PMC

Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30(15):2114–2120. doi: 10.1093/bioinformatics/btu170. PubMed DOI PMC

Magoč T, Salzberg SL. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics. 2011;27(21):2957–2963. doi: 10.1093/bioinformatics/btr507. PubMed DOI PMC

Li H, Durbin R. Fast and accurate long-read alignment with Burrows–Wheeler transform. Bioinformatics. 2010;26(5):589–595. doi: 10.1093/bioinformatics/btp698. PubMed DOI PMC

McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, DePristo MA. The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010;20(9):1297–1303. doi: 10.1101/gr.107524.110. PubMed DOI PMC

Cingolani P, Platts A, le Wang L, Coon M, Nguyen T, Wang L, Land SJ, Lu X, Ruden DM. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly (Austin) 2012;6(2):80–92. doi: 10.4161/fly.19695. PubMed DOI PMC

Robinson JT, Thorvaldsdóttir H, Winckler W, Guttman M, Lander ES, Getz G, Mesirov JP. Integrative genomics viewer. Nat Biotechnol. 2011;29(1):24–26. doi: 10.1038/nbt.1754. PubMed DOI PMC

Macauley MS, Crocker PR, Paulson JC. Siglec-mediated regulation of immune cell function in disease. Nat Rev Immunol. 2014;14(10):653–666. doi: 10.1038/nri3737. PubMed DOI PMC

Brinkman-Van der Linden EC, Angata T, Reynolds SA, Powell LD, Hedrick SM, Varki A. CD33/Siglec-3 binding specificity, expression pattern, and consequences of gene deletion in mice. Mol Cell Biol. 2003;23(12):4199–4206. doi: 10.1128/MCB.23.12.4199-4206.2003. PubMed DOI PMC

Griciuc A, Serrano-Pozo A, Parrado AR, Lesinski AN, Asselin CN, Mullin K, Hooli B, Choi SH, Hyman BT, Tanzi RE. Alzheimer’s disease risk gene CD33 inhibits microglial uptake of amyloid beta. Neuron. 2013;78(4):631–643. doi: 10.1016/j.neuron.2013.04.014. PubMed DOI PMC

Jiang T, Yu JT, Hu N, Tan MS, Zhu XC, Tan L. CD33 in Alzheimer’s disease. Mol Neurobiol. 2014;49(1):529–535. doi: 10.1007/s12035-013-8536-1. PubMed DOI

Claude J, Linnartz-Gerlach B, Kudin AP, Kunz WS, Neumann H. Microglial CD33-related Siglec-E inhibits neurotoxicity by preventing the phagocytosis-associated oxidative burst. J Neurosci. 2013;33(46):18270–18276. doi: 10.1523/JNEUROSCI.2211-13.2013. PubMed DOI PMC

Kant Upadhyay R. Biomarkers in Japanese encephalitis: a review. Biomed Res Int. 2013;2013:591290. doi: 10.1155/2013/591290. PubMed DOI PMC

Rust NM, Papa MP, Scovino AM, da Silva MM, Calzavara-Silva CE, Marques ET, Jr, Peçanha LM, Scharfstein J, Arruda LB. Bradykinin enhances Sindbis virus infection in human brain microvascular endothelial cells. Virology. 2012;422(1):81–91. doi: 10.1016/j.virol.2011.10.003. PubMed DOI

Nico D, Feijó DF, Maran N, Morrot A, Scharfstein J, Palatnik M, Palatnik-de-Sousa CB. Resistance to visceral leishmaniasis is severely compromised in mice deficient of bradykinin B2-receptors. Parasit Vectors. 2012;5:261. doi: 10.1186/1756-3305-5-261. PubMed DOI PMC

Monteiro AC, Schmitz V, Morrot A, de Arruda LB, Nagajyothi F, Granato A, Pesquero JB, Müller-Esterl W, Tanowitz HB, Scharfstein J. Bradykinin B2 Receptors of dendritic cells, acting as sensors of kinins proteolytically released by Trypanosoma cruzi, are critical for the development of protective type-1 responses. PLoS Pathog. 2007;3(11):e185. doi: 10.1371/journal.ppat.0030185. PubMed DOI PMC

Kurey I, Kobets T, Havelková H, Slapnicková M, Quan L, Trtková K, Grekov I, Svobodová M, Stassen AP, Hutson A, Demant P, Lipoldová M. Distinct genetic control of parasite elimination, dissemination, and disease after Leishmania major infection. Immunogenetics. 2009;61(9):619–633. doi: 10.1007/s00251-009-0392-9. PubMed DOI PMC

Lindesmith L, Moe C, Marionneau S, Ruvoen N, Jiang X, Lindblad L, Stewart P, LePendu J, Baric R. Human susceptibility and resistance to Norwalk virus infection. Nat Med. 2003;9(5):548–553. doi: 10.1038/nm860. PubMed DOI

Payne DC, Currier RL, Staat MA, Sahni LC, Selvarangan R, Halasa NB, Englund JA, Weinberg GA, Boom JA, Szilagyi PG, Klein EJ, Chappell J, Harrison CJ, Davidson BS, Mijatovic-Rustempasic S, Moffatt MD, McNeal M, Wikswo M, Bowen MD, Morrow AL, Parashar UD. Epidemiologic association between FUT2 secretor status and severe rotavirus gastroenteritis in children in the United States. JAMA Pediatr. 2015;169(11):1040–1045. doi: 10.1001/jamapediatrics.2015.2002. PubMed DOI PMC

Kindberg E, Hejdeman B, Bratt G, Wahren B, Lindblom B, Hinkula J, Svensson L. A nonsense mutation (428G → A) in the fucosyltransferase FUT2 gene affects the progression of HIV-1 infection. Aids. 2006;20(5):685–689. doi: 10.1097/01.aids.0000216368.23325.bc. PubMed DOI

Mottram L, Wiklund G, Larson G, Qadri F, Svennerholm AM. FUT2 non-secretor status is associated with altered susceptibility to symptomatic enterotoxigenic Escherichia coli infection in Bangladeshis. Sci Rep. 2017;7(1):10649. doi: 10.1038/s41598-017-10854-5. PubMed DOI PMC

Magalhães A, Rossez Y, Robbe-Masselot C, Maes E, Gomes J, Shevtsova A, Bugaytsova J, Borén T, Reis CA. Muc5ac gastric mucin glycosylation is shaped by FUT2 activity and functionally impacts Helicobacter pylori binding. Sci Rep. 2016;6:25575. doi: 10.1038/srep25575. PubMed DOI PMC

Ko A, Lee EW, Yeh JY, Yang MR, Oh W, Moon JS, Song J. MKRN1 induces degradation of West Nile virus capsid protein by functioning as an E3 ligase. J Virol. 2010;84(1):426–436. doi: 10.1128/JVI.00725-09. PubMed DOI PMC

http://www.informatics.jax.org/genes.shtml. Accessed 5 Sept 2017.

Hayasaka D, Aoki K, Morita K. Development of simple and rapid assay to detect viral RNA of tick-borne encephalitis virus by reverse transcription-loop-mediated isothermal amplification. Virol J. 2013;10:68. doi: 10.1186/1743-422X-10-68. PubMed DOI PMC

Gratenstein K, Heggestad AD, Fortun J, Notterpek L, Pestov DG, Fletcher BS. The WD-repeat protein GRWD1: potential roles in myeloid differentiation and ribosome biogenesis. Genomics. 2005;85(6):762–773. doi: 10.1016/j.ygeno.2005.02.010. PubMed DOI

Vladimirov V, Badalová J, Svobodová M, Havelková H, Hart AA, Blazková H, Demant P, Lipoldová M. Different genetic control of cutaneous and visceral disease after Leishmania major infection in mice. Infect Immun. 2003;71:2041–2046. doi: 10.1128/IAI.71.4.2041-2046.2003. PubMed DOI PMC

Sohrabi Y, Havelková H, Kobets T, Šíma M, Volkova V, Grekov I, Jarošíková T, Kurey I, Vojtíšková J, Svobodová M, Demant P, Lipoldová M. Mapping the genes for susceptibility and response to Leishmania tropica in mouse. PLoS Negl Trop Dis. 2013;7(7):e2282. doi: 10.1371/journal.pntd.0002282. PubMed DOI PMC

van Wezel T, Stassen AP, Moen CJ, Hart AA, van der Valk MA, Demant P. Gene interaction and single gene effects in colon tumour susceptibility in mice. Nat Genet. 1996;14:468–470. doi: 10.1038/ng1296-468. PubMed DOI

Lipoldová M, Havelková H, Badalova J, Vojtísková J, Quan L, Krulova M, Sohrabi Y, Stassen AP, Demant P. Loci controlling lymphocyte production of interferon γ after alloantigen stimulation in vitro and their co-localization with genes controlling lymphocyte infiltration of tumors and tumor susceptibility. Cancer Immunol Immunother. 2010;59:203–213. doi: 10.1007/s00262-009-0739-y. PubMed DOI PMC

Kosařová M, Havelková H, Krulová M, Demant P, Lipoldová M. The production of two Th2 cytokines, interleukin-4 and interleukin-10, is controlled independently by locus Cypr1 and by loci Cypr2 and Cypr3, respectively. Immunogenetics. 1999;49:134–141. doi: 10.1007/s002510050472. PubMed DOI

Havelková H, Badalová J, Svobodová M, Vojtísková J, Kurey I, Vladimirov V, Demant P, Lipoldová M. Genetics of susceptibility to leishmaniasis in mice: four novel loci and functional heterogeneity of gene effects. Genes Immun. 2006;7(3):220–233. doi: 10.1038/sj.gene.6364290. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...