Distinct genetic control of parasite elimination, dissemination, and disease after Leishmania major infection

. 2009 Sep ; 61 (9) : 619-33. [epub] 20090825

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid19705113

Elimination of pathogens is the basis of host resistance to infections; however, relationship between persisting pathogens and disease has not been clarified. Leishmania major infection in mice is an important model of host-pathogen relationship. Infected BALB/c mice exhibit high parasite numbers in lymph nodes and spleens, and a chronic disease with skin lesions, splenomegaly, and hepatomegaly, increased serum IgE levels and cytokine imbalance. Although numerous gene loci affecting these disease symptoms have been reported, genes controlling parasites' elimination or dissemination have never been mapped. We therefore compared genetics of the clinical and immunologic symptomatology with parasite load in (BALB/c x CcS-11) F2 hybrids and mapped five loci, two of which control parasite elimination or dissemination. Lmr5 influences parasite loads in spleens (and skin lesions, splenomegaly, and serum IgE, IL-4, and IFNgamma levels), and Lmr20 determines parasite numbers in draining lymph nodes (and serum levels of IgE and IFNgamma), but no skin or visceral pathology. Three additional loci do not affect parasite numbers but influence significantly the disease phenotype-Lmr21: skin lesions and IFNgamma levels, Lmr22: IL-4 levels, Lmr23: IFNgamma levels, indicating that development of L. major-caused disease includes critical regulations additional to control of parasite spread.

Zobrazit více v PubMed

None PubMed DOI

Badalová J, Svobodová M, Havelková H, Vladimirov V, Vojtíšková J et al (2002) Separation and mapping of multiple genes that control IgE level in Leishmania major infected mice. Genes Immun 3:187–195 PubMed

None PubMed DOI PMC

Bagot S, Campino S, Penha-Goncalves C, Pied S, Cazenave PA et al (2002) Identification of two cerebral malaria resistance loci using an inbred wild-derived mouse strain. Proc Natl Acad Sci U S A 99:9919–9923 PubMed PMC

None PubMed DOI PMC

Baguet A, Epler J, Wen Kwun W, Bix M (2004) A Leishmania major response locus identified by interval-specific congenic mapping of a T helper type 2 cell bias-controlling quantitative trait locus. J Exp Med 200:1605–1612 PubMed PMC

None PubMed DOI

Beebe AM, Mauze S, Schork NJ, Coffman RL (1997) Serial backcross mapping of multiple loci associated with resistance to Leishmania major in mice. Immunity 6:551–557 PubMed

None PubMed DOI PMC

Bix M, Wang ZE, Thiel B, Schork NJ, Locksley RM (1998) Genetic regulation of commitment to interleukin 4 production by a CD4(+) T cell-intrinsic mechanism. J Exp Med 188:2289–2299 PubMed PMC

None PubMed DOI

Blos M, Schleicher U, Soares Rocha FJ, Meissner U, Rollinghoff M et al (2003) Organ-specific and stage-dependent control of Leishmania major infection by inducible nitric oxide synthase and phagocyte NADPH oxidase. Eur J Immunol 33:1224–1234 PubMed

None PubMed PMC

Brownstein DG, Gras L (1995) Chromosome mapping of Rmp-4, a gonad-dependent gene encoding host resistance to mousepox. J Virol 69:6958–6964 PubMed PMC

None PubMed PMC

Butterfield RJ, Roper RJ, Rhein DM, Melvold RW, Haynes L et al (2003) Sex-specific quantitative trait loci govern susceptibility to Theiler's murine encephalomyelitis virus-induced demyelination. Genetics 163:1041–1046 PubMed PMC

None PubMed DOI

Choi P, Xanthaki D, Rose SJ, Haywood M, Reiser H et al (2005) Linkage analysis of the genetic determinants of T-cell IL-4 secretion, and identification of Flj20274 as a putative candidate gene. Genes Immun 6:290–297 PubMed

None PubMed

DeKrey GK, Jones JJ, Mbow ML, Brodskyn CI, Titus RG (2003) Short report: Requirement of B cells for delayed type hypersensitivity-like pathology after secondary infection with Leishmania major in resistant C57BL/6 mice. Am J Trop Med Hyg 69:481–483 PubMed

None PubMed DOI

Demant P, Lipoldová M, Svobodová M (1996) Resistance to Leishmania major in mice. Science 274: 1392–1393 PubMed

None DOI

Diamond LS, Herman CM (1954) Incidence of trypanosomes in the Canada goose as revealed by bone marrow culture. J Parasitol 40:195–202

None PubMed DOI

Flint J, Valdar W, Shifman S, Mott R (2005) Strategies for mapping and cloning quantitative trait genes in rodents. Nat Rev Genet 6:271–286 PubMed

None PubMed PMC

Gessner A, Schroppel K, Will A, Enssle KH, Lauffer L et al (1994) Recombinant soluble interleukin-4 (IL-4) receptor acts as an antagonist of IL-4 in murine cutaneous leishmaniasis. Infect Immun 62:4112–4117 PubMed PMC

None PubMed DOI

Havelková H, Kosařová M, Krulová M, Demant P, Lipoldová M (1999) T-cell proliferative response is controlled by loci Tria4 and Tria5 on mouse chromosomes 7 and 9. Mamm Genome 10:670–674 PubMed

None PubMed DOI

Havelková H, Badalová J, Svobodová M, Vojtíšková J, Kurey I et al (2006) Genetics of susceptibility to leishmaniasis in mice: four novel loci and functional heterogeneity of gene effects. Genes Immun 7:220–233 PubMed

None PubMed DOI

Hoerauf A, Rollinghoff M, Solbach W (1996) Co-transfer of B cells converts resistance into susceptibility in T cell-reconstituted, Leishmania major-resistant C.B-17 scid mice by a non-cognate mechanism. Int Immunol 8:1569–1575 PubMed

None PubMed DOI

Iraqi F, Clapcott SJ, Kumari P, Haley CS, Kemp SJ et al (2000) Fine mapping of trypanosomiasis resistance loci in murine advanced intercross lines. Mamm Genome 11:645–648 PubMed

None PubMed DOI PMC

Jackson AU, Galecki AT, Burke DT, Miller RA (2003) Genetic polymorphisms in mouse genes regulating age-sensitive and age-stable T cell subsets. Genes Immun 4:30–39 PubMed PMC

None PubMed DOI

Johnson J, Suzuki Y, Mack D, Mui E, Estes R et al (2002) Genetic analysis of influences on survival following Toxoplasma gondii infection. Int J Parasitol 32:179–185 PubMed

None PubMed DOI

Krulová M, Havelková H, Kosařová M, Holáň V, Hart AAM et al (1997) IL-2-induced proliferative response is controlled by loci Cinda1 and Cinda2 on mouse chromosomes 11 and 12: a distinct control of the response induced by different IL-2 concentrations. Genomic 42:11–15 PubMed

None PubMed PMC

Lander E, Botstein D (1989) Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121:185–199 PubMed PMC

None PubMed DOI

Lander ES, Schork NJ (1994) Genetic dissection of complex traits. Science 265:2037–2048 PubMed

None PubMed DOI

Lewis G, Rapsomaniki E, Bouriez T, Crockford T, Ferry H et al (2004) Hyper IgE in New Zealand black mice due to a dominant-negative CD23 mutation. Immunogenetics 56:564–571 PubMed

None PubMed DOI

Lipoldová M, Demant P (2006) Genetic susceptibility to infectious disease: lessons from mouse models of leishmaniasis. Nat Rev Genet 7:294–305 PubMed

None PubMed DOI

Lipoldová M, Svobodová M, Krulová M, Havelková H, Badalová J et al (2000) Susceptibility to Leishmania major infection in mice: multiple loci and heterogeneity of immunopathological phenotypes. Genes Immun 1:200–206 PubMed

None PubMed DOI

Lipoldová M, Svobodová M, Havelková H, Krulová M, Badalová J et al (2002) Mouse genetic model for clinical and immunological heterogeneity of leishmaniasis. Immunogenetics 54:174–183 PubMed

None PubMed DOI PMC

Lundberg P, Welander P, Openshaw H, Nalbandian C, Edwards C et al (2003) A locus on mouse chromosome 6 that determines resistance to herpes simplex virus also influences reactivation, while an unlinked locus augments resistance of female mice. J Virol 77:11661–11673 PubMed PMC

None PubMed PMC

Ma Y, Seiler KP, Eichwald EJ, Weis JH, Teuscher C et al (1998) Distinct characteristics of resistance to Borrelia burgdorferi-induced arthritis in C57BL/6N mice. Infect Immun 66:161–168 PubMed PMC

None PubMed DOI PMC

Marinho CR, Bucci DZ, Dagli ML, Bastos KR, Grisotto MG et al (2004) Pathology affects different organs in two mouse strains chronically infected by a Trypanosoma cruzi clone: a model for genetic studies of Chagas' disease. Infect Immun 72:2350–2357 PubMed PMC

None PubMed DOI PMC

McBrearty BA, Clark LD, Zhang XM, Blankenhorn EP, Heber-Katz E (1998) Genetic analysis of a mammalian wound-healing trait. Proc Natl Acad Sci U S A 95:11792–11797 PubMed PMC

None PubMed DOI

McMahon-Pratt D, Alexander J (2004) Does the Leishmania major paradigm of pathogenesis and protection hold for New World cutaneous leishmaniases or the visceral disease? Immunol Rev 201:206–224 PubMed

None PubMed PMC

Mock BA, Nacy CA (1988) Hormonal modulation of sex differences in resistance to Leishmania major systemic infections. Infect Immun 56:3316–3319 PubMed PMC

None PubMed DOI

Moss ML, Jin SL, Milla ME, Bickett DM, Burkhart W et al (1997) Cloning of a disintegrin metalloproteinase that processes precursor tumour-necrosis factor-alpha. Nature 385:733–736 PubMed

None PubMed

Nacy CA, Fortier AH, Meltzer MS, Buchmeier NA, Schreiber RD (1985) Macrophage activation to kill Leishmania major: activation of macrophage for intracellular destruction of amastigotes can be induced by both recombinant interferon- and non-interferon lymphokines. J Immunol 135:3505–3511 PubMed

None PubMed DOI PMC

Olivier M, Gregory DJ, Forget G (2005) Subversion mechanisms by which Leishmania parasites can escape the host immune response: a signaling point of view. Clin Microbiol Rev 18:293–305 PubMed PMC

None PubMed

Padigel UM, Farrell JP (2005) Control of infection with Leishmania major in susceptible BALB/c mice lacking the common (gamma)-chain for FcR is associated with reduced production of IL-10 and TGF-beta by parasitized cells. J Immunol 174:6340–6345 PubMed

None PubMed DOI

Råberg L, Sim D, Read AF (2007) Disentangling genetic variation for resistance and tolerance to infectious diseases in animals. Science 318:812–814 PubMed

None PubMed DOI PMC

Roberts LJ, Baldwin TM, Curtis JM, Handman E, Foote SJ (1997) Resistance to Leishmania major is linked to H2 region on chromosome 17 and to chromosome 9. J Exp Med 9:1705–1710 PubMed PMC

None PubMed DOI

Roberts LJ, Baldwin TM, Speed TP, Handman E, Foote SJ (1999) Chromosomes X, 9, and the H2 locus interact epistatically to control Leishmania major infection. Eur J Immunol 29:3047–3050 PubMed

None PubMed DOI

Rodgers MR, Popper SJ, Wirth DF (1990) Amplification of kinetoplast DNA as a tool in the detection and diagnosis of Leishmania. Exp Parasitol 71:267–275 PubMed

None PubMed DOI

Roper RJ, Weis JJ, McCracken BA, Green CB, Ma Y et al (2001) Genetic control of susceptibility to experimental Lyme arthritis is polygenic and exhibits consistent linkage to multiple loci on chromosome 5 in four independent mouse crosses. Genes Immun 2:388–397 PubMed

None PubMed DOI

Sacks D, Noben-Trauth N (2002) The immunology of susceptibility and resistance to Leishmania major in mice. Nat Rev Immunol 2:845–858 PubMed

None PubMed DOI PMC

Singer JB, Hill AE, Nadeau JH, Lander ES (2005) Mapping quantitative trait loci for anxiety in chromosome substitution strains of mice. Genetics 169:855–862 PubMed PMC

None PubMed DOI

Stassen APM, Groot PC, Eppig JT, Demant P (1996) Genetic composition of the recombinant congenic strains. Mamm Genome 7:55–58 PubMed

None PubMed DOI PMC

Stenger S, Donhauser N, Thuring H, Rollinghoff M, Bogdan C (1996) Reactivation of latent leishmaniasis by inhibition of inducible nitric oxide synthase. J Exp Med 183:1501–1514 PubMed PMC

None PubMed DOI

Trezena AG, Souza CM, Borrego A, Massa S, Siqueira M et al (2002) Co-localization of quantitative trait loci regulating resistance to Salmonella typhimurium infection and specific antibody production phenotypes. Microbes Infect 4:1409–1415 PubMed

None PubMed DOI

Tripodis N, Hart AA, Fijneman RJ, Demant P (2001) Complexity of lung tumor modifiers: mapping of thirty genes and twenty five interactions in half of the mouse genome. J Natl Cancer Inst 93:1484–1489 PubMed

None PubMed DOI PMC

Vladimirov V, Badalová J, Svobodová M, Havelková H, Hart AAM et al (2003) Different genetic control of cutaneous and visceral disease after Leishmania major infection in mouse. Infect Immun 71:2041–2046 PubMed PMC

None PubMed DOI PMC

Woelbing F, Kostka SL, Moelle K, Belkaid Y, Sunderkoetter C et al (2006) Uptake of Leishmania major by dendritic cells is mediated by Fc(gamma) receptors and facilitates acquisition of protective immunity. J Exp Med 203:177–188 PubMed PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Functionally distinct regions of the locus Leishmania major response 15 control IgE or IFNγ level in addition to skin lesions

. 2023 ; 14 () : 1145269. [epub] 20230803

Gene-Specific Sex Effects on Susceptibility to Infectious Diseases

. 2021 ; 12 () : 712688. [epub] 20211014

Novel Loci Controlling Parasite Load in Organs of Mice Infected With Leishmania major, Their Interactions and Sex Influence

. 2019 ; 10 () : 1083. [epub] 20190607

A novel locus on mouse chromosome 7 that influences survival after infection with tick-borne encephalitis virus

. 2018 Jul 06 ; 19 (1) : 39. [epub] 20180706

Gene-specific sex effects on eosinophil infiltration in leishmaniasis

. 2016 ; 7 () : 59. [epub] 20161122

Mapping the genes for susceptibility and response to Leishmania tropica in mouse

. 2013 ; 7 (7) : e2282. [epub] 20130711

Mice with different susceptibility to tick-borne encephalitis virus infection show selective neutralizing antibody response and inflammatory reaction in the central nervous system

. 2013 Jun 27 ; 10 () : 77. [epub] 20130627

Genetics of host response to Leishmania tropica in mice - different control of skin pathology, chemokine reaction, and invasion into spleen and liver

. 2012 ; 6 (6) : e1667. [epub] 20120605

Genetic control of resistance to Trypanosoma brucei brucei infection in mice

. 2011 Jun ; 5 (6) : e1173. [epub] 20110607

Leishmania parasite detection and quantification using PCR-ELISA

. 2010 Jun ; 5 (6) : 1074-80. [epub] 20100520

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace