Novel Loci Controlling Parasite Load in Organs of Mice Infected With Leishmania major, Their Interactions and Sex Influence
Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
31231359
PubMed Central
PMC6566641
DOI
10.3389/fimmu.2019.01083
Knihovny.cz E-zdroje
- Klíčová slova
- Leishmania major, PCR-ELISA, QTL, mouse model, parasite load, sex influence, susceptibility to Infection, visceral leishmaniasis,
- MeSH
- interakce hostitele a parazita MeSH
- Leishmania major * MeSH
- leishmanióza viscerální genetika parazitologie MeSH
- myši MeSH
- parazitární zátěž * MeSH
- pohlavní dimorfismus MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Leishmaniasis is a serious health problem in many countries, and continues expanding to new geographic areas including Europe and USA. This disease, caused by parasites of Leishmania spp. and transmitted by phlebotomine sand flies, causes up to 1.3 million new cases each year and despite efforts toward its functional dissection and treatment it causes 20-50 thousands deaths annually. Dependence of susceptibility to leishmaniasis on sex and host's genes was observed in humans and in mouse models. Several laboratories defined in mice a number of Lmr (Leishmania major response) genetic loci that control functional and pathological components of the response to and outcome of L. major infection. However, the development of its most aggressive form, visceral leishmaniasis, which is lethal if untreated, is not yet understood. Visceral leishmaniasis is caused by infection and inflammation of internal organs. Therefore, we analyzed the genetics of parasite load, spread to internal organs, and ensuing visceral pathology. Using a new PCR-based method of quantification of parasites in tissues we describe a network-like set of interacting genetic loci that control parasite load in different organs. Quantification of Leishmania parasites in lymph nodes, spleen and liver from infected F2 hybrids between BALB/c and recombinant congenic strains CcS-9 and CcS-16 allowed us to map two novel parasite load controlling Leishmania major response loci, Lmr24 and Lmr27. We also detected parasite-controlling role of the previously described loci Lmr4, Lmr11, Lmr13, Lmr14, Lmr15, and Lmr25, and describe 8 genetic interactions between them. Lmr14, Lmr15, Lmr25, and Lmr27 controlled parasite load in liver and lymph nodes. In addition, Leishmania burden in lymph nodes but not liver was influenced by Lmr4 and Lmr24. In spleen, parasite load was controlled by Lmr11 and Lmr13. We detected a strong effect of sex on some of these genes. We also mapped additional genes controlling splenomegaly and hepatomegaly. This resulted in a systematized insight into genetic control of spread and load of Leishmania parasites and visceral pathology in the mammalian organism.
Faculty of Science Charles University Prague Czechia
Roswell Park Comprehensive Cancer Center Buffalo NY United States
Zobrazit více v PubMed
Dujardin JC, Campino L, Cañavate C, Dedet JP, Gradoni L, Soteriadou K, et al. . Spread of vector-borne diseases and neglect of leishmaniasis, Europe. Emerg Infect Dis. (2008) 14:1013–8. 10.3201/eid1407.071589 PubMed DOI PMC
Alvar J, Vélez ID, Bern C, Herrero M, Desjeux P, Cano J, et al. . Leishmaniasis worldwide and global estimates of its incidence. PLoS ONE. (2012) 7:e35671. 10.1371/journal.pone.0035671 PubMed DOI PMC
Torres-Guerrero E, Quintanilla-Cedillo MR, Ruiz-Esmenjaud J, Arenas R. Leishmaniasis: a review. F1000Research. (2017) 6:750. 10.12688/f1000research.11120.1 PubMed DOI PMC
Petersen CA. Leishmaniasis, an emerging disease found in companion animals in the United States. Top Companion Anim Med. (2009) 24:182–8. 10.1053/j.tcam.2009.06.006 PubMed DOI PMC
González C, Wang O, Strutz SE, González-Salazar C, Sánchez-Cordero V, Sarkar S. Climate change and risk of leishmaniasis in North America: predictions from ecological niche models of vector and reservoir species. PLoS Negl Trop Dis. (2010) 4:e585. 10.1371/journal.pntd.0000585 PubMed DOI PMC
Ready PD. Leishmaniasis emergence in Europe. Eurosurveillance. (2010) 15:19505. 10.2807/ese.15.10.19505-en PubMed DOI
Esch KJ, Petersen CA. Transmission and epidemiology of zoonotic protozoal diseases of companion animals. Clin Microbiol Rev. (2013) 26:58–85. 10.1128/CMR.00067–12 PubMed DOI PMC
Douvoyiannis M, Khromachou T, Byers N, Hargreaves J, Murray HW. Cutaneous leishmaniasis in North Dakota. Clin Infect Dis. (2014) 59:e73–5. 10.1093/cid/ciu386 PubMed DOI
WHO Integrating Neglected Tropical Diseases in Global Health and Development. Fourth WHO Report on Neglected Tropical Diseases. Geneva: World Health Organization; (2017).
Herwaldt BL. Leishmaniasis. Lancet. (1999) 354:1191–9. 10.1016/S0140–6736(98)10178–2 PubMed DOI
Machado CM, Martins TC, Colturato I, Leite MS, Simione AJ, De Souza MP, et al. . Epidemiology of neglected tropical diseases in transplant recipients. Review of the literature and experience of a Brazilian HSCT center. Rev Inst Med Trop Sao Paulo. (2009) 51:309–24. 10.1590/S0036–46652009000600002 PubMed DOI
Pavli A, Maltezou HC. Leishmaniasis, an emerging infection in travelers. Int J Infect Dis. (2010) 14:e1032–9. 10.1016/j.ijid.2010.06.019 PubMed DOI
WHO Investing to Overcome the Global Impact of Neglected Tropical Diseases: Third WHO Report on Neglected Diseases 2015. Geneva: World Health Organization; (2015).
Picado A, Ostyn B, Singh SP, Uranw S, Hasker E, Rijal S, et al. . Risk factors for visceral leishmaniasis and asymptomatic Leishmania donovani infection in India and Nepal. PLoS ONE. (2014) 9:e87641. 10.1371/journal.pone.0087641 PubMed DOI PMC
WHO Weekly epidemiological record: global leishmaniasis update, 2006–2015, a turning point in leishmaniasis surveillance. World Heal Organ. (2017) 92:557–72. 10.1186/1750-9378-2-15 PubMed DOI
Lipoldová M, Demant P. Genetic susceptibility to infectious disease: Lessons from mouse models of leishmaniasis. Nat Rev Genet. (2006) 7:294–305. 10.1038/nrg1832 PubMed DOI
Terrazas CA, Terrazas LI, Gómez-García L. Modulation of dendritic cell responses by parasites: a common strategy to survive. J Biomed Biotechnol. (2010) 2010:357106. 10.1155/2010/357106 PubMed DOI PMC
Kobets T, Grekov I, Lipoldova M. Leishmaniasis: prevention, parasite detection and treatment. Curr Med Chem. (2012) 19:1443–74. 10.2174/092986712799828300 PubMed DOI
Ghorbani M, Farhoudi R. Leishmaniasis in humans: drug or vaccine therapy? Drug Des Devel Ther. (2018) 12:25–40. 10.2147/DDDT.S146521 PubMed DOI PMC
McMahon-Pratt D, Alexander J. Does the Leishmania major paradigm of pathogenesis and protection hold for New World cutaneous leishmaniases or the visceral disease? Immunol Rev. (2004) 201:206–24. 10.1111/j.0105–2896.2004.00190.x PubMed DOI
Kurey I, Kobets T, Havelková H, Slapničková M, Quan L, Trtková K, et al. . Distinct genetic control of parasite elimination, dissemination, and disease after Leishmania major infection. Immunogenetics. (2009) 61:619–33. 10.1007/s00251–009-0392–9 PubMed DOI PMC
Sakthianandeswaren A, Foote SJ, Handman E. The role of host genetics in leishmaniasis. Trends Parasitol. (2009) 25:383–91. 10.1016/j.pt.2009.05.004 PubMed DOI
Sohrabi Y, Havelková H, Kobets T, Šíma M, Volkova V, Grekov I, et al. . Mapping the genes for susceptibility and response to Leishmania tropica in mouse. PLoS Negl Trop Dis. (2013) 7:e2282. 10.1371/journal.pntd.0002282 PubMed DOI PMC
Kirkpatrick CE, Farrell JP. Leishmaniasis in beige mice. Infect Immun. (1982) 38:1208–16. PubMed PMC
Leclercq V, Lebastard M, Belkaid Y, Louis J, Milon G. The outcome of the parasitic process initiated by Leishmania infantum in laboratory mice: a tissue-dependent pattern controlled by the Lsh and MHC loci. J Immunol. (1996) 157:4537–45. PubMed
Bradley DJ, Taylor BA, Blackwell J, Evans EP, Freeman J. Regulation of Leishmania populations within the host. III. Mapping of the locus controlling susceptibility to visceral leishmaniasis in the mouse. Clin Exp Immunol. (1979) 37:7–14. PubMed PMC
Blackwell J, Freeman J, Bradley D. Influence of H-2 complex on acquired resistance to Leishmania donovani infection in mice. Nature. (1980) 283:72–4. 10.1038/283072a0 PubMed DOI
DeTolla LJ, Jr., Semprevivo LH, Palczuk NC, Passmore HC. Genetic control of acquired resistance to visceral leishmaniasis in mice. Immunogenetics. (1980) 10:353–61. PubMed
Roberts M, Alexander J, Blackwell JM. Influence of Lsh, H-2, and an H-11-linked gene on visceralization and metastasis associated with Leishmania mexicana infection in mice. Infect Immun. (1989) 57:875–81. PubMed PMC
Baguet A, Epler J, Wen KW, Bix M. A Leishmania major response locus identified by interval-specific congenic mapping of a T helper type 2 cell bias-controlling quantitative trait locus. J Exp Med. (2004) 200:1605–12. 10.1084/jem.20040334 PubMed DOI PMC
Karamian M, Motazedian MH, Mehrabani D, Gholami K. Leishmania major infection in a patient with visceral leishmaniasis: treatment with amphotericin B. Parasitol Res. (2007) 101:1431–4. 10.1007/s00436–007-0649-x PubMed DOI
Mortazavi H, Mohebali M, Taslimi Y, Sadeghipour P, Ansari M, Kamyab K, et al. . Hoarseness as the presenting symptom of visceral leishmaniasis with muco-cutaneous lesions: a case report. Iran J Parasitol. (2015) 10:296–300. PubMed PMC
Slapničková M, Volkova V, Cepičková M, Kobets T, Šíma M, Svobodová M, et al. . Gene-specific sex effects on eosinophil infiltration in leishmaniasis. Biol Sex Differ. (2016) 7:59. 10.1186/s13293–016-0117–3 PubMed DOI PMC
Kobets T, Havelková H, Grekov I, Volkova V, Vojtíšková J, Slapničková M, et al. . Genetics of host response to Leishmania tropica in mice - different control of skin pathology, chemokine reaction, and invasion into spleen and liver. PLoS Negl Trop Dis. (2012) 6:e1667. 10.1371/journal.pntd.0001667 PubMed DOI PMC
Stassen APM, Groot PC, Eppig JT, Demant P. Genetic composition of the recombinant congenic strains. Mamm Genome. (1996) 7:55–8 10.1007/s003359900013 PubMed DOI
Demant P, Lipoldová M, Svobodová M. Resistance to Leishmania major in mice. Science. (1996) 274:1392a 10.1126/science.274.5291.1392 PubMed DOI
Sohrabi Y, Volkova V, Kobets T, Havelková H, Krayem I, Slapničková M, et al. . Genetic regulation of guanylate-binding proteins 2b and 5 during leishmaniasis in mice. Front Immunol. (2018) 9:130. 10.3389/fimmu.2018.00130 PubMed DOI PMC
Grekov I, Svobodová M, Nohýnková E, Lipoldová M. Preparation of highly infective Leishmania promastigotes by cultivation on SNB-9 biphasic medium. J Microbiol Methods. (2011) 87:273–7. 10.1016/j.mimet.2011.08.012 PubMed DOI
Lipoldová M, Svobodová M, Krulová M, Havelková H, Badalová J, Nohýnková E, et al. . Susceptibility to Leishmania major infection in mice: Multiple loci and heterogeneity of immunopathological phenotypes. Genes Immun. (2000) 1:200–6. 10.1038/sj.gene.6363660 PubMed DOI
Vladimirov V, Badalová J, Svobodová M, Havelková H, Hart AAM, BlaŽková H, et al. . Different genetic control of cutaneous and visceral disease after Leishmania major infection in mice. Infect Immun. (2003) 71:2041–6. 10.1128/IAI.71.4.2041–2046.2003 PubMed DOI PMC
Kobets T, Badalová J, Grekov I, Havelková H, Svobodová M, Lipoldová M. Leishmania parasite detection and quantification using PCR-ELISA. Nat Protoc. (2010) 5:1074–80. 10.1038/nprot.2010.68 PubMed DOI
Laird PW, Zijderveld A, Linders K, Rudnicki MA, Jaenisch R, Berns A. Simplified mammalian DNA isolation procedure. Nucleic Acids Res. (1991) 19:4293. 10.1093/nar/19.15.4293 PubMed DOI PMC
Lander ES, Schork NJ. Genetic dissection of complex traits. Science. (1994) 265:2037–48. 10.1126/science.8091226 PubMed DOI
Badalová J, Svobodová M, Havelková H, Vladimirov V, Vojtíšková J, Engová J, et al. . Separation and mapping of multiple genes that control IgE level in Leishmania major infected mice. Genes Immun. (2002) 3:187–95. 10.1038/sj.gene.6363838 PubMed DOI
Havelková H, Badalová J, Svobodová M, Vojtíšková J, Kurey I, Vladimirov V, et al. . Genetics of susceptibility to leishmaniasis in mice: four novel loci and functional heterogeneity of gene effects. Genes Immun. (2006) 7:220–33. 10.1038/sj.gene.6364290 PubMed DOI
McCall LI, Zhang WW, Matlashewski G. Determinants for the development of visceral leishmaniasis disease. PLoS Pathog. (2013) 9:e1003053. 10.1371/journal.ppat.1003053 PubMed DOI PMC
Lipoldová M, Svobodová M, Havelková H, Krulová M, Badalová J, Nohýnková E, et al. . Mouse genetic model for clinical and immunological heterogeneity of leishmaniasis. Immunogenetics. (2002) 54:174–83. 10.1007/s00251–002-0439–7 PubMed DOI
de Freitas EO, de Leoratti FM, Freire-de-Lima CG, Morrot A, Feijó DF. The contribution of immune evasive mechanisms to parasite persistence in visceral leishmaniasis. Front Immunol. (2016) 7:153. 10.3389/fimmu.2016.00153 PubMed DOI PMC
Varma N, Naseem S. Hematologic changes in visceral leishmaniasis/kala azar. Indian J Hematol Blood Transfus. (2010) 26:78–82. 10.1007/s12288–010-0027–1 PubMed DOI PMC
Snider H, Lezama-Davila C, Alexander J, Satoskar AR. Sex hormones and modulation of immunity against leishmaniasis. Neuroimmunomodulation. (2009) 16:106–13. 10.1159/000180265 PubMed DOI PMC
Bernin H, Lotter H. Sex bias in the outcome of human tropical infectious diseases: Influence of steroid hormones. J Infect Dis. (2014) 3:S107–13. 10.1093/infdis/jit610 PubMed DOI
Butterfield RJ, Roper RJ, Rhein DM, Melvold RW, Haynes L, Ma RZ, Doerge RW, Teuscher C. Sex-specific quantitative trait loci govern susceptibility to Theiler's murine encephalomyelitis virus-induced demyelination. Genetics. (2003) 163:1041–6. PubMed PMC
Boivin GA, Pothlichet J, Skamene E, Brown EG, Loredo-Osti JC, Sladek R, et al. . Mapping of clinical and expression quantitative trait loci in a sex-dependent effect of host susceptibility to mouse-adapted influenza H3N2/HK/1/68. J Immunol. (2012) 188:3949–60. 10.4049/jimmunol.1103320 PubMed DOI
Min-Oo G, Lindqvist L, Vaglenov A, Wang C, Fortin P, Li Y, et al. . Genetic control of susceptibility to pulmonary infection with Chlamydia pneumoniae in the mouse. Genes Immun. (2008) 9:383–8. 10.1038/sj.gene.6364450 PubMed DOI
Šíma M, Havelková H, Quan L, Svobodová M, Jarošíková T, Vojtíšková J, et al. . Genetic control of resistance to Trypanosoma brucei brucei infection in mice. PLoS Negl Trop Dis. (2011) 5:e1173. 10.1371/journal.pntd.0001173 PubMed DOI PMC
Carroll SF, Loredo Osti JC, Guillot L, Morgan K, Qureshi ST. Sex differences in the genetic architecture of susceptibility to Cryptococcus neoformans pulmonary infection. Genes Immun. (2008) 9:536–45. 10.1038/gene.2008.48 PubMed DOI
Hayes KS, Hager R, Grencis RK. Sex-dependent genetic effects on immune responses to a parasitic nematode. BMC Genomics. (2014) 15:193. 10.1186/1471–2164-15–193 PubMed DOI PMC
Ober C, Loisel DA, Gilad Y. Sex-specific genetic architecture of human disease. Nat Rev Genet. (2008) 9:911–22. 10.1038/nrg2415 PubMed DOI PMC
Cato ACB, Nestl A, Mink S. Rapid actions of steroid receptors in cellular signaling pathways. Sci Signal. (2002) 43:1–36. 10.1126/stke.2002.138.re9 PubMed DOI
Fuentes N, Roy A, Mishra V, Cabello N, Silveyra P. Sex-specific microRNA expression networks in an acute mouse model of ozone-induced lung inflammation. Biol Sex Differ. (2018) 9:18. 10.1186/s13293–018-0177–7 PubMed DOI PMC
McCormick H, Young PE, Hur SSJ, Booher K, Chung H, et al. . Isogenic mice exhibit sexually-dimorphic DNA methylation patterns across multiple tissues. BMC Genomics. (2017) 18:966. 10.1186/s12864–017-4350-x PubMed DOI PMC
Schlagenhauf P, Chen LH, Wilson ME, Freedman DO, Tcheng D, Schwartz E, et al. . Sex and gender differences in travel-associated disease. Clin Infect Dis. (2010) 50:826–32. 10.1086/650575 PubMed DOI
Guerra-Silveira F, Abad-Franch F. Sex Bias in infectious disease epidemiology: patterns and processes. PLoS ONE. (2013) 8:e62390. 10.1371/journal.pone.0062390 PubMed DOI PMC
Layegh P, Moghiman T, Ahmadian Hoseini SA. Children and cutaneous leishmaniasis: a clinical report and review. J Infect Dev Ctries. (2013) 7:614–7. 10.3855/jidc.2939 PubMed DOI
Bettaieb J, Toumi A, Chlif S, Chelghaf B, Boukthir A, Gharbi A, et al. . Prevalence and determinants of Leishmania major infection in emerging and old foci in Tunisia. Parasit Vect. (2014) 7:386. 10.1186/1756–3305-7–386 PubMed DOI PMC
Gandacu D, Glazer Y, Anis E, Karakis I, Warshavsky B, Slater P, Grotto I. Resurgence of cutaneous leishmaniasis in Israel, 2001–2012. Emerg Infect Dis. (2014) 20:1605–11. 10.3201/eid2010.140182 PubMed DOI PMC
Spotin A, Rouhani S, Parvizi P. The Associations of Leishmania major and Leishmania tropica aspects by focusing their morphological and molecular features on clinical appearances in Khuzestan province, Iran. Biomed Res Int. (2014) 2014:913510. 10.1155/2014/913510 PubMed DOI PMC
Talari SA, Talaei R, Shajari G, Vakili Z, Taghaviardakani A. Childhood cutaneous leishmaniasis: report of 117 cases from Iran. Korean J Parasitol. (2006) 44:355–60. 10.3347/kjp.2006.44.4.355 PubMed DOI PMC
Soares L, Abad-Franch F, Ferraz G. Epidemiology of cutaneous leishmaniasis in central Amazonia: a comparison of sex-biased incidence among rural settlers and field biologists. Trop Med Int Health. (2014) 19:988–95. 10.1111/tmi.12337 PubMed DOI
Rijal S, Uranw S, Chappuis F, Picado A, Khanal B, Paudel IS, et al. . Epidemiology of Leishmania donovani infection in high-transmission foci in Nepal. Trop Med Int Health. (2010) 15 (Suppl. 2):21–8. 10.1111/j.1365–3156.2010.02518.x PubMed DOI
Sandanayaka R, Kahawita I, Gamage A, Siribaddana S, Agampodi S. Emergence of cutaneous leishmaniasis in Polonnaruwa, Sri Lanka 2008–2011. Trop Med Int Health. (2014) 19:140–5. 10.1111/tmi.12232 PubMed DOI
Wondimeneh Y, Takele Y, Atnafu A, Ferede G, Muluye D. Trend analysis of visceral leishmaniasis at Addis Zemen health center, northwest Ethiopia. Biomed Res Int. (2014) 2014:545393. 10.1155/2014/545393 PubMed DOI PMC
Harizanov R, Rainova I, Tzvetkova N, Kaftandjiev I, Bikov I, Mikov O. Geographical distribution and epidemiological characteristics of visceral leishmaniasis in Bulgaria, 1988 to 2012. Eurosurveillance. (2013) 18:20531. 10.2807/1560–7917.ES2013.18.29.20531 PubMed DOI
Lachaud L, Dedet JP, Marty P, Faraut F, Buffet P, Gangneux JP, et al. . Surveillance of leishmaniases in France, 1999 to 2012. Eurosurveillance. (2013) 18:20534. 10.2807/1560–7917.ES2013.18.29.20534 PubMed DOI
Herrador Z, Gherasim A, Jimenez BC, Granados M, San Martín JV, Aparicio P. Epidemiological changes in leishmaniasis in Spain according to hospitalization-based records, 1997–2011: raising awareness towards leishmaniasis in Non-HIV patients. PLoS Negl Trop Dis. (2015) 9:e0003594. 10.1371/journal.pntd.0003594 PubMed DOI PMC
Rodriguez NE, Lima ID, Dixit UG, Turcotte EA, Lockard RD, Batra-Sharma H, et al. . Epidemiological and experimental evidence for sex-dependent differences in the outcome of Leishmania infantum infection. Am J Trop Med Hyg. (2018) 98:142–5. 10.4269/ajtmh.17–0563 PubMed DOI PMC
Reithinger R, Mohsen M, Aadil K, Sidiqi M, Erasmus P, Coleman PG. Anthroponotic cutaneous leishmaniasis, Kabul, Afghanistan. Emerg Infect Dis. (2003) 9:727–9. 10.3201/eid0906.030026 PubMed DOI PMC
Gene-Specific Sex Effects on Susceptibility to Infectious Diseases